1 | MODULE icedyn_rhg_evp |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE icedyn_rhg_evp *** |
---|
4 | !! Sea-Ice dynamics : rheology Elasto-Viscous-Plastic |
---|
5 | !!====================================================================== |
---|
6 | !! History : - ! 2007-03 (M.A. Morales Maqueda, S. Bouillon) Original code |
---|
7 | !! 3.0 ! 2008-03 (M. Vancoppenolle) adaptation to new model |
---|
8 | !! - ! 2008-11 (M. Vancoppenolle, S. Bouillon, Y. Aksenov) add surface tilt in ice rheolohy |
---|
9 | !! 3.3 ! 2009-05 (G.Garric) addition of the evp case |
---|
10 | !! 3.4 ! 2011-01 (A. Porter) dynamical allocation |
---|
11 | !! 3.5 ! 2012-08 (R. Benshila) AGRIF |
---|
12 | !! 3.6 ! 2016-06 (C. Rousset) Rewriting + landfast ice + mEVP (Bouillon 2013) |
---|
13 | !! 3.7 ! 2017 (C. Rousset) add aEVP (Kimmritz 2016-2017) |
---|
14 | !! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube] |
---|
15 | !!---------------------------------------------------------------------- |
---|
16 | #if defined key_si3 |
---|
17 | !!---------------------------------------------------------------------- |
---|
18 | !! 'key_si3' SI3 sea-ice model |
---|
19 | !!---------------------------------------------------------------------- |
---|
20 | !! ice_dyn_rhg_evp : computes ice velocities from EVP rheology |
---|
21 | !! rhg_evp_rst : read/write EVP fields in ice restart |
---|
22 | !!---------------------------------------------------------------------- |
---|
23 | USE phycst ! Physical constant |
---|
24 | USE dom_oce ! Ocean domain |
---|
25 | USE sbc_oce , ONLY : ln_ice_embd, nn_fsbc, ssh_m |
---|
26 | USE sbc_ice , ONLY : utau_ice, vtau_ice, snwice_mass, snwice_mass_b |
---|
27 | USE ice ! sea-ice: ice variables |
---|
28 | USE icevar ! ice_var_sshdyn |
---|
29 | USE icedyn_rdgrft ! sea-ice: ice strength |
---|
30 | USE bdy_oce , ONLY : ln_bdy |
---|
31 | USE bdyice |
---|
32 | #if defined key_agrif |
---|
33 | USE agrif_ice_interp |
---|
34 | #endif |
---|
35 | ! |
---|
36 | USE in_out_manager ! I/O manager |
---|
37 | USE iom ! I/O manager library |
---|
38 | USE lib_mpp ! MPP library |
---|
39 | USE lib_fortran ! fortran utilities (glob_sum + no signed zero) |
---|
40 | USE lbclnk ! lateral boundary conditions (or mpp links) |
---|
41 | USE prtctl ! Print control |
---|
42 | |
---|
43 | USE netcdf ! NetCDF library for convergence test |
---|
44 | IMPLICIT NONE |
---|
45 | PRIVATE |
---|
46 | |
---|
47 | PUBLIC ice_dyn_rhg_evp ! called by icedyn_rhg.F90 |
---|
48 | PUBLIC rhg_evp_rst ! called by icedyn_rhg.F90 |
---|
49 | |
---|
50 | !! * Substitutions |
---|
51 | # include "vectopt_loop_substitute.h90" |
---|
52 | |
---|
53 | !! for convergence tests |
---|
54 | INTEGER :: ncvgid ! netcdf file id |
---|
55 | INTEGER :: nvarid ! netcdf variable id |
---|
56 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zmsk00, zmsk15 |
---|
57 | !!---------------------------------------------------------------------- |
---|
58 | !! NEMO/ICE 4.0 , NEMO Consortium (2018) |
---|
59 | !! $Id$ |
---|
60 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
61 | !!---------------------------------------------------------------------- |
---|
62 | CONTAINS |
---|
63 | |
---|
64 | SUBROUTINE ice_dyn_rhg_evp( kt, pstress1_i, pstress2_i, pstress12_i, pshear_i, pdivu_i, pdelta_i ) |
---|
65 | !!------------------------------------------------------------------- |
---|
66 | !! *** SUBROUTINE ice_dyn_rhg_evp *** |
---|
67 | !! EVP-C-grid |
---|
68 | !! |
---|
69 | !! ** purpose : determines sea ice drift from wind stress, ice-ocean |
---|
70 | !! stress and sea-surface slope. Ice-ice interaction is described by |
---|
71 | !! a non-linear elasto-viscous-plastic (EVP) law including shear |
---|
72 | !! strength and a bulk rheology (Hunke and Dukowicz, 2002). |
---|
73 | !! |
---|
74 | !! The points in the C-grid look like this, dear reader |
---|
75 | !! |
---|
76 | !! (ji,jj) |
---|
77 | !! | |
---|
78 | !! | |
---|
79 | !! (ji-1,jj) | (ji,jj) |
---|
80 | !! --------- |
---|
81 | !! | | |
---|
82 | !! | (ji,jj) |------(ji,jj) |
---|
83 | !! | | |
---|
84 | !! --------- |
---|
85 | !! (ji-1,jj-1) (ji,jj-1) |
---|
86 | !! |
---|
87 | !! ** Inputs : - wind forcing (stress), oceanic currents |
---|
88 | !! ice total volume (vt_i) per unit area |
---|
89 | !! snow total volume (vt_s) per unit area |
---|
90 | !! |
---|
91 | !! ** Action : - compute u_ice, v_ice : the components of the |
---|
92 | !! sea-ice velocity vector |
---|
93 | !! - compute delta_i, shear_i, divu_i, which are inputs |
---|
94 | !! of the ice thickness distribution |
---|
95 | !! |
---|
96 | !! ** Steps : 0) compute mask at F point |
---|
97 | !! 1) Compute ice snow mass, ice strength |
---|
98 | !! 2) Compute wind, oceanic stresses, mass terms and |
---|
99 | !! coriolis terms of the momentum equation |
---|
100 | !! 3) Solve the momentum equation (iterative procedure) |
---|
101 | !! 4) Recompute delta, shear and divergence |
---|
102 | !! (which are inputs of the ITD) & store stress |
---|
103 | !! for the next time step |
---|
104 | !! 5) Diagnostics including charge ellipse |
---|
105 | !! |
---|
106 | !! ** Notes : There is the possibility to use aEVP from the nice work of Kimmritz et al. (2016 & 2017) |
---|
107 | !! by setting up ln_aEVP=T (i.e. changing alpha and beta parameters). |
---|
108 | !! This is an upgraded version of mEVP from Bouillon et al. 2013 |
---|
109 | !! (i.e. more stable and better convergence) |
---|
110 | !! |
---|
111 | !! References : Hunke and Dukowicz, JPO97 |
---|
112 | !! Bouillon et al., Ocean Modelling 2009 |
---|
113 | !! Bouillon et al., Ocean Modelling 2013 |
---|
114 | !! Kimmritz et al., Ocean Modelling 2016 & 2017 |
---|
115 | !!------------------------------------------------------------------- |
---|
116 | INTEGER , INTENT(in ) :: kt ! time step |
---|
117 | REAL(wp), DIMENSION(:,:), INTENT(inout) :: pstress1_i, pstress2_i, pstress12_i ! |
---|
118 | REAL(wp), DIMENSION(:,:), INTENT( out) :: pshear_i , pdivu_i , pdelta_i ! |
---|
119 | !! |
---|
120 | INTEGER :: ji, jj ! dummy loop indices |
---|
121 | INTEGER :: jter ! local integers |
---|
122 | ! |
---|
123 | REAL(wp) :: zrhoco ! rau0 * rn_cio |
---|
124 | REAL(wp) :: zdtevp, z1_dtevp ! time step for subcycling |
---|
125 | REAL(wp) :: ecc2, z1_ecc2 ! square of yield ellipse eccenticity |
---|
126 | REAL(wp) :: zalph1, z1_alph1, zalph2, z1_alph2 ! alpha coef from Bouillon 2009 or Kimmritz 2017 |
---|
127 | REAl(wp) :: zbetau, zbetav |
---|
128 | REAL(wp) :: zm1, zm2, zm3, zmassU, zmassV, zvU, zvV ! ice/snow mass and volume |
---|
129 | REAL(wp) :: zdelta, zp_delf, zds2, zdt, zdt2, zdiv, zdiv2 ! temporary scalars |
---|
130 | REAL(wp) :: zTauO, zTauB, zRHS, zvel ! temporary scalars |
---|
131 | REAL(wp) :: zkt ! isotropic tensile strength for landfast ice |
---|
132 | REAL(wp) :: zvCr ! critical ice volume above which ice is landfast |
---|
133 | ! |
---|
134 | REAL(wp) :: zintb, zintn ! dummy argument |
---|
135 | REAL(wp) :: zfac_x, zfac_y |
---|
136 | REAL(wp) :: zshear, zdum1, zdum2 |
---|
137 | ! |
---|
138 | REAL(wp), DIMENSION(jpi,jpj) :: zp_delt ! P/delta at T points |
---|
139 | REAL(wp), DIMENSION(jpi,jpj) :: zbeta ! beta coef from Kimmritz 2017 |
---|
140 | ! |
---|
141 | REAL(wp), DIMENSION(jpi,jpj) :: zdt_m ! (dt / ice-snow_mass) on T points |
---|
142 | REAL(wp), DIMENSION(jpi,jpj) :: zaU , zaV ! ice fraction on U/V points |
---|
143 | REAL(wp), DIMENSION(jpi,jpj) :: zmU_t, zmV_t ! (ice-snow_mass / dt) on U/V points |
---|
144 | REAL(wp), DIMENSION(jpi,jpj) :: zmf ! coriolis parameter at T points |
---|
145 | REAL(wp), DIMENSION(jpi,jpj) :: v_oceU, u_oceV, v_iceU, u_iceV ! ocean/ice u/v component on V/U points |
---|
146 | ! |
---|
147 | REAL(wp), DIMENSION(jpi,jpj) :: zds ! shear |
---|
148 | REAL(wp), DIMENSION(jpi,jpj) :: zs1, zs2, zs12 ! stress tensor components |
---|
149 | REAL(wp), DIMENSION(jpi,jpj) :: zsshdyn ! array used for the calculation of ice surface slope: |
---|
150 | ! ! ocean surface (ssh_m) if ice is not embedded |
---|
151 | ! ! ice bottom surface if ice is embedded |
---|
152 | REAL(wp), DIMENSION(jpi,jpj) :: zfU , zfV ! internal stresses |
---|
153 | REAL(wp), DIMENSION(jpi,jpj) :: zspgU, zspgV ! surface pressure gradient at U/V points |
---|
154 | REAL(wp), DIMENSION(jpi,jpj) :: zCorU, zCorV ! Coriolis stress array |
---|
155 | REAL(wp), DIMENSION(jpi,jpj) :: ztaux_ai, ztauy_ai ! ice-atm. stress at U-V points |
---|
156 | REAL(wp), DIMENSION(jpi,jpj) :: ztaux_oi, ztauy_oi ! ice-ocean stress at U-V points |
---|
157 | REAL(wp), DIMENSION(jpi,jpj) :: ztaux_bi, ztauy_bi ! ice-OceanBottom stress at U-V points (landfast) |
---|
158 | REAL(wp), DIMENSION(jpi,jpj) :: ztaux_base, ztauy_base ! ice-bottom stress at U-V points (landfast) |
---|
159 | ! |
---|
160 | REAL(wp), DIMENSION(jpi,jpj) :: zmsk01x, zmsk01y ! dummy arrays |
---|
161 | REAL(wp), DIMENSION(jpi,jpj) :: zmsk00x, zmsk00y ! mask for ice presence |
---|
162 | REAL(wp), DIMENSION(jpi,jpj) :: zfmask ! mask at F points for the ice |
---|
163 | |
---|
164 | REAL(wp), PARAMETER :: zepsi = 1.0e-20_wp ! tolerance parameter |
---|
165 | REAL(wp), PARAMETER :: zmmin = 1._wp ! ice mass (kg/m2) below which ice velocity becomes very small |
---|
166 | REAL(wp), PARAMETER :: zamin = 0.001_wp ! ice concentration below which ice velocity becomes very small |
---|
167 | !! --- check convergence |
---|
168 | REAL(wp), DIMENSION(jpi,jpj) :: zu_ice, zv_ice |
---|
169 | !! --- diags |
---|
170 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zsig1, zsig2, zsig3 |
---|
171 | !! --- SIMIP diags |
---|
172 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_xmtrp_ice ! X-component of ice mass transport (kg/s) |
---|
173 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_ymtrp_ice ! Y-component of ice mass transport (kg/s) |
---|
174 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_xmtrp_snw ! X-component of snow mass transport (kg/s) |
---|
175 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_ymtrp_snw ! Y-component of snow mass transport (kg/s) |
---|
176 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_xatrp ! X-component of area transport (m2/s) |
---|
177 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_yatrp ! Y-component of area transport (m2/s) |
---|
178 | !!------------------------------------------------------------------- |
---|
179 | |
---|
180 | IF( kt == nit000 .AND. lwp ) WRITE(numout,*) '-- ice_dyn_rhg_evp: EVP sea-ice rheology' |
---|
181 | ! |
---|
182 | ! for diagnostics and convergence tests |
---|
183 | ALLOCATE( zmsk00(jpi,jpj), zmsk15(jpi,jpj) ) |
---|
184 | DO_2D( 1, 1, 1, 1 ) |
---|
185 | zmsk00(ji,jj) = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi06 ) ) ! 1 if ice , 0 if no ice |
---|
186 | zmsk15(ji,jj) = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - 0.15_wp ) ) ! 1 if 15% ice, 0 if less |
---|
187 | END_2D |
---|
188 | ! |
---|
189 | !!gm for Clem: OPTIMIZATION: I think zfmask can be computed one for all at the initialization.... |
---|
190 | !------------------------------------------------------------------------------! |
---|
191 | ! 0) mask at F points for the ice |
---|
192 | !------------------------------------------------------------------------------! |
---|
193 | ! ocean/land mask |
---|
194 | DO_2D( 1, 0, 1, 0 ) |
---|
195 | zfmask(ji,jj) = tmask(ji,jj,1) * tmask(ji+1,jj,1) * tmask(ji,jj+1,1) * tmask(ji+1,jj+1,1) |
---|
196 | END_2D |
---|
197 | CALL lbc_lnk( 'icedyn_rhg_evp', zfmask, 'F', 1._wp ) |
---|
198 | |
---|
199 | ! Lateral boundary conditions on velocity (modify zfmask) |
---|
200 | DO_2D( 0, 0, 0, 0 ) |
---|
201 | IF( zfmask(ji,jj) == 0._wp ) THEN |
---|
202 | zfmask(ji,jj) = rn_ishlat * MIN( 1._wp , MAX( umask(ji,jj,1), umask(ji,jj+1,1), & |
---|
203 | & vmask(ji,jj,1), vmask(ji+1,jj,1) ) ) |
---|
204 | ENDIF |
---|
205 | END_2D |
---|
206 | DO jj = 2, jpjm1 |
---|
207 | IF( zfmask(1,jj) == 0._wp ) THEN |
---|
208 | zfmask(1 ,jj) = rn_ishlat * MIN( 1._wp , MAX( vmask(2,jj,1), umask(1,jj+1,1), umask(1,jj,1) ) ) |
---|
209 | ENDIF |
---|
210 | IF( zfmask(jpi,jj) == 0._wp ) THEN |
---|
211 | zfmask(jpi,jj) = rn_ishlat * MIN( 1._wp , MAX( umask(jpi,jj+1,1), vmask(jpim1,jj,1), umask(jpi,jj-1,1) ) ) |
---|
212 | ENDIF |
---|
213 | END DO |
---|
214 | DO ji = 2, jpim1 |
---|
215 | IF( zfmask(ji,1) == 0._wp ) THEN |
---|
216 | zfmask(ji, 1 ) = rn_ishlat * MIN( 1._wp , MAX( vmask(ji+1,1,1), umask(ji,2,1), vmask(ji,1,1) ) ) |
---|
217 | ENDIF |
---|
218 | IF( zfmask(ji,jpj) == 0._wp ) THEN |
---|
219 | zfmask(ji,jpj) = rn_ishlat * MIN( 1._wp , MAX( vmask(ji+1,jpj,1), vmask(ji-1,jpj,1), umask(ji,jpjm1,1) ) ) |
---|
220 | ENDIF |
---|
221 | END DO |
---|
222 | CALL lbc_lnk( 'icedyn_rhg_evp', zfmask, 'F', 1._wp ) |
---|
223 | |
---|
224 | !------------------------------------------------------------------------------! |
---|
225 | ! 1) define some variables and initialize arrays |
---|
226 | !------------------------------------------------------------------------------! |
---|
227 | zrhoco = rau0 * rn_cio |
---|
228 | |
---|
229 | ! ecc2: square of yield ellipse eccenticrity |
---|
230 | ecc2 = rn_ecc * rn_ecc |
---|
231 | z1_ecc2 = 1._wp / ecc2 |
---|
232 | |
---|
233 | ! alpha parameters (Bouillon 2009) |
---|
234 | IF( .NOT. ln_aEVP ) THEN |
---|
235 | zdtevp = rdt_ice / REAL( nn_nevp ) |
---|
236 | zalph1 = 2._wp * rn_relast * REAL( nn_nevp ) |
---|
237 | zalph2 = zalph1 * z1_ecc2 |
---|
238 | |
---|
239 | z1_alph1 = 1._wp / ( zalph1 + 1._wp ) |
---|
240 | z1_alph2 = 1._wp / ( zalph2 + 1._wp ) |
---|
241 | ELSE |
---|
242 | zdtevp = rdt_ice |
---|
243 | ! zalpha parameters set later on adaptatively |
---|
244 | ENDIF |
---|
245 | z1_dtevp = 1._wp / zdtevp |
---|
246 | |
---|
247 | ! Initialise stress tensor |
---|
248 | zs1 (:,:) = pstress1_i (:,:) |
---|
249 | zs2 (:,:) = pstress2_i (:,:) |
---|
250 | zs12(:,:) = pstress12_i(:,:) |
---|
251 | |
---|
252 | ! Ice strength |
---|
253 | CALL ice_strength |
---|
254 | |
---|
255 | ! landfast param from Lemieux(2016): add isotropic tensile strength (following Konig Beatty and Holland, 2010) |
---|
256 | IF( ln_landfast_L16 ) THEN ; zkt = rn_lf_tensile |
---|
257 | ELSE ; zkt = 0._wp |
---|
258 | ENDIF |
---|
259 | ! |
---|
260 | !------------------------------------------------------------------------------! |
---|
261 | ! 2) Wind / ocean stress, mass terms, coriolis terms |
---|
262 | !------------------------------------------------------------------------------! |
---|
263 | ! sea surface height |
---|
264 | ! embedded sea ice: compute representative ice top surface |
---|
265 | ! non-embedded sea ice: use ocean surface for slope calculation |
---|
266 | zsshdyn(:,:) = ice_var_sshdyn( ssh_m, snwice_mass, snwice_mass_b) |
---|
267 | |
---|
268 | DO_2D( 0, 0, 0, 0 ) |
---|
269 | |
---|
270 | ! ice fraction at U-V points |
---|
271 | zaU(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji+1,jj) * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1) |
---|
272 | zaV(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji,jj+1) * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1) |
---|
273 | |
---|
274 | ! Ice/snow mass at U-V points |
---|
275 | zm1 = ( rhos * vt_s(ji ,jj ) + rhoi * vt_i(ji ,jj ) ) |
---|
276 | zm2 = ( rhos * vt_s(ji+1,jj ) + rhoi * vt_i(ji+1,jj ) ) |
---|
277 | zm3 = ( rhos * vt_s(ji ,jj+1) + rhoi * vt_i(ji ,jj+1) ) |
---|
278 | zmassU = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm2 * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1) |
---|
279 | zmassV = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm3 * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1) |
---|
280 | |
---|
281 | ! Ocean currents at U-V points |
---|
282 | v_oceU(ji,jj) = 0.25_wp * ( v_oce(ji,jj) + v_oce(ji,jj-1) + v_oce(ji+1,jj) + v_oce(ji+1,jj-1) ) * umask(ji,jj,1) |
---|
283 | u_oceV(ji,jj) = 0.25_wp * ( u_oce(ji,jj) + u_oce(ji-1,jj) + u_oce(ji,jj+1) + u_oce(ji-1,jj+1) ) * vmask(ji,jj,1) |
---|
284 | |
---|
285 | ! Coriolis at T points (m*f) |
---|
286 | zmf(ji,jj) = zm1 * ff_t(ji,jj) |
---|
287 | |
---|
288 | ! dt/m at T points (for alpha and beta coefficients) |
---|
289 | zdt_m(ji,jj) = zdtevp / MAX( zm1, zmmin ) |
---|
290 | |
---|
291 | ! m/dt |
---|
292 | zmU_t(ji,jj) = zmassU * z1_dtevp |
---|
293 | zmV_t(ji,jj) = zmassV * z1_dtevp |
---|
294 | |
---|
295 | ! Drag ice-atm. |
---|
296 | ztaux_ai(ji,jj) = zaU(ji,jj) * utau_ice(ji,jj) |
---|
297 | ztauy_ai(ji,jj) = zaV(ji,jj) * vtau_ice(ji,jj) |
---|
298 | |
---|
299 | ! Surface pressure gradient (- m*g*GRAD(ssh)) at U-V points |
---|
300 | zspgU(ji,jj) = - zmassU * grav * ( zsshdyn(ji+1,jj) - zsshdyn(ji,jj) ) * r1_e1u(ji,jj) |
---|
301 | zspgV(ji,jj) = - zmassV * grav * ( zsshdyn(ji,jj+1) - zsshdyn(ji,jj) ) * r1_e2v(ji,jj) |
---|
302 | |
---|
303 | ! masks |
---|
304 | zmsk00x(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassU ) ) ! 0 if no ice |
---|
305 | zmsk00y(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassV ) ) ! 0 if no ice |
---|
306 | |
---|
307 | ! switches |
---|
308 | IF( zmassU <= zmmin .AND. zaU(ji,jj) <= zamin ) THEN ; zmsk01x(ji,jj) = 0._wp |
---|
309 | ELSE ; zmsk01x(ji,jj) = 1._wp ; ENDIF |
---|
310 | IF( zmassV <= zmmin .AND. zaV(ji,jj) <= zamin ) THEN ; zmsk01y(ji,jj) = 0._wp |
---|
311 | ELSE ; zmsk01y(ji,jj) = 1._wp ; ENDIF |
---|
312 | |
---|
313 | END_2D |
---|
314 | CALL lbc_lnk_multi( 'icedyn_rhg_evp', zmf, 'T', 1., zdt_m, 'T', 1. ) |
---|
315 | ! |
---|
316 | ! !== Landfast ice parameterization ==! |
---|
317 | ! |
---|
318 | IF( ln_landfast_L16 ) THEN !-- Lemieux 2016 |
---|
319 | DO_2D( 0, 0, 0, 0 ) |
---|
320 | ! ice thickness at U-V points |
---|
321 | zvU = 0.5_wp * ( vt_i(ji,jj) * e1e2t(ji,jj) + vt_i(ji+1,jj) * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1) |
---|
322 | zvV = 0.5_wp * ( vt_i(ji,jj) * e1e2t(ji,jj) + vt_i(ji,jj+1) * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1) |
---|
323 | ! ice-bottom stress at U points |
---|
324 | zvCr = zaU(ji,jj) * rn_lf_depfra * hu_n(ji,jj) |
---|
325 | ztaux_base(ji,jj) = - rn_lf_bfr * MAX( 0._wp, zvU - zvCr ) * EXP( -rn_crhg * ( 1._wp - zaU(ji,jj) ) ) |
---|
326 | ! ice-bottom stress at V points |
---|
327 | zvCr = zaV(ji,jj) * rn_lf_depfra * hv_n(ji,jj) |
---|
328 | ztauy_base(ji,jj) = - rn_lf_bfr * MAX( 0._wp, zvV - zvCr ) * EXP( -rn_crhg * ( 1._wp - zaV(ji,jj) ) ) |
---|
329 | ! ice_bottom stress at T points |
---|
330 | zvCr = at_i(ji,jj) * rn_lf_depfra * ht_n(ji,jj) |
---|
331 | tau_icebfr(ji,jj) = - rn_lf_bfr * MAX( 0._wp, vt_i(ji,jj) - zvCr ) * EXP( -rn_crhg * ( 1._wp - at_i(ji,jj) ) ) |
---|
332 | END_2D |
---|
333 | CALL lbc_lnk( 'icedyn_rhg_evp', tau_icebfr(:,:), 'T', 1. ) |
---|
334 | ! |
---|
335 | ELSE !-- no landfast |
---|
336 | DO_2D( 0, 0, 0, 0 ) |
---|
337 | ztaux_base(ji,jj) = 0._wp |
---|
338 | ztauy_base(ji,jj) = 0._wp |
---|
339 | END_2D |
---|
340 | ENDIF |
---|
341 | |
---|
342 | !------------------------------------------------------------------------------! |
---|
343 | ! 3) Solution of the momentum equation, iterative procedure |
---|
344 | !------------------------------------------------------------------------------! |
---|
345 | ! |
---|
346 | ! ! ==================== ! |
---|
347 | DO jter = 1 , nn_nevp ! loop over jter ! |
---|
348 | ! ! ==================== ! |
---|
349 | l_full_nf_update = jter == nn_nevp ! false: disable full North fold update (performances) for iter = 1 to nn_nevp-1 |
---|
350 | ! |
---|
351 | ! convergence test |
---|
352 | IF( nn_rhg_chkcvg == 1 .OR. nn_rhg_chkcvg == 2 ) THEN |
---|
353 | DO_2D( 1, 1, 1, 1 ) |
---|
354 | zu_ice(ji,jj) = u_ice(ji,jj) * umask(ji,jj,1) ! velocity at previous time step |
---|
355 | zv_ice(ji,jj) = v_ice(ji,jj) * vmask(ji,jj,1) |
---|
356 | END_2D |
---|
357 | ENDIF |
---|
358 | |
---|
359 | ! --- divergence, tension & shear (Appendix B of Hunke & Dukowicz, 2002) --- ! |
---|
360 | DO_2D( 1, 0, 1, 0 ) |
---|
361 | |
---|
362 | ! shear at F points |
---|
363 | zds(ji,jj) = ( ( u_ice(ji,jj+1) * r1_e1u(ji,jj+1) - u_ice(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj) & |
---|
364 | & + ( v_ice(ji+1,jj) * r1_e2v(ji+1,jj) - v_ice(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj) & |
---|
365 | & ) * r1_e1e2f(ji,jj) * zfmask(ji,jj) |
---|
366 | |
---|
367 | END_2D |
---|
368 | CALL lbc_lnk( 'icedyn_rhg_evp', zds, 'F', 1. ) |
---|
369 | |
---|
370 | DO_2D( 0, 1, 0, 1 ) |
---|
371 | |
---|
372 | ! shear**2 at T points (doc eq. A16) |
---|
373 | zds2 = ( zds(ji,jj ) * zds(ji,jj ) * e1e2f(ji,jj ) + zds(ji-1,jj ) * zds(ji-1,jj ) * e1e2f(ji-1,jj ) & |
---|
374 | & + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1) & |
---|
375 | & ) * 0.25_wp * r1_e1e2t(ji,jj) |
---|
376 | |
---|
377 | ! divergence at T points |
---|
378 | zdiv = ( e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj) & |
---|
379 | & + e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1) & |
---|
380 | & ) * r1_e1e2t(ji,jj) |
---|
381 | zdiv2 = zdiv * zdiv |
---|
382 | |
---|
383 | ! tension at T points |
---|
384 | zdt = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj) & |
---|
385 | & - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj) & |
---|
386 | & ) * r1_e1e2t(ji,jj) |
---|
387 | zdt2 = zdt * zdt |
---|
388 | |
---|
389 | ! delta at T points |
---|
390 | zdelta = SQRT( zdiv2 + ( zdt2 + zds2 ) * z1_ecc2 ) |
---|
391 | |
---|
392 | ! P/delta at T points |
---|
393 | zp_delt(ji,jj) = strength(ji,jj) / ( zdelta + rn_creepl ) |
---|
394 | |
---|
395 | ! alpha for aEVP |
---|
396 | ! gamma = 0.5*P/(delta+creepl) * (c*pi)**2/Area * dt/m |
---|
397 | ! alpha = beta = sqrt(4*gamma) |
---|
398 | IF( ln_aEVP ) THEN |
---|
399 | zalph1 = MAX( 50._wp, rpi * SQRT( 0.5_wp * zp_delt(ji,jj) * r1_e1e2t(ji,jj) * zdt_m(ji,jj) ) ) |
---|
400 | z1_alph1 = 1._wp / ( zalph1 + 1._wp ) |
---|
401 | zalph2 = zalph1 |
---|
402 | z1_alph2 = z1_alph1 |
---|
403 | ! explicit: |
---|
404 | ! z1_alph1 = 1._wp / zalph1 |
---|
405 | ! z1_alph2 = 1._wp / zalph1 |
---|
406 | ! zalph1 = zalph1 - 1._wp |
---|
407 | ! zalph2 = zalph1 |
---|
408 | ENDIF |
---|
409 | |
---|
410 | ! stress at T points (zkt/=0 if landfast) |
---|
411 | zs1(ji,jj) = ( zs1(ji,jj) * zalph1 + zp_delt(ji,jj) * ( zdiv * (1._wp + zkt) - zdelta * (1._wp - zkt) ) ) * z1_alph1 |
---|
412 | zs2(ji,jj) = ( zs2(ji,jj) * zalph2 + zp_delt(ji,jj) * ( zdt * z1_ecc2 * (1._wp + zkt) ) ) * z1_alph2 |
---|
413 | |
---|
414 | END_2D |
---|
415 | CALL lbc_lnk( 'icedyn_rhg_evp', zp_delt, 'T', 1. ) |
---|
416 | |
---|
417 | ! Save beta at T-points for further computations |
---|
418 | IF( ln_aEVP ) THEN |
---|
419 | DO_2D( 1, 1, 1, 1 ) |
---|
420 | zbeta(ji,jj) = MAX( 50._wp, rpi * SQRT( 0.5_wp * zp_delt(ji,jj) * r1_e1e2t(ji,jj) * zdt_m(ji,jj) ) ) |
---|
421 | END_2D |
---|
422 | ENDIF |
---|
423 | |
---|
424 | DO_2D( 1, 0, 1, 0 ) |
---|
425 | |
---|
426 | ! alpha for aEVP |
---|
427 | IF( ln_aEVP ) THEN |
---|
428 | zalph2 = MAX( zbeta(ji,jj), zbeta(ji+1,jj), zbeta(ji,jj+1), zbeta(ji+1,jj+1) ) |
---|
429 | z1_alph2 = 1._wp / ( zalph2 + 1._wp ) |
---|
430 | ! explicit: |
---|
431 | ! z1_alph2 = 1._wp / zalph2 |
---|
432 | ! zalph2 = zalph2 - 1._wp |
---|
433 | ENDIF |
---|
434 | |
---|
435 | ! P/delta at F points |
---|
436 | zp_delf = 0.25_wp * ( zp_delt(ji,jj) + zp_delt(ji+1,jj) + zp_delt(ji,jj+1) + zp_delt(ji+1,jj+1) ) |
---|
437 | |
---|
438 | ! stress at F points (zkt/=0 if landfast) |
---|
439 | zs12(ji,jj)= ( zs12(ji,jj) * zalph2 + zp_delf * ( zds(ji,jj) * z1_ecc2 * (1._wp + zkt) ) * 0.5_wp ) * z1_alph2 |
---|
440 | |
---|
441 | END_2D |
---|
442 | |
---|
443 | ! --- Ice internal stresses (Appendix C of Hunke and Dukowicz, 2002) --- ! |
---|
444 | DO_2D( 0, 0, 0, 0 ) |
---|
445 | ! !--- U points |
---|
446 | zfU(ji,jj) = 0.5_wp * ( ( zs1(ji+1,jj) - zs1(ji,jj) ) * e2u(ji,jj) & |
---|
447 | & + ( zs2(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj) - zs2(ji,jj) * e2t(ji,jj) * e2t(ji,jj) & |
---|
448 | & ) * r1_e2u(ji,jj) & |
---|
449 | & + ( zs12(ji,jj) * e1f(ji,jj) * e1f(ji,jj) - zs12(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1) & |
---|
450 | & ) * 2._wp * r1_e1u(ji,jj) & |
---|
451 | & ) * r1_e1e2u(ji,jj) |
---|
452 | ! |
---|
453 | ! !--- V points |
---|
454 | zfV(ji,jj) = 0.5_wp * ( ( zs1(ji,jj+1) - zs1(ji,jj) ) * e1v(ji,jj) & |
---|
455 | & - ( zs2(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1) - zs2(ji,jj) * e1t(ji,jj) * e1t(ji,jj) & |
---|
456 | & ) * r1_e1v(ji,jj) & |
---|
457 | & + ( zs12(ji,jj) * e2f(ji,jj) * e2f(ji,jj) - zs12(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj) & |
---|
458 | & ) * 2._wp * r1_e2v(ji,jj) & |
---|
459 | & ) * r1_e1e2v(ji,jj) |
---|
460 | ! |
---|
461 | ! !--- ice currents at U-V point |
---|
462 | v_iceU(ji,jj) = 0.25_wp * ( v_ice(ji,jj) + v_ice(ji,jj-1) + v_ice(ji+1,jj) + v_ice(ji+1,jj-1) ) * umask(ji,jj,1) |
---|
463 | u_iceV(ji,jj) = 0.25_wp * ( u_ice(ji,jj) + u_ice(ji-1,jj) + u_ice(ji,jj+1) + u_ice(ji-1,jj+1) ) * vmask(ji,jj,1) |
---|
464 | ! |
---|
465 | END_2D |
---|
466 | ! |
---|
467 | ! --- Computation of ice velocity --- ! |
---|
468 | ! Bouillon et al. 2013 (eq 47-48) => unstable unless alpha, beta vary as in Kimmritz 2016 & 2017 |
---|
469 | ! Bouillon et al. 2009 (eq 34-35) => stable |
---|
470 | IF( MOD(jter,2) == 0 ) THEN ! even iterations |
---|
471 | ! |
---|
472 | DO_2D( 0, 0, 0, 0 ) |
---|
473 | ! !--- tau_io/(v_oce - v_ice) |
---|
474 | zTauO = zaV(ji,jj) * zrhoco * SQRT( ( v_ice (ji,jj) - v_oce (ji,jj) ) * ( v_ice (ji,jj) - v_oce (ji,jj) ) & |
---|
475 | & + ( u_iceV(ji,jj) - u_oceV(ji,jj) ) * ( u_iceV(ji,jj) - u_oceV(ji,jj) ) ) |
---|
476 | ! !--- Ocean-to-Ice stress |
---|
477 | ztauy_oi(ji,jj) = zTauO * ( v_oce(ji,jj) - v_ice(ji,jj) ) |
---|
478 | ! |
---|
479 | ! !--- tau_bottom/v_ice |
---|
480 | zvel = 5.e-05_wp + SQRT( v_ice(ji,jj) * v_ice(ji,jj) + u_iceV(ji,jj) * u_iceV(ji,jj) ) |
---|
481 | zTauB = ztauy_base(ji,jj) / zvel |
---|
482 | ! !--- OceanBottom-to-Ice stress |
---|
483 | ztauy_bi(ji,jj) = zTauB * v_ice(ji,jj) |
---|
484 | ! |
---|
485 | ! !--- Coriolis at V-points (energy conserving formulation) |
---|
486 | zCorV(ji,jj) = - 0.25_wp * r1_e2v(ji,jj) * & |
---|
487 | & ( zmf(ji,jj ) * ( e2u(ji,jj ) * u_ice(ji,jj ) + e2u(ji-1,jj ) * u_ice(ji-1,jj ) ) & |
---|
488 | & + zmf(ji,jj+1) * ( e2u(ji,jj+1) * u_ice(ji,jj+1) + e2u(ji-1,jj+1) * u_ice(ji-1,jj+1) ) ) |
---|
489 | ! |
---|
490 | ! !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io |
---|
491 | zRHS = zfV(ji,jj) + ztauy_ai(ji,jj) + zCorV(ji,jj) + zspgV(ji,jj) + ztauy_oi(ji,jj) |
---|
492 | ! |
---|
493 | ! !--- landfast switch => 0 = static friction : TauB > RHS & sign(TauB) /= sign(RHS) |
---|
494 | ! 1 = sliding friction : TauB < RHS |
---|
495 | rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztauy_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) ) |
---|
496 | ! |
---|
497 | IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017) |
---|
498 | zbetav = MAX( zbeta(ji,jj), zbeta(ji,jj+1) ) |
---|
499 | v_ice(ji,jj) = ( ( rswitch * ( zmV_t(ji,jj) * ( zbetav * v_ice(ji,jj) + v_ice_b(ji,jj) ) & ! previous velocity |
---|
500 | & + zRHS + zTauO * v_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part) |
---|
501 | & ) / MAX( zepsi, zmV_t(ji,jj) * ( zbetav + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast |
---|
502 | & + ( 1._wp - rswitch ) * ( v_ice_b(ji,jj) & |
---|
503 | & + v_ice (ji,jj) * MAX( 0._wp, zbetav - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0 |
---|
504 | & ) / ( zbetav + 1._wp ) & |
---|
505 | & ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin |
---|
506 | & ) * zmsk00y(ji,jj) |
---|
507 | ELSE !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009) |
---|
508 | v_ice(ji,jj) = ( ( rswitch * ( zmV_t(ji,jj) * v_ice(ji,jj) & ! previous velocity |
---|
509 | & + zRHS + zTauO * v_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part) |
---|
510 | & ) / MAX( zepsi, zmV_t(ji,jj) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast |
---|
511 | & + ( 1._wp - rswitch ) * v_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0 |
---|
512 | & ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin |
---|
513 | & ) * zmsk00y(ji,jj) |
---|
514 | ENDIF |
---|
515 | END_2D |
---|
516 | CALL lbc_lnk( 'icedyn_rhg_evp', v_ice, 'V', -1. ) |
---|
517 | ! |
---|
518 | #if defined key_agrif |
---|
519 | !! CALL agrif_interp_ice( 'V', jter, nn_nevp ) |
---|
520 | CALL agrif_interp_ice( 'V' ) |
---|
521 | #endif |
---|
522 | IF( ln_bdy ) CALL bdy_ice_dyn( 'V' ) |
---|
523 | ! |
---|
524 | DO_2D( 0, 0, 0, 0 ) |
---|
525 | ! !--- tau_io/(u_oce - u_ice) |
---|
526 | zTauO = zaU(ji,jj) * zrhoco * SQRT( ( u_ice (ji,jj) - u_oce (ji,jj) ) * ( u_ice (ji,jj) - u_oce (ji,jj) ) & |
---|
527 | & + ( v_iceU(ji,jj) - v_oceU(ji,jj) ) * ( v_iceU(ji,jj) - v_oceU(ji,jj) ) ) |
---|
528 | ! !--- Ocean-to-Ice stress |
---|
529 | ztaux_oi(ji,jj) = zTauO * ( u_oce(ji,jj) - u_ice(ji,jj) ) |
---|
530 | ! |
---|
531 | ! !--- tau_bottom/u_ice |
---|
532 | zvel = 5.e-05_wp + SQRT( v_iceU(ji,jj) * v_iceU(ji,jj) + u_ice(ji,jj) * u_ice(ji,jj) ) |
---|
533 | zTauB = ztaux_base(ji,jj) / zvel |
---|
534 | ! !--- OceanBottom-to-Ice stress |
---|
535 | ztaux_bi(ji,jj) = zTauB * u_ice(ji,jj) |
---|
536 | ! |
---|
537 | ! !--- Coriolis at U-points (energy conserving formulation) |
---|
538 | zCorU(ji,jj) = 0.25_wp * r1_e1u(ji,jj) * & |
---|
539 | & ( zmf(ji ,jj) * ( e1v(ji ,jj) * v_ice(ji ,jj) + e1v(ji ,jj-1) * v_ice(ji ,jj-1) ) & |
---|
540 | & + zmf(ji+1,jj) * ( e1v(ji+1,jj) * v_ice(ji+1,jj) + e1v(ji+1,jj-1) * v_ice(ji+1,jj-1) ) ) |
---|
541 | ! |
---|
542 | ! !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io |
---|
543 | zRHS = zfU(ji,jj) + ztaux_ai(ji,jj) + zCorU(ji,jj) + zspgU(ji,jj) + ztaux_oi(ji,jj) |
---|
544 | ! |
---|
545 | ! !--- landfast switch => 0 = static friction : TauB > RHS & sign(TauB) /= sign(RHS) |
---|
546 | ! 1 = sliding friction : TauB < RHS |
---|
547 | rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztaux_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) ) |
---|
548 | ! |
---|
549 | IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017) |
---|
550 | zbetau = MAX( zbeta(ji,jj), zbeta(ji+1,jj) ) |
---|
551 | u_ice(ji,jj) = ( ( rswitch * ( zmU_t(ji,jj) * ( zbetau * u_ice(ji,jj) + u_ice_b(ji,jj) ) & ! previous velocity |
---|
552 | & + zRHS + zTauO * u_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part) |
---|
553 | & ) / MAX( zepsi, zmU_t(ji,jj) * ( zbetau + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast |
---|
554 | & + ( 1._wp - rswitch ) * ( u_ice_b(ji,jj) & |
---|
555 | & + u_ice (ji,jj) * MAX( 0._wp, zbetau - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0 |
---|
556 | & ) / ( zbetau + 1._wp ) & |
---|
557 | & ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin |
---|
558 | & ) * zmsk00x(ji,jj) |
---|
559 | ELSE !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009) |
---|
560 | u_ice(ji,jj) = ( ( rswitch * ( zmU_t(ji,jj) * u_ice(ji,jj) & ! previous velocity |
---|
561 | & + zRHS + zTauO * u_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part) |
---|
562 | & ) / MAX( zepsi, zmU_t(ji,jj) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast |
---|
563 | & + ( 1._wp - rswitch ) * u_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0 |
---|
564 | & ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin |
---|
565 | & ) * zmsk00x(ji,jj) |
---|
566 | ENDIF |
---|
567 | END_2D |
---|
568 | CALL lbc_lnk( 'icedyn_rhg_evp', u_ice, 'U', -1. ) |
---|
569 | ! |
---|
570 | #if defined key_agrif |
---|
571 | !! CALL agrif_interp_ice( 'U', jter, nn_nevp ) |
---|
572 | CALL agrif_interp_ice( 'U' ) |
---|
573 | #endif |
---|
574 | IF( ln_bdy ) CALL bdy_ice_dyn( 'U' ) |
---|
575 | ! |
---|
576 | ELSE ! odd iterations |
---|
577 | ! |
---|
578 | DO_2D( 0, 0, 0, 0 ) |
---|
579 | ! !--- tau_io/(u_oce - u_ice) |
---|
580 | zTauO = zaU(ji,jj) * zrhoco * SQRT( ( u_ice (ji,jj) - u_oce (ji,jj) ) * ( u_ice (ji,jj) - u_oce (ji,jj) ) & |
---|
581 | & + ( v_iceU(ji,jj) - v_oceU(ji,jj) ) * ( v_iceU(ji,jj) - v_oceU(ji,jj) ) ) |
---|
582 | ! !--- Ocean-to-Ice stress |
---|
583 | ztaux_oi(ji,jj) = zTauO * ( u_oce(ji,jj) - u_ice(ji,jj) ) |
---|
584 | ! |
---|
585 | ! !--- tau_bottom/u_ice |
---|
586 | zvel = 5.e-05_wp + SQRT( v_iceU(ji,jj) * v_iceU(ji,jj) + u_ice(ji,jj) * u_ice(ji,jj) ) |
---|
587 | zTauB = ztaux_base(ji,jj) / zvel |
---|
588 | ! !--- OceanBottom-to-Ice stress |
---|
589 | ztaux_bi(ji,jj) = zTauB * u_ice(ji,jj) |
---|
590 | ! |
---|
591 | ! !--- Coriolis at U-points (energy conserving formulation) |
---|
592 | zCorU(ji,jj) = 0.25_wp * r1_e1u(ji,jj) * & |
---|
593 | & ( zmf(ji ,jj) * ( e1v(ji ,jj) * v_ice(ji ,jj) + e1v(ji ,jj-1) * v_ice(ji ,jj-1) ) & |
---|
594 | & + zmf(ji+1,jj) * ( e1v(ji+1,jj) * v_ice(ji+1,jj) + e1v(ji+1,jj-1) * v_ice(ji+1,jj-1) ) ) |
---|
595 | ! |
---|
596 | ! !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io |
---|
597 | zRHS = zfU(ji,jj) + ztaux_ai(ji,jj) + zCorU(ji,jj) + zspgU(ji,jj) + ztaux_oi(ji,jj) |
---|
598 | ! |
---|
599 | ! !--- landfast switch => 0 = static friction : TauB > RHS & sign(TauB) /= sign(RHS) |
---|
600 | ! 1 = sliding friction : TauB < RHS |
---|
601 | rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztaux_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) ) |
---|
602 | ! |
---|
603 | IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017) |
---|
604 | zbetau = MAX( zbeta(ji,jj), zbeta(ji+1,jj) ) |
---|
605 | u_ice(ji,jj) = ( ( rswitch * ( zmU_t(ji,jj) * ( zbetau * u_ice(ji,jj) + u_ice_b(ji,jj) ) & ! previous velocity |
---|
606 | & + zRHS + zTauO * u_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part) |
---|
607 | & ) / MAX( zepsi, zmU_t(ji,jj) * ( zbetau + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast |
---|
608 | & + ( 1._wp - rswitch ) * ( u_ice_b(ji,jj) & |
---|
609 | & + u_ice (ji,jj) * MAX( 0._wp, zbetau - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0 |
---|
610 | & ) / ( zbetau + 1._wp ) & |
---|
611 | & ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin |
---|
612 | & ) * zmsk00x(ji,jj) |
---|
613 | ELSE !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009) |
---|
614 | u_ice(ji,jj) = ( ( rswitch * ( zmU_t(ji,jj) * u_ice(ji,jj) & ! previous velocity |
---|
615 | & + zRHS + zTauO * u_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part) |
---|
616 | & ) / MAX( zepsi, zmU_t(ji,jj) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast |
---|
617 | & + ( 1._wp - rswitch ) * u_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0 |
---|
618 | & ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin |
---|
619 | & ) * zmsk00x(ji,jj) |
---|
620 | ENDIF |
---|
621 | END_2D |
---|
622 | CALL lbc_lnk( 'icedyn_rhg_evp', u_ice, 'U', -1. ) |
---|
623 | ! |
---|
624 | #if defined key_agrif |
---|
625 | !! CALL agrif_interp_ice( 'U', jter, nn_nevp ) |
---|
626 | CALL agrif_interp_ice( 'U' ) |
---|
627 | #endif |
---|
628 | IF( ln_bdy ) CALL bdy_ice_dyn( 'U' ) |
---|
629 | ! |
---|
630 | DO_2D( 0, 0, 0, 0 ) |
---|
631 | ! !--- tau_io/(v_oce - v_ice) |
---|
632 | zTauO = zaV(ji,jj) * zrhoco * SQRT( ( v_ice (ji,jj) - v_oce (ji,jj) ) * ( v_ice (ji,jj) - v_oce (ji,jj) ) & |
---|
633 | & + ( u_iceV(ji,jj) - u_oceV(ji,jj) ) * ( u_iceV(ji,jj) - u_oceV(ji,jj) ) ) |
---|
634 | ! !--- Ocean-to-Ice stress |
---|
635 | ztauy_oi(ji,jj) = zTauO * ( v_oce(ji,jj) - v_ice(ji,jj) ) |
---|
636 | ! |
---|
637 | ! !--- tau_bottom/v_ice |
---|
638 | zvel = 5.e-05_wp + SQRT( v_ice(ji,jj) * v_ice(ji,jj) + u_iceV(ji,jj) * u_iceV(ji,jj) ) |
---|
639 | zTauB = ztauy_base(ji,jj) / zvel |
---|
640 | ! !--- OceanBottom-to-Ice stress |
---|
641 | ztauy_bi(ji,jj) = zTauB * v_ice(ji,jj) |
---|
642 | ! |
---|
643 | ! !--- Coriolis at v-points (energy conserving formulation) |
---|
644 | zCorV(ji,jj) = - 0.25_wp * r1_e2v(ji,jj) * & |
---|
645 | & ( zmf(ji,jj ) * ( e2u(ji,jj ) * u_ice(ji,jj ) + e2u(ji-1,jj ) * u_ice(ji-1,jj ) ) & |
---|
646 | & + zmf(ji,jj+1) * ( e2u(ji,jj+1) * u_ice(ji,jj+1) + e2u(ji-1,jj+1) * u_ice(ji-1,jj+1) ) ) |
---|
647 | ! |
---|
648 | ! !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io |
---|
649 | zRHS = zfV(ji,jj) + ztauy_ai(ji,jj) + zCorV(ji,jj) + zspgV(ji,jj) + ztauy_oi(ji,jj) |
---|
650 | ! |
---|
651 | ! !--- landfast switch => 0 = static friction : TauB > RHS & sign(TauB) /= sign(RHS) |
---|
652 | ! 1 = sliding friction : TauB < RHS |
---|
653 | rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztauy_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) ) |
---|
654 | ! |
---|
655 | IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017) |
---|
656 | zbetav = MAX( zbeta(ji,jj), zbeta(ji,jj+1) ) |
---|
657 | v_ice(ji,jj) = ( ( rswitch * ( zmV_t(ji,jj) * ( zbetav * v_ice(ji,jj) + v_ice_b(ji,jj) ) & ! previous velocity |
---|
658 | & + zRHS + zTauO * v_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part) |
---|
659 | & ) / MAX( zepsi, zmV_t(ji,jj) * ( zbetav + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast |
---|
660 | & + ( 1._wp - rswitch ) * ( v_ice_b(ji,jj) & |
---|
661 | & + v_ice (ji,jj) * MAX( 0._wp, zbetav - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0 |
---|
662 | & ) / ( zbetav + 1._wp ) & |
---|
663 | & ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin |
---|
664 | & ) * zmsk00y(ji,jj) |
---|
665 | ELSE !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009) |
---|
666 | v_ice(ji,jj) = ( ( rswitch * ( zmV_t(ji,jj) * v_ice(ji,jj) & ! previous velocity |
---|
667 | & + zRHS + zTauO * v_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part) |
---|
668 | & ) / MAX( zepsi, zmV_t(ji,jj) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast |
---|
669 | & + ( 1._wp - rswitch ) * v_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0 |
---|
670 | & ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin |
---|
671 | & ) * zmsk00y(ji,jj) |
---|
672 | ENDIF |
---|
673 | END_2D |
---|
674 | CALL lbc_lnk( 'icedyn_rhg_evp', v_ice, 'V', -1. ) |
---|
675 | ! |
---|
676 | #if defined key_agrif |
---|
677 | !! CALL agrif_interp_ice( 'V', jter, nn_nevp ) |
---|
678 | CALL agrif_interp_ice( 'V' ) |
---|
679 | #endif |
---|
680 | IF( ln_bdy ) CALL bdy_ice_dyn( 'V' ) |
---|
681 | ! |
---|
682 | ENDIF |
---|
683 | |
---|
684 | ! convergence test |
---|
685 | IF( nn_rhg_chkcvg == 2 ) CALL rhg_cvg( kt, jter, nn_nevp, u_ice, v_ice, zu_ice, zv_ice ) |
---|
686 | ! |
---|
687 | ! ! ==================== ! |
---|
688 | END DO ! end loop over jter ! |
---|
689 | ! ! ==================== ! |
---|
690 | IF( ln_aEVP ) CALL iom_put( 'beta_evp' , zbeta ) |
---|
691 | ! |
---|
692 | !------------------------------------------------------------------------------! |
---|
693 | ! 4) Recompute delta, shear and div (inputs for mechanical redistribution) |
---|
694 | !------------------------------------------------------------------------------! |
---|
695 | DO_2D( 1, 0, 1, 0 ) |
---|
696 | |
---|
697 | ! shear at F points |
---|
698 | zds(ji,jj) = ( ( u_ice(ji,jj+1) * r1_e1u(ji,jj+1) - u_ice(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj) & |
---|
699 | & + ( v_ice(ji+1,jj) * r1_e2v(ji+1,jj) - v_ice(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj) & |
---|
700 | & ) * r1_e1e2f(ji,jj) * zfmask(ji,jj) |
---|
701 | |
---|
702 | END_2D |
---|
703 | |
---|
704 | DO_2D( 0, 0, 0, 0 ) |
---|
705 | |
---|
706 | ! tension**2 at T points |
---|
707 | zdt = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj) & |
---|
708 | & - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj) & |
---|
709 | & ) * r1_e1e2t(ji,jj) |
---|
710 | zdt2 = zdt * zdt |
---|
711 | |
---|
712 | ! shear**2 at T points (doc eq. A16) |
---|
713 | zds2 = ( zds(ji,jj ) * zds(ji,jj ) * e1e2f(ji,jj ) + zds(ji-1,jj ) * zds(ji-1,jj ) * e1e2f(ji-1,jj ) & |
---|
714 | & + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1) & |
---|
715 | & ) * 0.25_wp * r1_e1e2t(ji,jj) |
---|
716 | |
---|
717 | ! shear at T points |
---|
718 | pshear_i(ji,jj) = SQRT( zdt2 + zds2 ) |
---|
719 | |
---|
720 | ! divergence at T points |
---|
721 | pdivu_i(ji,jj) = ( e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj) & |
---|
722 | & + e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1) & |
---|
723 | & ) * r1_e1e2t(ji,jj) |
---|
724 | |
---|
725 | ! delta at T points |
---|
726 | zdelta = SQRT( pdivu_i(ji,jj) * pdivu_i(ji,jj) + ( zdt2 + zds2 ) * z1_ecc2 ) |
---|
727 | rswitch = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zdelta ) ) ! 0 if delta=0 |
---|
728 | pdelta_i(ji,jj) = zdelta + rn_creepl * rswitch |
---|
729 | |
---|
730 | END_2D |
---|
731 | CALL lbc_lnk_multi( 'icedyn_rhg_evp', pshear_i, 'T', 1., pdivu_i, 'T', 1., pdelta_i, 'T', 1. ) |
---|
732 | |
---|
733 | ! --- Store the stress tensor for the next time step --- ! |
---|
734 | CALL lbc_lnk_multi( 'icedyn_rhg_evp', zs1, 'T', 1., zs2, 'T', 1., zs12, 'F', 1. ) |
---|
735 | pstress1_i (:,:) = zs1 (:,:) |
---|
736 | pstress2_i (:,:) = zs2 (:,:) |
---|
737 | pstress12_i(:,:) = zs12(:,:) |
---|
738 | ! |
---|
739 | |
---|
740 | !------------------------------------------------------------------------------! |
---|
741 | ! 5) diagnostics |
---|
742 | !------------------------------------------------------------------------------! |
---|
743 | ! --- ice-ocean, ice-atm. & ice-oceanbottom(landfast) stresses --- ! |
---|
744 | IF( iom_use('utau_oi') .OR. iom_use('vtau_oi') .OR. iom_use('utau_ai') .OR. iom_use('vtau_ai') .OR. & |
---|
745 | & iom_use('utau_bi') .OR. iom_use('vtau_bi') ) THEN |
---|
746 | ! |
---|
747 | CALL lbc_lnk_multi( 'icedyn_rhg_evp', ztaux_oi, 'U', -1., ztauy_oi, 'V', -1., ztaux_ai, 'U', -1., ztauy_ai, 'V', -1., & |
---|
748 | & ztaux_bi, 'U', -1., ztauy_bi, 'V', -1. ) |
---|
749 | ! |
---|
750 | CALL iom_put( 'utau_oi' , ztaux_oi * zmsk00 ) |
---|
751 | CALL iom_put( 'vtau_oi' , ztauy_oi * zmsk00 ) |
---|
752 | CALL iom_put( 'utau_ai' , ztaux_ai * zmsk00 ) |
---|
753 | CALL iom_put( 'vtau_ai' , ztauy_ai * zmsk00 ) |
---|
754 | CALL iom_put( 'utau_bi' , ztaux_bi * zmsk00 ) |
---|
755 | CALL iom_put( 'vtau_bi' , ztauy_bi * zmsk00 ) |
---|
756 | ENDIF |
---|
757 | |
---|
758 | ! --- divergence, shear and strength --- ! |
---|
759 | IF( iom_use('icediv') ) CALL iom_put( 'icediv' , pdivu_i * zmsk00 ) ! divergence |
---|
760 | IF( iom_use('iceshe') ) CALL iom_put( 'iceshe' , pshear_i * zmsk00 ) ! shear |
---|
761 | IF( iom_use('icestr') ) CALL iom_put( 'icestr' , strength * zmsk00 ) ! strength |
---|
762 | |
---|
763 | ! --- stress tensor --- ! |
---|
764 | IF( iom_use('isig1') .OR. iom_use('isig2') .OR. iom_use('isig3') .OR. iom_use('normstr') .OR. iom_use('sheastr') ) THEN |
---|
765 | ! |
---|
766 | ALLOCATE( zsig1(jpi,jpj) , zsig2(jpi,jpj) , zsig3(jpi,jpj) ) |
---|
767 | ! |
---|
768 | DO_2D( 0, 0, 0, 0 ) |
---|
769 | zdum1 = ( zmsk00(ji-1,jj) * pstress12_i(ji-1,jj) + zmsk00(ji ,jj-1) * pstress12_i(ji ,jj-1) + & ! stress12_i at T-point |
---|
770 | & zmsk00(ji ,jj) * pstress12_i(ji ,jj) + zmsk00(ji-1,jj-1) * pstress12_i(ji-1,jj-1) ) & |
---|
771 | & / MAX( 1._wp, zmsk00(ji-1,jj) + zmsk00(ji,jj-1) + zmsk00(ji,jj) + zmsk00(ji-1,jj-1) ) |
---|
772 | |
---|
773 | zshear = SQRT( pstress2_i(ji,jj) * pstress2_i(ji,jj) + 4._wp * zdum1 * zdum1 ) ! shear stress |
---|
774 | |
---|
775 | zdum2 = zmsk00(ji,jj) / MAX( 1._wp, strength(ji,jj) ) |
---|
776 | |
---|
777 | !! zsig1(ji,jj) = 0.5_wp * zdum2 * ( pstress1_i(ji,jj) + zshear ) ! principal stress (y-direction, see Hunke & Dukowicz 2002) |
---|
778 | !! zsig2(ji,jj) = 0.5_wp * zdum2 * ( pstress1_i(ji,jj) - zshear ) ! principal stress (x-direction, see Hunke & Dukowicz 2002) |
---|
779 | !! zsig3(ji,jj) = zdum2**2 * ( ( pstress1_i(ji,jj) + strength(ji,jj) )**2 + ( rn_ecc * zshear )**2 ) ! quadratic relation linking compressive stress to shear stress |
---|
780 | !! ! (scheme converges if this value is ~1, see Bouillon et al 2009 (eq. 11)) |
---|
781 | zsig1(ji,jj) = 0.5_wp * zdum2 * ( pstress1_i(ji,jj) ) ! compressive stress, see Bouillon et al. 2015 |
---|
782 | zsig2(ji,jj) = 0.5_wp * zdum2 * ( zshear ) ! shear stress |
---|
783 | zsig3(ji,jj) = zdum2**2 * ( ( pstress1_i(ji,jj) + strength(ji,jj) )**2 + ( rn_ecc * zshear )**2 ) |
---|
784 | END_2D |
---|
785 | CALL lbc_lnk_multi( 'icedyn_rhg_evp', zsig1, 'T', 1., zsig2, 'T', 1., zsig3, 'T', 1. ) |
---|
786 | ! |
---|
787 | CALL iom_put( 'isig1' , zsig1 ) |
---|
788 | CALL iom_put( 'isig2' , zsig2 ) |
---|
789 | CALL iom_put( 'isig3' , zsig3 ) |
---|
790 | ! |
---|
791 | ! Stress tensor invariants (normal and shear stress N/m) |
---|
792 | IF( iom_use('normstr') ) CALL iom_put( 'normstr' , ( zs1(:,:) + zs2(:,:) ) * zmsk00(:,:) ) ! Normal stress |
---|
793 | IF( iom_use('sheastr') ) CALL iom_put( 'sheastr' , SQRT( ( zs1(:,:) - zs2(:,:) )**2 + 4*zs12(:,:)**2 ) * zmsk00(:,:) ) ! Shear stress |
---|
794 | |
---|
795 | DEALLOCATE( zsig1 , zsig2 , zsig3 ) |
---|
796 | ENDIF |
---|
797 | |
---|
798 | ! --- SIMIP --- ! |
---|
799 | IF( iom_use('dssh_dx') .OR. iom_use('dssh_dy') .OR. & |
---|
800 | & iom_use('corstrx') .OR. iom_use('corstry') .OR. iom_use('intstrx') .OR. iom_use('intstry') ) THEN |
---|
801 | ! |
---|
802 | CALL lbc_lnk_multi( 'icedyn_rhg_evp', zspgU, 'U', -1., zspgV, 'V', -1., & |
---|
803 | & zCorU, 'U', -1., zCorV, 'V', -1., zfU, 'U', -1., zfV, 'V', -1. ) |
---|
804 | |
---|
805 | CALL iom_put( 'dssh_dx' , zspgU * zmsk00 ) ! Sea-surface tilt term in force balance (x) |
---|
806 | CALL iom_put( 'dssh_dy' , zspgV * zmsk00 ) ! Sea-surface tilt term in force balance (y) |
---|
807 | CALL iom_put( 'corstrx' , zCorU * zmsk00 ) ! Coriolis force term in force balance (x) |
---|
808 | CALL iom_put( 'corstry' , zCorV * zmsk00 ) ! Coriolis force term in force balance (y) |
---|
809 | CALL iom_put( 'intstrx' , zfU * zmsk00 ) ! Internal force term in force balance (x) |
---|
810 | CALL iom_put( 'intstry' , zfV * zmsk00 ) ! Internal force term in force balance (y) |
---|
811 | ENDIF |
---|
812 | |
---|
813 | IF( iom_use('xmtrpice') .OR. iom_use('ymtrpice') .OR. & |
---|
814 | & iom_use('xmtrpsnw') .OR. iom_use('ymtrpsnw') .OR. iom_use('xatrp') .OR. iom_use('yatrp') ) THEN |
---|
815 | ! |
---|
816 | ALLOCATE( zdiag_xmtrp_ice(jpi,jpj) , zdiag_ymtrp_ice(jpi,jpj) , & |
---|
817 | & zdiag_xmtrp_snw(jpi,jpj) , zdiag_ymtrp_snw(jpi,jpj) , zdiag_xatrp(jpi,jpj) , zdiag_yatrp(jpi,jpj) ) |
---|
818 | ! |
---|
819 | DO_2D( 0, 0, 0, 0 ) |
---|
820 | ! 2D ice mass, snow mass, area transport arrays (X, Y) |
---|
821 | zfac_x = 0.5 * u_ice(ji,jj) * e2u(ji,jj) * zmsk00(ji,jj) |
---|
822 | zfac_y = 0.5 * v_ice(ji,jj) * e1v(ji,jj) * zmsk00(ji,jj) |
---|
823 | |
---|
824 | zdiag_xmtrp_ice(ji,jj) = rhoi * zfac_x * ( vt_i(ji+1,jj) + vt_i(ji,jj) ) ! ice mass transport, X-component |
---|
825 | zdiag_ymtrp_ice(ji,jj) = rhoi * zfac_y * ( vt_i(ji,jj+1) + vt_i(ji,jj) ) ! '' Y- '' |
---|
826 | |
---|
827 | zdiag_xmtrp_snw(ji,jj) = rhos * zfac_x * ( vt_s(ji+1,jj) + vt_s(ji,jj) ) ! snow mass transport, X-component |
---|
828 | zdiag_ymtrp_snw(ji,jj) = rhos * zfac_y * ( vt_s(ji,jj+1) + vt_s(ji,jj) ) ! '' Y- '' |
---|
829 | |
---|
830 | zdiag_xatrp(ji,jj) = zfac_x * ( at_i(ji+1,jj) + at_i(ji,jj) ) ! area transport, X-component |
---|
831 | zdiag_yatrp(ji,jj) = zfac_y * ( at_i(ji,jj+1) + at_i(ji,jj) ) ! '' Y- '' |
---|
832 | |
---|
833 | END_2D |
---|
834 | |
---|
835 | CALL lbc_lnk_multi( 'icedyn_rhg_evp', zdiag_xmtrp_ice, 'U', -1., zdiag_ymtrp_ice, 'V', -1., & |
---|
836 | & zdiag_xmtrp_snw, 'U', -1., zdiag_ymtrp_snw, 'V', -1., & |
---|
837 | & zdiag_xatrp , 'U', -1., zdiag_yatrp , 'V', -1. ) |
---|
838 | |
---|
839 | CALL iom_put( 'xmtrpice' , zdiag_xmtrp_ice ) ! X-component of sea-ice mass transport (kg/s) |
---|
840 | CALL iom_put( 'ymtrpice' , zdiag_ymtrp_ice ) ! Y-component of sea-ice mass transport |
---|
841 | CALL iom_put( 'xmtrpsnw' , zdiag_xmtrp_snw ) ! X-component of snow mass transport (kg/s) |
---|
842 | CALL iom_put( 'ymtrpsnw' , zdiag_ymtrp_snw ) ! Y-component of snow mass transport |
---|
843 | CALL iom_put( 'xatrp' , zdiag_xatrp ) ! X-component of ice area transport |
---|
844 | CALL iom_put( 'yatrp' , zdiag_yatrp ) ! Y-component of ice area transport |
---|
845 | |
---|
846 | DEALLOCATE( zdiag_xmtrp_ice , zdiag_ymtrp_ice , & |
---|
847 | & zdiag_xmtrp_snw , zdiag_ymtrp_snw , zdiag_xatrp , zdiag_yatrp ) |
---|
848 | |
---|
849 | ENDIF |
---|
850 | ! |
---|
851 | ! --- convergence tests --- ! |
---|
852 | IF( nn_rhg_chkcvg == 1 .OR. nn_rhg_chkcvg == 2 ) THEN |
---|
853 | IF( iom_use('uice_cvg') ) THEN |
---|
854 | IF( ln_aEVP ) THEN ! output: beta * ( u(t=nn_nevp) - u(t=nn_nevp-1) ) |
---|
855 | CALL iom_put( 'uice_cvg', MAX( ABS( u_ice(:,:) - zu_ice(:,:) ) * zbeta(:,:) * umask(:,:,1) , & |
---|
856 | & ABS( v_ice(:,:) - zv_ice(:,:) ) * zbeta(:,:) * vmask(:,:,1) ) * zmsk15(:,:) ) |
---|
857 | ELSE ! output: nn_nevp * ( u(t=nn_nevp) - u(t=nn_nevp-1) ) |
---|
858 | CALL iom_put( 'uice_cvg', REAL( nn_nevp ) * MAX( ABS( u_ice(:,:) - zu_ice(:,:) ) * umask(:,:,1) , & |
---|
859 | & ABS( v_ice(:,:) - zv_ice(:,:) ) * vmask(:,:,1) ) * zmsk15(:,:) ) |
---|
860 | ENDIF |
---|
861 | ENDIF |
---|
862 | ENDIF |
---|
863 | ! |
---|
864 | DEALLOCATE( zmsk00, zmsk15 ) |
---|
865 | ! |
---|
866 | END SUBROUTINE ice_dyn_rhg_evp |
---|
867 | |
---|
868 | |
---|
869 | SUBROUTINE rhg_cvg( kt, kiter, kitermax, pu, pv, pub, pvb ) |
---|
870 | !!---------------------------------------------------------------------- |
---|
871 | !! *** ROUTINE rhg_cvg *** |
---|
872 | !! |
---|
873 | !! ** Purpose : check convergence of oce rheology |
---|
874 | !! |
---|
875 | !! ** Method : create a file ice_cvg.nc containing the convergence of ice velocity |
---|
876 | !! during the sub timestepping of rheology so as: |
---|
877 | !! uice_cvg = MAX( u(t+1) - u(t) , v(t+1) - v(t) ) |
---|
878 | !! This routine is called every sub-iteration, so it is cpu expensive |
---|
879 | !! |
---|
880 | !! ** Note : for the first sub-iteration, uice_cvg is set to 0 (too large otherwise) |
---|
881 | !!---------------------------------------------------------------------- |
---|
882 | INTEGER , INTENT(in) :: kt, kiter, kitermax ! ocean time-step index |
---|
883 | REAL(wp), DIMENSION(:,:), INTENT(in) :: pu, pv, pub, pvb ! now and before velocities |
---|
884 | !! |
---|
885 | INTEGER :: it, idtime, istatus |
---|
886 | INTEGER :: ji, jj ! dummy loop indices |
---|
887 | REAL(wp) :: zresm ! local real |
---|
888 | CHARACTER(len=20) :: clname |
---|
889 | REAL(wp), DIMENSION(jpi,jpj) :: zres ! check convergence |
---|
890 | !!---------------------------------------------------------------------- |
---|
891 | |
---|
892 | ! create file |
---|
893 | IF( kt == nit000 .AND. kiter == 1 ) THEN |
---|
894 | ! |
---|
895 | IF( lwp ) THEN |
---|
896 | WRITE(numout,*) |
---|
897 | WRITE(numout,*) 'rhg_cvg : ice rheology convergence control' |
---|
898 | WRITE(numout,*) '~~~~~~~' |
---|
899 | ENDIF |
---|
900 | ! |
---|
901 | IF( lwm ) THEN |
---|
902 | clname = 'ice_cvg.nc' |
---|
903 | IF( .NOT. Agrif_Root() ) clname = TRIM(Agrif_CFixed())//"_"//TRIM(clname) |
---|
904 | istatus = NF90_CREATE( TRIM(clname), NF90_CLOBBER, ncvgid ) |
---|
905 | istatus = NF90_DEF_DIM( ncvgid, 'time' , NF90_UNLIMITED, idtime ) |
---|
906 | istatus = NF90_DEF_VAR( ncvgid, 'uice_cvg', NF90_DOUBLE , (/ idtime /), nvarid ) |
---|
907 | istatus = NF90_ENDDEF(ncvgid) |
---|
908 | ENDIF |
---|
909 | ! |
---|
910 | ENDIF |
---|
911 | |
---|
912 | ! time |
---|
913 | it = ( kt - 1 ) * kitermax + kiter |
---|
914 | |
---|
915 | ! convergence |
---|
916 | IF( kiter == 1 ) THEN ! remove the first iteration for calculations of convergence (always very large) |
---|
917 | zresm = 0._wp |
---|
918 | ELSE |
---|
919 | DO_2D( 1, 1, 1, 1 ) |
---|
920 | zres(ji,jj) = MAX( ABS( pu(ji,jj) - pub(ji,jj) ) * umask(ji,jj,1), & |
---|
921 | & ABS( pv(ji,jj) - pvb(ji,jj) ) * vmask(ji,jj,1) ) * zmsk15(ji,jj) |
---|
922 | END_2D |
---|
923 | zresm = MAXVAL( zres ) |
---|
924 | CALL mpp_max( 'icedyn_rhg_evp', zresm ) ! max over the global domain |
---|
925 | ENDIF |
---|
926 | |
---|
927 | IF( lwm ) THEN |
---|
928 | ! write variables |
---|
929 | istatus = NF90_PUT_VAR( ncvgid, nvarid, (/zresm/), (/it/), (/1/) ) |
---|
930 | ! close file |
---|
931 | IF( kt == nitend ) istatus = NF90_CLOSE(ncvgid) |
---|
932 | ENDIF |
---|
933 | |
---|
934 | END SUBROUTINE rhg_cvg |
---|
935 | |
---|
936 | |
---|
937 | SUBROUTINE rhg_evp_rst( cdrw, kt ) |
---|
938 | !!--------------------------------------------------------------------- |
---|
939 | !! *** ROUTINE rhg_evp_rst *** |
---|
940 | !! |
---|
941 | !! ** Purpose : Read or write RHG file in restart file |
---|
942 | !! |
---|
943 | !! ** Method : use of IOM library |
---|
944 | !!---------------------------------------------------------------------- |
---|
945 | CHARACTER(len=*) , INTENT(in) :: cdrw ! "READ"/"WRITE" flag |
---|
946 | INTEGER, OPTIONAL, INTENT(in) :: kt ! ice time-step |
---|
947 | ! |
---|
948 | INTEGER :: iter ! local integer |
---|
949 | INTEGER :: id1, id2, id3 ! local integers |
---|
950 | !!---------------------------------------------------------------------- |
---|
951 | ! |
---|
952 | IF( TRIM(cdrw) == 'READ' ) THEN ! Read/initialize |
---|
953 | ! ! --------------- |
---|
954 | IF( ln_rstart ) THEN !* Read the restart file |
---|
955 | ! |
---|
956 | id1 = iom_varid( numrir, 'stress1_i' , ldstop = .FALSE. ) |
---|
957 | id2 = iom_varid( numrir, 'stress2_i' , ldstop = .FALSE. ) |
---|
958 | id3 = iom_varid( numrir, 'stress12_i', ldstop = .FALSE. ) |
---|
959 | ! |
---|
960 | IF( MIN( id1, id2, id3 ) > 0 ) THEN ! fields exist |
---|
961 | CALL iom_get( numrir, jpdom_autoglo, 'stress1_i' , stress1_i ) |
---|
962 | CALL iom_get( numrir, jpdom_autoglo, 'stress2_i' , stress2_i ) |
---|
963 | CALL iom_get( numrir, jpdom_autoglo, 'stress12_i', stress12_i ) |
---|
964 | ELSE ! start rheology from rest |
---|
965 | IF(lwp) WRITE(numout,*) |
---|
966 | IF(lwp) WRITE(numout,*) ' ==>>> previous run without rheology, set stresses to 0' |
---|
967 | stress1_i (:,:) = 0._wp |
---|
968 | stress2_i (:,:) = 0._wp |
---|
969 | stress12_i(:,:) = 0._wp |
---|
970 | ENDIF |
---|
971 | ELSE !* Start from rest |
---|
972 | IF(lwp) WRITE(numout,*) |
---|
973 | IF(lwp) WRITE(numout,*) ' ==>>> start from rest: set stresses to 0' |
---|
974 | stress1_i (:,:) = 0._wp |
---|
975 | stress2_i (:,:) = 0._wp |
---|
976 | stress12_i(:,:) = 0._wp |
---|
977 | ENDIF |
---|
978 | ! |
---|
979 | ELSEIF( TRIM(cdrw) == 'WRITE' ) THEN ! Create restart file |
---|
980 | ! ! ------------------- |
---|
981 | IF(lwp) WRITE(numout,*) '---- rhg-rst ----' |
---|
982 | iter = kt + nn_fsbc - 1 ! ice restarts are written at kt == nitrst - nn_fsbc + 1 |
---|
983 | ! |
---|
984 | CALL iom_rstput( iter, nitrst, numriw, 'stress1_i' , stress1_i ) |
---|
985 | CALL iom_rstput( iter, nitrst, numriw, 'stress2_i' , stress2_i ) |
---|
986 | CALL iom_rstput( iter, nitrst, numriw, 'stress12_i', stress12_i ) |
---|
987 | ! |
---|
988 | ENDIF |
---|
989 | ! |
---|
990 | END SUBROUTINE rhg_evp_rst |
---|
991 | |
---|
992 | |
---|
993 | #else |
---|
994 | !!---------------------------------------------------------------------- |
---|
995 | !! Default option Empty module NO SI3 sea-ice model |
---|
996 | !!---------------------------------------------------------------------- |
---|
997 | #endif |
---|
998 | |
---|
999 | !!============================================================================== |
---|
1000 | END MODULE icedyn_rhg_evp |
---|