1 | MODULE dynzdf |
---|
2 | !!============================================================================== |
---|
3 | !! *** MODULE dynzdf *** |
---|
4 | !! Ocean dynamics : vertical component of the momentum mixing trend |
---|
5 | !!============================================================================== |
---|
6 | !! History : 1.0 ! 2005-11 (G. Madec) Original code |
---|
7 | !! 3.3 ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase |
---|
8 | !! 4.0 ! 2017-06 (G. Madec) remove the explicit time-stepping option + avm at t-point |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! dyn_zdf : compute the after velocity through implicit calculation of vertical mixing |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | USE oce ! ocean dynamics and tracers variables |
---|
15 | USE phycst ! physical constants |
---|
16 | USE dom_oce ! ocean space and time domain variables |
---|
17 | USE sbc_oce ! surface boundary condition: ocean |
---|
18 | USE zdf_oce ! ocean vertical physics variables |
---|
19 | USE zdfdrg ! vertical physics: top/bottom drag coef. |
---|
20 | USE dynadv ,ONLY: ln_dynadv_vec ! dynamics: advection form |
---|
21 | USE dynldf_iso,ONLY: akzu, akzv ! dynamics: vertical component of rotated lateral mixing |
---|
22 | USE ldfdyn ! lateral diffusion: eddy viscosity coef. and type of operator |
---|
23 | USE trd_oce ! trends: ocean variables |
---|
24 | USE trddyn ! trend manager: dynamics |
---|
25 | ! |
---|
26 | USE in_out_manager ! I/O manager |
---|
27 | USE lib_mpp ! MPP library |
---|
28 | USE prtctl ! Print control |
---|
29 | USE timing ! Timing |
---|
30 | |
---|
31 | IMPLICIT NONE |
---|
32 | PRIVATE |
---|
33 | |
---|
34 | PUBLIC dyn_zdf ! routine called by step.F90 |
---|
35 | |
---|
36 | REAL(wp) :: r_vvl ! non-linear free surface indicator: =0 if ln_linssh=T, =1 otherwise |
---|
37 | |
---|
38 | !! * Substitutions |
---|
39 | # include "vectopt_loop_substitute.h90" |
---|
40 | !!---------------------------------------------------------------------- |
---|
41 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
42 | !! $Id$ |
---|
43 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
44 | !!---------------------------------------------------------------------- |
---|
45 | CONTAINS |
---|
46 | |
---|
47 | SUBROUTINE dyn_zdf( kt ) |
---|
48 | !!---------------------------------------------------------------------- |
---|
49 | !! *** ROUTINE dyn_zdf *** |
---|
50 | !! |
---|
51 | !! ** Purpose : compute the trend due to the vert. momentum diffusion |
---|
52 | !! together with the Leap-Frog time stepping using an |
---|
53 | !! implicit scheme. |
---|
54 | !! |
---|
55 | !! ** Method : - Leap-Frog time stepping on all trends but the vertical mixing |
---|
56 | !! ua = ub + 2*dt * ua vector form or linear free surf. |
---|
57 | !! ua = ( e3u_b*ub + 2*dt * e3u_n*ua ) / e3u_a otherwise |
---|
58 | !! - update the after velocity with the implicit vertical mixing. |
---|
59 | !! This requires to solver the following system: |
---|
60 | !! ua = ua + 1/e3u_a dk+1[ mi(avm) / e3uw_a dk[ua] ] |
---|
61 | !! with the following surface/top/bottom boundary condition: |
---|
62 | !! surface: wind stress input (averaged over kt-1/2 & kt+1/2) |
---|
63 | !! top & bottom : top stress (iceshelf-ocean) & bottom stress (cf zdfdrg.F90) |
---|
64 | !! |
---|
65 | !! ** Action : (ua,va) after velocity |
---|
66 | !!--------------------------------------------------------------------- |
---|
67 | INTEGER, INTENT(in) :: kt ! ocean time-step index |
---|
68 | ! |
---|
69 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
70 | INTEGER :: iku, ikv ! local integers |
---|
71 | REAL(wp) :: zzwi, ze3ua, zdt ! local scalars |
---|
72 | REAL(wp) :: zzws, ze3va ! - - |
---|
73 | REAL(wp) :: z1_e3ua, z1_e3va ! - - |
---|
74 | REAL(wp) :: zWu , zWv ! - - |
---|
75 | REAL(wp) :: zWui, zWvi ! - - |
---|
76 | REAL(wp) :: zWus, zWvs ! - - |
---|
77 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zwi, zwd, zws ! 3D workspace |
---|
78 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ztrdu, ztrdv ! - - |
---|
79 | !!--------------------------------------------------------------------- |
---|
80 | ! |
---|
81 | IF( ln_timing ) CALL timing_start('dyn_zdf') |
---|
82 | ! |
---|
83 | IF( kt == nit000 ) THEN !* initialization |
---|
84 | IF(lwp) WRITE(numout,*) |
---|
85 | IF(lwp) WRITE(numout,*) 'dyn_zdf_imp : vertical momentum diffusion implicit operator' |
---|
86 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~ ' |
---|
87 | ! |
---|
88 | If( ln_linssh ) THEN ; r_vvl = 0._wp ! non-linear free surface indicator |
---|
89 | ELSE ; r_vvl = 1._wp |
---|
90 | ENDIF |
---|
91 | ENDIF |
---|
92 | ! !* set time step |
---|
93 | IF( neuler == 0 .AND. kt == nit000 ) THEN ; r2dt = rdt ! = rdt (restart with Euler time stepping) |
---|
94 | ELSEIF( kt <= nit000 + 1 ) THEN ; r2dt = 2. * rdt ! = 2 rdt (leapfrog) |
---|
95 | ENDIF |
---|
96 | ! |
---|
97 | ! !* explicit top/bottom drag case |
---|
98 | IF( .NOT.ln_drgimp ) CALL zdf_drg_exp( kt, ub, vb, ua, va ) ! add top/bottom friction trend to (ua,va) |
---|
99 | ! |
---|
100 | ! |
---|
101 | IF( l_trddyn ) THEN !* temporary save of ta and sa trends |
---|
102 | ALLOCATE( ztrdu(jpi,jpj,jpk), ztrdv(jpi,jpj,jpk) ) |
---|
103 | ztrdu(:,:,:) = ua(:,:,:) |
---|
104 | ztrdv(:,:,:) = va(:,:,:) |
---|
105 | ENDIF |
---|
106 | ! |
---|
107 | ! !== RHS: Leap-Frog time stepping on all trends but the vertical mixing ==! (put in ua,va) |
---|
108 | ! |
---|
109 | ! ! time stepping except vertical diffusion |
---|
110 | IF( ln_dynadv_vec .OR. ln_linssh ) THEN ! applied on velocity |
---|
111 | DO jk = 1, jpkm1 |
---|
112 | ua(:,:,jk) = ( uu(:,:,jk,Nnn) + r2dt * ua(:,:,jk) ) * umask(:,:,jk) |
---|
113 | va(:,:,jk) = ( vv(:,:,jk,Nnn) + r2dt * va(:,:,jk) ) * vmask(:,:,jk) |
---|
114 | END DO |
---|
115 | ELSE ! applied on thickness weighted velocity |
---|
116 | DO jk = 1, jpkm1 |
---|
117 | ua(:,:,jk) = ( e3u_b(:,:,jk) * uu(:,:,jk,Nnn) & |
---|
118 | & + r2dt * e3u_n(:,:,jk) * ua(:,:,jk) ) / e3u_a(:,:,jk) * umask(:,:,jk) |
---|
119 | va(:,:,jk) = ( e3v_b(:,:,jk) * vv(:,:,jk,Nnn) & |
---|
120 | & + r2dt * e3v_n(:,:,jk) * va(:,:,jk) ) / e3v_a(:,:,jk) * vmask(:,:,jk) |
---|
121 | END DO |
---|
122 | ENDIF |
---|
123 | ! ! add top/bottom friction |
---|
124 | ! With split-explicit free surface, barotropic stress is treated explicitly Update velocities at the bottom. |
---|
125 | ! J. Chanut: The bottom stress is computed considering after barotropic velocities, which does |
---|
126 | ! not lead to the effective stress seen over the whole barotropic loop. |
---|
127 | ! G. Madec : in linear free surface, e3u_a = e3u_n = e3u_0, so systematic use of e3u_a |
---|
128 | IF( ln_drgimp .AND. ln_dynspg_ts ) THEN |
---|
129 | DO jk = 1, jpkm1 ! remove barotropic velocities |
---|
130 | ua(:,:,jk) = ( ua(:,:,jk) - ua_b(:,:) ) * umask(:,:,jk) |
---|
131 | va(:,:,jk) = ( va(:,:,jk) - va_b(:,:) ) * vmask(:,:,jk) |
---|
132 | END DO |
---|
133 | DO_2D( 0, 0, 0, 0 ) |
---|
134 | iku = mbku(ji,jj) ! ocean bottom level at u- and v-points |
---|
135 | ikv = mbkv(ji,jj) ! (deepest ocean u- and v-points) |
---|
136 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,iku) + r_vvl * e3u_a(ji,jj,iku) |
---|
137 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,ikv) + r_vvl * e3v_a(ji,jj,ikv) |
---|
138 | ua(ji,jj,iku) = ua(ji,jj,iku) + r2dt * 0.5*( rCdU_bot(ji+1,jj)+rCdU_bot(ji,jj) ) * ua_b(ji,jj) / ze3ua |
---|
139 | va(ji,jj,ikv) = va(ji,jj,ikv) + r2dt * 0.5*( rCdU_bot(ji,jj+1)+rCdU_bot(ji,jj) ) * va_b(ji,jj) / ze3va |
---|
140 | END_2D |
---|
141 | IF( ln_isfcav.OR.ln_drgice_imp ) THEN ! Ocean cavities (ISF) |
---|
142 | DO_2D( 0, 0, 0, 0 ) |
---|
143 | iku = miku(ji,jj) ! top ocean level at u- and v-points |
---|
144 | ikv = mikv(ji,jj) ! (first wet ocean u- and v-points) |
---|
145 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,iku) + r_vvl * e3u_a(ji,jj,iku) |
---|
146 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,ikv) + r_vvl * e3v_a(ji,jj,ikv) |
---|
147 | ua(ji,jj,iku) = ua(ji,jj,iku) + r2dt * 0.5*( rCdU_top(ji+1,jj)+rCdU_top(ji,jj) ) * ua_b(ji,jj) / ze3ua |
---|
148 | va(ji,jj,ikv) = va(ji,jj,ikv) + r2dt * 0.5*( rCdU_top(ji,jj+1)+rCdU_top(ji,jj) ) * va_b(ji,jj) / ze3va |
---|
149 | END_2D |
---|
150 | END IF |
---|
151 | ENDIF |
---|
152 | ! |
---|
153 | ! !== Vertical diffusion on u ==! |
---|
154 | ! |
---|
155 | ! !* Matrix construction |
---|
156 | zdt = r2dt * 0.5 |
---|
157 | IF( ln_zad_Aimp ) THEN !! |
---|
158 | SELECT CASE( nldf_dyn ) |
---|
159 | CASE( np_lap_i ) ! rotated lateral mixing: add its vertical mixing (akzu) |
---|
160 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
161 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,jk) + r_vvl * e3u_a(ji,jj,jk) ! after scale factor at U-point |
---|
162 | zzwi = - zdt * ( avm(ji+1,jj,jk ) + avm(ji,jj,jk ) + akzu(ji,jj,jk ) ) & |
---|
163 | & / ( ze3ua * e3uw_n(ji,jj,jk ) ) * wumask(ji,jj,jk ) |
---|
164 | zzws = - zdt * ( avm(ji+1,jj,jk+1) + avm(ji,jj,jk+1) + akzu(ji,jj,jk+1) ) & |
---|
165 | & / ( ze3ua * e3uw_n(ji,jj,jk+1) ) * wumask(ji,jj,jk+1) |
---|
166 | zWui = ( wi(ji,jj,jk ) + wi(ji+1,jj,jk ) ) / ze3ua |
---|
167 | zWus = ( wi(ji,jj,jk+1) + wi(ji+1,jj,jk+1) ) / ze3ua |
---|
168 | zwi(ji,jj,jk) = zzwi + zdt * MIN( zWui, 0._wp ) |
---|
169 | zws(ji,jj,jk) = zzws - zdt * MAX( zWus, 0._wp ) |
---|
170 | zwd(ji,jj,jk) = 1._wp - zzwi - zzws + zdt * ( MAX( zWui, 0._wp ) - MIN( zWus, 0._wp ) ) |
---|
171 | END_3D |
---|
172 | CASE DEFAULT ! iso-level lateral mixing |
---|
173 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
174 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,jk) + r_vvl * e3u_a(ji,jj,jk) ! after scale factor at U-point |
---|
175 | zzwi = - zdt * ( avm(ji+1,jj,jk ) + avm(ji,jj,jk ) ) / ( ze3ua * e3uw_n(ji,jj,jk ) ) * wumask(ji,jj,jk ) |
---|
176 | zzws = - zdt * ( avm(ji+1,jj,jk+1) + avm(ji,jj,jk+1) ) / ( ze3ua * e3uw_n(ji,jj,jk+1) ) * wumask(ji,jj,jk+1) |
---|
177 | zWui = ( wi(ji,jj,jk ) + wi(ji+1,jj,jk ) ) / ze3ua |
---|
178 | zWus = ( wi(ji,jj,jk+1) + wi(ji+1,jj,jk+1) ) / ze3ua |
---|
179 | zwi(ji,jj,jk) = zzwi + zdt * MIN( zWui, 0._wp ) |
---|
180 | zws(ji,jj,jk) = zzws - zdt * MAX( zWus, 0._wp ) |
---|
181 | zwd(ji,jj,jk) = 1._wp - zzwi - zzws + zdt * ( MAX( zWui, 0._wp ) - MIN( zWus, 0._wp ) ) |
---|
182 | END_3D |
---|
183 | END SELECT |
---|
184 | DO_2D( 0, 0, 0, 0 ) |
---|
185 | zwi(ji,jj,1) = 0._wp |
---|
186 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,1) + r_vvl * e3u_a(ji,jj,1) |
---|
187 | zzws = - zdt * ( avm(ji+1,jj,2) + avm(ji ,jj,2) ) / ( ze3ua * e3uw_n(ji,jj,2) ) * wumask(ji,jj,2) |
---|
188 | zWus = ( wi(ji ,jj,2) + wi(ji+1,jj,2) ) / ze3ua |
---|
189 | zws(ji,jj,1 ) = zzws - zdt * MAX( zWus, 0._wp ) |
---|
190 | zwd(ji,jj,1 ) = 1._wp - zzws - zdt * ( MIN( zWus, 0._wp ) ) |
---|
191 | END_2D |
---|
192 | ELSE |
---|
193 | SELECT CASE( nldf_dyn ) |
---|
194 | CASE( np_lap_i ) ! rotated lateral mixing: add its vertical mixing (akzu) |
---|
195 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
196 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,jk) + r_vvl * e3u_a(ji,jj,jk) ! after scale factor at U-point |
---|
197 | zzwi = - zdt * ( avm(ji+1,jj,jk ) + avm(ji,jj,jk ) + akzu(ji,jj,jk ) ) & |
---|
198 | & / ( ze3ua * e3uw_n(ji,jj,jk ) ) * wumask(ji,jj,jk ) |
---|
199 | zzws = - zdt * ( avm(ji+1,jj,jk+1) + avm(ji,jj,jk+1) + akzu(ji,jj,jk+1) ) & |
---|
200 | & / ( ze3ua * e3uw_n(ji,jj,jk+1) ) * wumask(ji,jj,jk+1) |
---|
201 | zwi(ji,jj,jk) = zzwi |
---|
202 | zws(ji,jj,jk) = zzws |
---|
203 | zwd(ji,jj,jk) = 1._wp - zzwi - zzws |
---|
204 | END_3D |
---|
205 | CASE DEFAULT ! iso-level lateral mixing |
---|
206 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
207 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,jk) + r_vvl * e3u_a(ji,jj,jk) ! after scale factor at U-point |
---|
208 | zzwi = - zdt * ( avm(ji+1,jj,jk ) + avm(ji,jj,jk ) ) / ( ze3ua * e3uw_n(ji,jj,jk ) ) * wumask(ji,jj,jk ) |
---|
209 | zzws = - zdt * ( avm(ji+1,jj,jk+1) + avm(ji,jj,jk+1) ) / ( ze3ua * e3uw_n(ji,jj,jk+1) ) * wumask(ji,jj,jk+1) |
---|
210 | zwi(ji,jj,jk) = zzwi |
---|
211 | zws(ji,jj,jk) = zzws |
---|
212 | zwd(ji,jj,jk) = 1._wp - zzwi - zzws |
---|
213 | END_3D |
---|
214 | END SELECT |
---|
215 | DO_2D( 0, 0, 0, 0 ) |
---|
216 | zwi(ji,jj,1) = 0._wp |
---|
217 | zwd(ji,jj,1) = 1._wp - zws(ji,jj,1) |
---|
218 | END_2D |
---|
219 | ENDIF |
---|
220 | ! |
---|
221 | ! |
---|
222 | ! !== Apply semi-implicit bottom friction ==! |
---|
223 | ! |
---|
224 | ! Only needed for semi-implicit bottom friction setup. The explicit |
---|
225 | ! bottom friction has been included in "u(v)a" which act as the R.H.S |
---|
226 | ! column vector of the tri-diagonal matrix equation |
---|
227 | ! |
---|
228 | IF ( ln_drgimp ) THEN ! implicit bottom friction |
---|
229 | DO_2D( 0, 0, 0, 0 ) |
---|
230 | iku = mbku(ji,jj) ! ocean bottom level at u- and v-points |
---|
231 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,iku) + r_vvl * e3u_a(ji,jj,iku) ! after scale factor at T-point |
---|
232 | zwd(ji,jj,iku) = zwd(ji,jj,iku) - r2dt * 0.5*( rCdU_bot(ji+1,jj)+rCdU_bot(ji,jj) ) / ze3ua |
---|
233 | END_2D |
---|
234 | IF ( ln_isfcav.OR.ln_drgice_imp ) THEN ! top friction (always implicit) |
---|
235 | DO_2D( 0, 0, 0, 0 ) |
---|
236 | !!gm top Cd is masked (=0 outside cavities) no need of test on mik>=2 ==>> it has been suppressed |
---|
237 | iku = miku(ji,jj) ! ocean top level at u- and v-points |
---|
238 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,iku) + r_vvl * e3u_a(ji,jj,iku) ! after scale factor at T-point |
---|
239 | zwd(ji,jj,iku) = zwd(ji,jj,iku) - r2dt * 0.5*( rCdU_top(ji+1,jj)+rCdU_top(ji,jj) ) / ze3ua |
---|
240 | END_2D |
---|
241 | END IF |
---|
242 | ENDIF |
---|
243 | ! |
---|
244 | ! Matrix inversion starting from the first level |
---|
245 | !----------------------------------------------------------------------- |
---|
246 | ! solve m.x = y where m is a tri diagonal matrix ( jpk*jpk ) |
---|
247 | ! |
---|
248 | ! ( zwd1 zws1 0 0 0 )( zwx1 ) ( zwy1 ) |
---|
249 | ! ( zwi2 zwd2 zws2 0 0 )( zwx2 ) ( zwy2 ) |
---|
250 | ! ( 0 zwi3 zwd3 zws3 0 )( zwx3 )=( zwy3 ) |
---|
251 | ! ( ... )( ... ) ( ... ) |
---|
252 | ! ( 0 0 0 zwik zwdk )( zwxk ) ( zwyk ) |
---|
253 | ! |
---|
254 | ! m is decomposed in the product of an upper and a lower triangular matrix |
---|
255 | ! The 3 diagonal terms are in 2d arrays: zwd, zws, zwi |
---|
256 | ! The solution (the after velocity) is in ua |
---|
257 | !----------------------------------------------------------------------- |
---|
258 | ! |
---|
259 | DO_3D( 0, 0, 0, 0, 2, jpkm1 ) |
---|
260 | zwd(ji,jj,jk) = zwd(ji,jj,jk) - zwi(ji,jj,jk) * zws(ji,jj,jk-1) / zwd(ji,jj,jk-1) |
---|
261 | END_3D |
---|
262 | ! |
---|
263 | DO_2D( 0, 0, 0, 0 ) |
---|
264 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,1) + r_vvl * e3u_a(ji,jj,1) |
---|
265 | ua(ji,jj,1) = ua(ji,jj,1) + r2dt * 0.5_wp * ( utau_b(ji,jj) + utau(ji,jj) ) & |
---|
266 | & / ( ze3ua * rau0 ) * umask(ji,jj,1) |
---|
267 | END_2D |
---|
268 | DO_3D( 0, 0, 0, 0, 2, jpkm1 ) |
---|
269 | ua(ji,jj,jk) = ua(ji,jj,jk) - zwi(ji,jj,jk) / zwd(ji,jj,jk-1) * ua(ji,jj,jk-1) |
---|
270 | END_3D |
---|
271 | ! |
---|
272 | DO_2D( 0, 0, 0, 0 ) |
---|
273 | ua(ji,jj,jpkm1) = ua(ji,jj,jpkm1) / zwd(ji,jj,jpkm1) |
---|
274 | END_2D |
---|
275 | DO_3D( 0, 0, 0, 0, jpk-2, 1, -1 ) |
---|
276 | ua(ji,jj,jk) = ( ua(ji,jj,jk) - zws(ji,jj,jk) * ua(ji,jj,jk+1) ) / zwd(ji,jj,jk) |
---|
277 | END_3D |
---|
278 | ! |
---|
279 | ! !== Vertical diffusion on v ==! |
---|
280 | ! |
---|
281 | ! !* Matrix construction |
---|
282 | zdt = r2dt * 0.5 |
---|
283 | IF( ln_zad_Aimp ) THEN !! |
---|
284 | SELECT CASE( nldf_dyn ) |
---|
285 | CASE( np_lap_i ) ! rotated lateral mixing: add its vertical mixing (akzv) |
---|
286 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
287 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,jk) + r_vvl * e3v_a(ji,jj,jk) ! after scale factor at V-point |
---|
288 | zzwi = - zdt * ( avm(ji,jj+1,jk ) + avm(ji,jj,jk ) + akzv(ji,jj,jk ) ) & |
---|
289 | & / ( ze3va * e3vw_n(ji,jj,jk ) ) * wvmask(ji,jj,jk ) |
---|
290 | zzws = - zdt * ( avm(ji,jj+1,jk+1) + avm(ji,jj,jk+1) + akzv(ji,jj,jk+1) ) & |
---|
291 | & / ( ze3va * e3vw_n(ji,jj,jk+1) ) * wvmask(ji,jj,jk+1) |
---|
292 | zWvi = ( wi(ji,jj,jk ) + wi(ji,jj+1,jk ) ) / ze3va |
---|
293 | zWvs = ( wi(ji,jj,jk+1) + wi(ji,jj+1,jk+1) ) / ze3va |
---|
294 | zwi(ji,jj,jk) = zzwi + zdt * MIN( zWvi, 0._wp ) |
---|
295 | zws(ji,jj,jk) = zzws - zdt * MAX( zWvs, 0._wp ) |
---|
296 | zwd(ji,jj,jk) = 1._wp - zzwi - zzws - zdt * ( - MAX( zWvi, 0._wp ) + MIN( zWvs, 0._wp ) ) |
---|
297 | END_3D |
---|
298 | CASE DEFAULT ! iso-level lateral mixing |
---|
299 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
300 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,jk) + r_vvl * e3v_a(ji,jj,jk) ! after scale factor at V-point |
---|
301 | zzwi = - zdt * ( avm(ji,jj+1,jk ) + avm(ji,jj,jk ) ) / ( ze3va * e3vw_n(ji,jj,jk ) ) * wvmask(ji,jj,jk ) |
---|
302 | zzws = - zdt * ( avm(ji,jj+1,jk+1) + avm(ji,jj,jk+1) ) / ( ze3va * e3vw_n(ji,jj,jk+1) ) * wvmask(ji,jj,jk+1) |
---|
303 | zWvi = ( wi(ji,jj,jk ) + wi(ji,jj+1,jk ) ) / ze3va |
---|
304 | zWvs = ( wi(ji,jj,jk+1) + wi(ji,jj+1,jk+1) ) / ze3va |
---|
305 | zwi(ji,jj,jk) = zzwi + zdt * MIN( zWvi, 0._wp ) |
---|
306 | zws(ji,jj,jk) = zzws - zdt * MAX( zWvs, 0._wp ) |
---|
307 | zwd(ji,jj,jk) = 1._wp - zzwi - zzws - zdt * ( - MAX( zWvi, 0._wp ) + MIN( zWvs, 0._wp ) ) |
---|
308 | END_3D |
---|
309 | END SELECT |
---|
310 | DO_2D( 0, 0, 0, 0 ) |
---|
311 | zwi(ji,jj,1) = 0._wp |
---|
312 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,1) + r_vvl * e3v_a(ji,jj,1) |
---|
313 | zzws = - zdt * ( avm(ji,jj+1,2) + avm(ji,jj,2) ) / ( ze3va * e3vw_n(ji,jj,2) ) * wvmask(ji,jj,2) |
---|
314 | zWvs = ( wi(ji,jj ,2) + wi(ji,jj+1,2) ) / ze3va |
---|
315 | zws(ji,jj,1 ) = zzws - zdt * MAX( zWvs, 0._wp ) |
---|
316 | zwd(ji,jj,1 ) = 1._wp - zzws - zdt * ( MIN( zWvs, 0._wp ) ) |
---|
317 | END_2D |
---|
318 | ELSE |
---|
319 | SELECT CASE( nldf_dyn ) |
---|
320 | CASE( np_lap_i ) ! rotated lateral mixing: add its vertical mixing (akzu) |
---|
321 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
322 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,jk) + r_vvl * e3v_a(ji,jj,jk) ! after scale factor at V-point |
---|
323 | zzwi = - zdt * ( avm(ji,jj+1,jk ) + avm(ji,jj,jk ) + akzv(ji,jj,jk ) ) & |
---|
324 | & / ( ze3va * e3vw_n(ji,jj,jk ) ) * wvmask(ji,jj,jk ) |
---|
325 | zzws = - zdt * ( avm(ji,jj+1,jk+1) + avm(ji,jj,jk+1) + akzv(ji,jj,jk+1) ) & |
---|
326 | & / ( ze3va * e3vw_n(ji,jj,jk+1) ) * wvmask(ji,jj,jk+1) |
---|
327 | zwi(ji,jj,jk) = zzwi |
---|
328 | zws(ji,jj,jk) = zzws |
---|
329 | zwd(ji,jj,jk) = 1._wp - zzwi - zzws |
---|
330 | END_3D |
---|
331 | CASE DEFAULT ! iso-level lateral mixing |
---|
332 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
333 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,jk) + r_vvl * e3v_a(ji,jj,jk) ! after scale factor at V-point |
---|
334 | zzwi = - zdt * ( avm(ji,jj+1,jk ) + avm(ji,jj,jk ) ) / ( ze3va * e3vw_n(ji,jj,jk ) ) * wvmask(ji,jj,jk ) |
---|
335 | zzws = - zdt * ( avm(ji,jj+1,jk+1) + avm(ji,jj,jk+1) ) / ( ze3va * e3vw_n(ji,jj,jk+1) ) * wvmask(ji,jj,jk+1) |
---|
336 | zwi(ji,jj,jk) = zzwi |
---|
337 | zws(ji,jj,jk) = zzws |
---|
338 | zwd(ji,jj,jk) = 1._wp - zzwi - zzws |
---|
339 | END_3D |
---|
340 | END SELECT |
---|
341 | DO_2D( 0, 0, 0, 0 ) |
---|
342 | zwi(ji,jj,1) = 0._wp |
---|
343 | zwd(ji,jj,1) = 1._wp - zws(ji,jj,1) |
---|
344 | END_2D |
---|
345 | ENDIF |
---|
346 | ! |
---|
347 | ! !== Apply semi-implicit top/bottom friction ==! |
---|
348 | ! |
---|
349 | ! Only needed for semi-implicit bottom friction setup. The explicit |
---|
350 | ! bottom friction has been included in "u(v)a" which act as the R.H.S |
---|
351 | ! column vector of the tri-diagonal matrix equation |
---|
352 | ! |
---|
353 | IF( ln_drgimp ) THEN |
---|
354 | DO_2D( 0, 0, 0, 0 ) |
---|
355 | ikv = mbkv(ji,jj) ! (deepest ocean u- and v-points) |
---|
356 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,ikv) + r_vvl * e3v_a(ji,jj,ikv) ! after scale factor at T-point |
---|
357 | zwd(ji,jj,ikv) = zwd(ji,jj,ikv) - r2dt * 0.5*( rCdU_bot(ji,jj+1)+rCdU_bot(ji,jj) ) / ze3va |
---|
358 | END_2D |
---|
359 | IF ( ln_isfcav.OR.ln_drgice_imp ) THEN |
---|
360 | DO_2D( 0, 0, 0, 0 ) |
---|
361 | ikv = mikv(ji,jj) ! (first wet ocean u- and v-points) |
---|
362 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,ikv) + r_vvl * e3v_a(ji,jj,ikv) ! after scale factor at T-point |
---|
363 | zwd(ji,jj,ikv) = zwd(ji,jj,ikv) - r2dt * 0.5*( rCdU_top(ji,jj+1)+rCdU_top(ji,jj) ) / ze3va |
---|
364 | END_2D |
---|
365 | ENDIF |
---|
366 | ENDIF |
---|
367 | |
---|
368 | ! Matrix inversion |
---|
369 | !----------------------------------------------------------------------- |
---|
370 | ! solve m.x = y where m is a tri diagonal matrix ( jpk*jpk ) |
---|
371 | ! |
---|
372 | ! ( zwd1 zws1 0 0 0 )( zwx1 ) ( zwy1 ) |
---|
373 | ! ( zwi2 zwd2 zws2 0 0 )( zwx2 ) ( zwy2 ) |
---|
374 | ! ( 0 zwi3 zwd3 zws3 0 )( zwx3 )=( zwy3 ) |
---|
375 | ! ( ... )( ... ) ( ... ) |
---|
376 | ! ( 0 0 0 zwik zwdk )( zwxk ) ( zwyk ) |
---|
377 | ! |
---|
378 | ! m is decomposed in the product of an upper and lower triangular matrix |
---|
379 | ! The 3 diagonal terms are in 2d arrays: zwd, zws, zwi |
---|
380 | ! The solution (after velocity) is in 2d array va |
---|
381 | !----------------------------------------------------------------------- |
---|
382 | ! |
---|
383 | DO_3D( 0, 0, 0, 0, 2, jpkm1 ) |
---|
384 | zwd(ji,jj,jk) = zwd(ji,jj,jk) - zwi(ji,jj,jk) * zws(ji,jj,jk-1) / zwd(ji,jj,jk-1) |
---|
385 | END_3D |
---|
386 | ! |
---|
387 | DO_2D( 0, 0, 0, 0 ) |
---|
388 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,1) + r_vvl * e3v_a(ji,jj,1) |
---|
389 | va(ji,jj,1) = va(ji,jj,1) + r2dt * 0.5_wp * ( vtau_b(ji,jj) + vtau(ji,jj) ) & |
---|
390 | & / ( ze3va * rau0 ) * vmask(ji,jj,1) |
---|
391 | END_2D |
---|
392 | DO_3D( 0, 0, 0, 0, 2, jpkm1 ) |
---|
393 | va(ji,jj,jk) = va(ji,jj,jk) - zwi(ji,jj,jk) / zwd(ji,jj,jk-1) * va(ji,jj,jk-1) |
---|
394 | END_3D |
---|
395 | ! |
---|
396 | DO_2D( 0, 0, 0, 0 ) |
---|
397 | va(ji,jj,jpkm1) = va(ji,jj,jpkm1) / zwd(ji,jj,jpkm1) |
---|
398 | END_2D |
---|
399 | DO_3D( 0, 0, 0, 0, jpk-2, 1, -1 ) |
---|
400 | va(ji,jj,jk) = ( va(ji,jj,jk) - zws(ji,jj,jk) * va(ji,jj,jk+1) ) / zwd(ji,jj,jk) |
---|
401 | END_3D |
---|
402 | ! |
---|
403 | IF( l_trddyn ) THEN ! save the vertical diffusive trends for further diagnostics |
---|
404 | ztrdu(:,:,:) = ( ua(:,:,:) - uu(:,:,:,Nnn) ) / r2dt - ztrdu(:,:,:) |
---|
405 | ztrdv(:,:,:) = ( va(:,:,:) - vv(:,:,:,Nnn) ) / r2dt - ztrdv(:,:,:) |
---|
406 | CALL trd_dyn( ztrdu, ztrdv, jpdyn_zdf, kt ) |
---|
407 | DEALLOCATE( ztrdu, ztrdv ) |
---|
408 | ENDIF |
---|
409 | ! ! print mean trends (used for debugging) |
---|
410 | IF(ln_ctl) CALL prt_ctl( tab3d_1=ua, clinfo1=' zdf - Ua: ', mask1=umask, & |
---|
411 | & tab3d_2=va, clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' ) |
---|
412 | ! |
---|
413 | IF( ln_timing ) CALL timing_stop('dyn_zdf') |
---|
414 | ! |
---|
415 | END SUBROUTINE dyn_zdf |
---|
416 | |
---|
417 | !!============================================================================== |
---|
418 | END MODULE dynzdf |
---|