1 | |
---|
2 | SUBROUTINE mpp_nfd_/**/PRECISION( ptab, cd_nat, psgn, kfillmode, pfillval, kfld ) |
---|
3 | TYPE(PTR_4d_/**/PRECISION), DIMENSION(:), INTENT(inout) :: ptab ! pointer of arrays on which apply the b.c. |
---|
4 | CHARACTER(len=1), DIMENSION(:), INTENT(in ) :: cd_nat ! nature of array grid-points |
---|
5 | REAL(PRECISION), DIMENSION(:), INTENT(in ) :: psgn ! sign used across the north fold boundary |
---|
6 | INTEGER , INTENT(in ) :: kfillmode ! filling method for halo over land |
---|
7 | REAL(PRECISION) , INTENT(in ) :: pfillval ! background value (used at closed boundaries) |
---|
8 | INTEGER , INTENT(in ) :: kfld ! number of pt3d arrays |
---|
9 | ! |
---|
10 | LOGICAL :: ll_add_line |
---|
11 | INTEGER :: ji, jj, jk, jl, jh, jf, jr ! dummy loop indices |
---|
12 | INTEGER :: ipi, ipj, ipj2, ipk, ipl, ipf ! dimension of the input array |
---|
13 | INTEGER :: imigr, iihom, ijhom ! local integers |
---|
14 | INTEGER :: ierr, ibuffsize, iis0, iie0, impp |
---|
15 | INTEGER :: ii1, ii2, ij1, ij2 |
---|
16 | INTEGER :: ipimax, i0max |
---|
17 | INTEGER :: ij, iproc, ipni, ijnr |
---|
18 | INTEGER, DIMENSION (jpmaxngh) :: ml_req_nf ! for mpi_isend when avoiding mpi_allgather |
---|
19 | INTEGER :: ml_err ! for mpi_isend when avoiding mpi_allgather |
---|
20 | ! ! Workspace for message transfers avoiding mpi_allgather |
---|
21 | INTEGER :: ipj_b ! sum of lines for all multi fields |
---|
22 | INTEGER :: i012 ! 0, 1 or 2 |
---|
23 | INTEGER , DIMENSION(:,:) , ALLOCATABLE :: jj_s ! position of sent lines |
---|
24 | INTEGER , DIMENSION(:,:) , ALLOCATABLE :: jj_b ! position of buffer lines |
---|
25 | INTEGER , DIMENSION(:) , ALLOCATABLE :: ipj_s ! number of sent lines |
---|
26 | REAL(PRECISION), DIMENSION(:,:,:,:) , ALLOCATABLE :: ztabb, ztabr, ztabw ! buffer, receive and work arrays |
---|
27 | REAL(PRECISION), DIMENSION(:,:,:,:,:) , ALLOCATABLE :: znorthloc |
---|
28 | REAL(PRECISION), DIMENSION(:,:,:,:,:,:), ALLOCATABLE :: znorthglo |
---|
29 | TYPE(PTR_4D_/**/PRECISION), DIMENSION(:), ALLOCATABLE :: ztabglo ! array or pointer of arrays on which apply the b.c. |
---|
30 | !!---------------------------------------------------------------------- |
---|
31 | ! |
---|
32 | ipk = SIZE(ptab(1)%pt4d,3) |
---|
33 | ipl = SIZE(ptab(1)%pt4d,4) |
---|
34 | ipf = kfld |
---|
35 | ! |
---|
36 | IF( ln_nnogather ) THEN !== no allgather exchanges ==! |
---|
37 | |
---|
38 | ! --- define number of exchanged lines --- |
---|
39 | ! |
---|
40 | ! In theory we should exchange only nn_hls lines. |
---|
41 | ! |
---|
42 | ! However, some other points are duplicated in the north pole folding: |
---|
43 | ! - c_NFtype='T', grid=T : half of the last line (jpiglo/2+2:jpiglo-nn_hls) |
---|
44 | ! - c_NFtype='T', grid=U : half of the last line (jpiglo/2+1:jpiglo-nn_hls) |
---|
45 | ! - c_NFtype='T', grid=V : all the last line nn_hls+1 and (nn_hls+2:jpiglo-nn_hls) |
---|
46 | ! - c_NFtype='T', grid=F : all the last line (nn_hls+1:jpiglo-nn_hls) |
---|
47 | ! - c_NFtype='F', grid=T : 2 points of the last line (jpiglo/2+1 and jpglo-nn_hls) |
---|
48 | ! - c_NFtype='F', grid=U : no points are duplicated |
---|
49 | ! - c_NFtype='F', grid=V : half of the last line (jpiglo/2+1:jpiglo-nn_hls) |
---|
50 | ! - c_NFtype='F', grid=F : half of the last line (jpiglo/2+1:jpiglo-nn_hls-1) |
---|
51 | ! The order of the calculations may differ for these duplicated points (as, for example jj+1 becomes jj-1) |
---|
52 | ! This explain why these duplicated points may have different values even if they are at the exact same location. |
---|
53 | ! In consequence, we may want to force the folding on these points by setting l_full_nf_update = .TRUE. |
---|
54 | ! This is slightly slower but necessary to avoid different values on identical grid points!! |
---|
55 | ! |
---|
56 | !!!!!!!!! temporary switch off this optimisation ==> force TRUE !!!!!!!! |
---|
57 | !!!!!!!!! needed to get the same results without agrif and with agrif and no zoom !!!!!!!! |
---|
58 | !!!!!!!!! I don't know why we must do that... !!!!!!!! |
---|
59 | l_full_nf_update = .TRUE. |
---|
60 | ! also force it if not restart during the first 2 steps (leap frog?) |
---|
61 | ll_add_line = l_full_nf_update .OR. ( ncom_stp <= nit000+1 .AND. .NOT. ln_rstart ) |
---|
62 | |
---|
63 | ALLOCATE(ipj_s(ipf)) ! how many lines do we exchange? |
---|
64 | IF( ll_add_line ) THEN |
---|
65 | DO jf = 1, ipf ! Loop over the number of arrays to be processed |
---|
66 | ipj_s(jf) = nn_hls + COUNT( (/ c_NFtype == 'T' .OR. cd_nat(jf) == 'V' .OR. cd_nat(jf) == 'F' /) ) |
---|
67 | END DO |
---|
68 | ELSE |
---|
69 | ipj_s(:) = nn_hls |
---|
70 | ENDIF |
---|
71 | |
---|
72 | ipj = MAXVAL(ipj_s(:)) ! Max 2nd dimension of message transfers |
---|
73 | ipj_b = SUM( ipj_s(:)) ! Total number of lines to be exchanged |
---|
74 | ALLOCATE( jj_s(ipj, ipf), jj_b(ipj, ipf) ) |
---|
75 | |
---|
76 | ! Index of modifying lines in input |
---|
77 | ij1 = 0 |
---|
78 | DO jf = 1, ipf ! Loop over the number of arrays to be processed |
---|
79 | ! |
---|
80 | IF( c_NFtype == 'T' ) THEN ! * North fold T-point pivot |
---|
81 | SELECT CASE ( cd_nat(jf) ) |
---|
82 | CASE ( 'T', 'W', 'U' ) ; i012 = 1 ! T-, U-, W-point |
---|
83 | CASE ( 'V', 'F' ) ; i012 = 2 ! V-, F-point |
---|
84 | END SELECT |
---|
85 | ENDIF |
---|
86 | IF( c_NFtype == 'F' ) THEN ! * North fold F-point pivot |
---|
87 | SELECT CASE ( cd_nat(jf) ) |
---|
88 | CASE ( 'T', 'W', 'U' ) ; i012 = 0 ! T-, U-, W-point |
---|
89 | CASE ( 'V', 'F' ) ; i012 = 1 ! V-, F-point |
---|
90 | END SELECT |
---|
91 | ENDIF |
---|
92 | ! |
---|
93 | DO jj = 1, ipj_s(jf) |
---|
94 | ij1 = ij1 + 1 |
---|
95 | jj_b(jj,jf) = ij1 |
---|
96 | jj_s(jj,jf) = jpj - 2*nn_hls + jj - i012 |
---|
97 | END DO |
---|
98 | ! |
---|
99 | END DO |
---|
100 | ! |
---|
101 | ALLOCATE( ztabb(jpimax,ipj_b,ipk,ipl) ) ! store all the data to be sent in a buffer array |
---|
102 | ibuffsize = jpimax * ipj_b * ipk * ipl |
---|
103 | ! |
---|
104 | DO jf = 1, ipf ; DO jl = 1, ipl ; DO jk = 1, ipk |
---|
105 | DO jj = 1, ipj_s(jf) |
---|
106 | ij1 = jj_b(jj,jf) |
---|
107 | ij2 = jj_s(jj,jf) |
---|
108 | DO ji = 1, jpi |
---|
109 | ztabb(ji,ij1,jk,jl) = ptab(jf)%pt4d(ji,ij2,jk,jl) |
---|
110 | END DO |
---|
111 | DO ji = jpi+1, jpimax |
---|
112 | ztabb(ji,ij1,jk,jl) = HUGE(0._/**/PRECISION) ! avoid sending uninitialized values (make sure we don't use it) |
---|
113 | END DO |
---|
114 | END DO |
---|
115 | END DO ; END DO ; END DO |
---|
116 | ! |
---|
117 | ! start waiting time measurement |
---|
118 | IF( ln_timing ) CALL tic_tac(.TRUE.) |
---|
119 | ! |
---|
120 | ! send the data as soon as possible |
---|
121 | DO jr = 1, nsndto |
---|
122 | iproc = nfproc(isendto(jr)) |
---|
123 | IF( iproc /= narea-1 .AND. iproc /= -1 ) THEN |
---|
124 | #if ! defined key_mpi_off |
---|
125 | CALL MPI_ISEND( ztabb, ibuffsize, MPI_TYPE, iproc, 5, mpi_comm_oce, ml_req_nf(jr), ierr ) |
---|
126 | #endif |
---|
127 | ENDIF |
---|
128 | END DO |
---|
129 | ! |
---|
130 | ipimax = jpimax * jpmaxngh |
---|
131 | ALLOCATE( ztabw(jpimax,ipj_b,ipk,ipl), ztabr(ipimax,ipj_b,ipk,ipl) ) |
---|
132 | ! |
---|
133 | DO jr = 1, nsndto |
---|
134 | ! |
---|
135 | ipni = isendto(jr) |
---|
136 | iproc = nfproc(ipni) |
---|
137 | ipi = nfjpi (ipni) |
---|
138 | ! |
---|
139 | IF( ipni == 1 ) THEN ; iis0 = 1 ! domain left side: as e-w comm already done -> from 1st column |
---|
140 | ELSE ; iis0 = 1 + nn_hls ! default: -> from inner domain |
---|
141 | ENDIF |
---|
142 | IF( ipni == jpni ) THEN ; iie0 = ipi ! domain right side: as e-w comm already done -> until last column |
---|
143 | ELSE ; iie0 = ipi - nn_hls ! default: -> until inner domain |
---|
144 | ENDIF |
---|
145 | impp = nfimpp(ipni) - nfimpp(isendto(1)) |
---|
146 | ! |
---|
147 | IF( iproc == -1 ) THEN ! No neighbour (land proc that was suppressed) |
---|
148 | ! |
---|
149 | SELECT CASE ( kfillmode ) |
---|
150 | CASE ( jpfillnothing ) ! no filling |
---|
151 | CASE ( jpfillcopy ) ! filling with inner domain values |
---|
152 | DO jf = 1, ipf ; DO jl = 1, ipl ; DO jk = 1, ipk |
---|
153 | DO jj = 1, ipj_s(jf) |
---|
154 | ij1 = jj_b(jj,jf) |
---|
155 | ij2 = jj_s(jj,jf) |
---|
156 | DO ji = iis0, iie0 |
---|
157 | ztabr(impp+ji,ij1,jk,jl) = ptab(jf)%pt4d(Nis0,ij2,jk,jl) ! chose to take the 1st iner domain point |
---|
158 | END DO |
---|
159 | END DO |
---|
160 | END DO ; END DO ; END DO |
---|
161 | CASE ( jpfillcst ) ! filling with constant value |
---|
162 | DO jl = 1, ipl ; DO jk = 1, ipk |
---|
163 | DO jj = 1, ipj_b |
---|
164 | DO ji = iis0, iie0 |
---|
165 | ztabr(impp+ji,jj,jk,jl) = pfillval |
---|
166 | END DO |
---|
167 | END DO |
---|
168 | END DO ; END DO |
---|
169 | END SELECT |
---|
170 | ! |
---|
171 | ELSE IF( iproc == narea-1 ) THEN ! get data from myself! |
---|
172 | ! |
---|
173 | DO jf = 1, ipf ; DO jl = 1, ipl ; DO jk = 1, ipk |
---|
174 | DO jj = 1, ipj_s(jf) |
---|
175 | ij1 = jj_b(jj,jf) |
---|
176 | ij2 = jj_s(jj,jf) |
---|
177 | DO ji = iis0, iie0 |
---|
178 | ztabr(impp+ji,ij1,jk,jl) = ptab(jf)%pt4d(ji,ij2,jk,jl) |
---|
179 | END DO |
---|
180 | END DO |
---|
181 | END DO ; END DO ; END DO |
---|
182 | ! |
---|
183 | ELSE ! get data from a neighbour trough communication |
---|
184 | ! |
---|
185 | #if ! defined key_mpi_off |
---|
186 | CALL MPI_RECV( ztabw, ibuffsize, MPI_TYPE, iproc, 5, mpi_comm_oce, MPI_STATUS_IGNORE, ierr ) |
---|
187 | #endif |
---|
188 | DO jl = 1, ipl ; DO jk = 1, ipk |
---|
189 | DO jj = 1, ipj_b |
---|
190 | DO ji = iis0, iie0 |
---|
191 | ztabr(impp+ji,jj,jk,jl) = ztabw(ji,jj,jk,jl) |
---|
192 | END DO |
---|
193 | END DO |
---|
194 | END DO ; END DO |
---|
195 | |
---|
196 | ENDIF |
---|
197 | ! |
---|
198 | END DO ! nsndto |
---|
199 | ! |
---|
200 | IF( ln_timing ) CALL tic_tac(.FALSE.) |
---|
201 | ! |
---|
202 | ! North fold boundary condition |
---|
203 | ! |
---|
204 | DO jf = 1, ipf |
---|
205 | ij1 = jj_b( 1 ,jf) |
---|
206 | ij2 = jj_b(ipj_s(jf),jf) |
---|
207 | CALL lbc_nfd_nogather( ptab(jf)%pt4d(:,:,:,:), ztabr(:,ij1:ij2,:,:), cd_nat(jf), psgn(jf) ) |
---|
208 | END DO |
---|
209 | ! |
---|
210 | DEALLOCATE( ztabr, ztabw, jj_s, jj_b, ipj_s ) |
---|
211 | ! |
---|
212 | DO jr = 1,nsndto |
---|
213 | iproc = nfproc(isendto(jr)) |
---|
214 | IF( iproc /= narea-1 .AND. iproc /= -1 ) THEN |
---|
215 | CALL mpi_wait( ml_req_nf(jr), MPI_STATUS_IGNORE, ml_err ) ! put the wait at the very end just before the deallocate |
---|
216 | ENDIF |
---|
217 | END DO |
---|
218 | DEALLOCATE( ztabb ) |
---|
219 | ! |
---|
220 | ELSE !== allgather exchanges ==! |
---|
221 | ! |
---|
222 | ! how many lines do we exchange at max? -> ipj (no further optimizations in this case...) |
---|
223 | ipj = nn_hls + 2 |
---|
224 | ! how many lines do we need at max? -> ipj2 (no further optimizations in this case...) |
---|
225 | ipj2 = 2 * nn_hls + 2 |
---|
226 | ! |
---|
227 | i0max = jpimax - 2 * nn_hls |
---|
228 | ibuffsize = i0max * ipj * ipk * ipl * ipf |
---|
229 | ALLOCATE( znorthloc(i0max,ipj,ipk,ipl,ipf), znorthglo(i0max,ipj,ipk,ipl,ipf,ndim_rank_north) ) |
---|
230 | ! |
---|
231 | DO jf = 1, ipf ; DO jl = 1, ipl ; DO jk = 1, ipk ! put in znorthloc ipj j-lines of ptab |
---|
232 | DO jj = 1, ipj |
---|
233 | ij2 = jpj - ipj2 + jj ! the first ipj lines of the last ipj2 lines |
---|
234 | DO ji = 1, Ni_0 |
---|
235 | ii2 = Nis0 - 1 + ji ! inner domain: Nis0 to Nie0 |
---|
236 | znorthloc(ji,jj,jk,jl,jf) = ptab(jf)%pt4d(ii2,ij2,jk,jl) |
---|
237 | END DO |
---|
238 | DO ji = Ni_0+1, i0max |
---|
239 | znorthloc(ji,jj,jk,jl,jf) = HUGE(0._/**/PRECISION) ! avoid sending uninitialized values (make sure we don't use it) |
---|
240 | END DO |
---|
241 | END DO |
---|
242 | END DO ; END DO ; END DO |
---|
243 | ! |
---|
244 | ! start waiting time measurement |
---|
245 | IF( ln_timing ) CALL tic_tac(.TRUE.) |
---|
246 | #if ! defined key_mpi_off |
---|
247 | CALL MPI_ALLGATHER( znorthloc, ibuffsize, MPI_TYPE, znorthglo, ibuffsize, MPI_TYPE, ncomm_north, ierr ) |
---|
248 | #endif |
---|
249 | ! stop waiting time measurement |
---|
250 | IF( ln_timing ) CALL tic_tac(.FALSE.) |
---|
251 | DEALLOCATE( znorthloc ) |
---|
252 | ALLOCATE( ztabglo(ipf) ) |
---|
253 | DO jf = 1, ipf |
---|
254 | ALLOCATE( ztabglo(jf)%pt4d(jpiglo,ipj2,ipk,ipl) ) |
---|
255 | END DO |
---|
256 | ! |
---|
257 | ! need to fill only the first ipj lines of ztabglo as lbc_nfd don't use the last nn_hls lines |
---|
258 | ijnr = 0 |
---|
259 | DO jr = 1, jpni ! recover the global north array |
---|
260 | iproc = nfproc(jr) |
---|
261 | impp = nfimpp(jr) |
---|
262 | ipi = nfjpi( jr) - 2 * nn_hls ! corresponds to Ni_0 but for subdomain iproc |
---|
263 | IF( iproc == -1 ) THEN ! No neighbour (land proc that was suppressed) |
---|
264 | ! |
---|
265 | SELECT CASE ( kfillmode ) |
---|
266 | CASE ( jpfillnothing ) ! no filling |
---|
267 | CASE ( jpfillcopy ) ! filling with inner domain values |
---|
268 | DO jf = 1, ipf ; DO jl = 1, ipl ; DO jk = 1, ipk |
---|
269 | DO jj = 1, ipj |
---|
270 | ij2 = jpj - ipj2 + jj ! the first ipj lines of the last ipj2 lines |
---|
271 | DO ji = 1, ipi |
---|
272 | ii1 = impp + nn_hls + ji - 1 ! corresponds to mig(nn_hls + ji) but for subdomain iproc |
---|
273 | ztabglo(jf)%pt4d(ii1,jj,jk,jl) = ptab(jf)%pt4d(Nis0,ij2,jk,jl) ! chose to take the 1st inner domain point |
---|
274 | END DO |
---|
275 | END DO |
---|
276 | END DO ; END DO ; END DO |
---|
277 | CASE ( jpfillcst ) ! filling with constant value |
---|
278 | DO jf = 1, ipf ; DO jl = 1, ipl ; DO jk = 1, ipk |
---|
279 | DO jj = 1, ipj |
---|
280 | DO ji = 1, ipi |
---|
281 | ii1 = impp + nn_hls + ji - 1 ! corresponds to mig(nn_hls + ji) but for subdomain iproc |
---|
282 | ztabglo(jf)%pt4d(ii1,jj,jk,jl) = pfillval |
---|
283 | END DO |
---|
284 | END DO |
---|
285 | END DO ; END DO ; END DO |
---|
286 | END SELECT |
---|
287 | ! |
---|
288 | ELSE |
---|
289 | ijnr = ijnr + 1 |
---|
290 | DO jf = 1, ipf ; DO jl = 1, ipl ; DO jk = 1, ipk |
---|
291 | DO jj = 1, ipj |
---|
292 | DO ji = 1, ipi |
---|
293 | ii1 = impp + nn_hls + ji - 1 ! corresponds to mig(nn_hls + ji) but for subdomain iproc |
---|
294 | ztabglo(jf)%pt4d(ii1,jj,jk,jl) = znorthglo(ji,jj,jk,jl,jf,ijnr) |
---|
295 | END DO |
---|
296 | END DO |
---|
297 | END DO ; END DO ; END DO |
---|
298 | ENDIF |
---|
299 | ! |
---|
300 | END DO ! jpni |
---|
301 | DEALLOCATE( znorthglo ) |
---|
302 | ! |
---|
303 | DO jf = 1, ipf |
---|
304 | CALL lbc_nfd( ztabglo(jf:jf), cd_nat(jf:jf), psgn(jf:jf), 1 ) ! North fold boundary condition |
---|
305 | DO jl = 1, ipl ; DO jk = 1, ipk ! e-w periodicity |
---|
306 | DO jj = 1, nn_hls + 1 |
---|
307 | ij1 = ipj2 - (nn_hls + 1) + jj ! need only the last nn_hls + 1 lines until ipj2 |
---|
308 | ztabglo(jf)%pt4d( 1:nn_hls,ij1,jk,jl) = ztabglo(jf)%pt4d(jpiglo-2*nn_hls+1:jpiglo-nn_hls,ij1,jk,jl) |
---|
309 | ztabglo(jf)%pt4d(jpiglo-nn_hls+1:jpiglo,ij1,jk,jl) = ztabglo(jf)%pt4d( nn_hls+1: 2*nn_hls,ij1,jk,jl) |
---|
310 | END DO |
---|
311 | END DO ; END DO |
---|
312 | END DO |
---|
313 | ! |
---|
314 | DO jf = 1, ipf ; DO jl = 1, ipl ; DO jk = 1, ipk ! Scatter back to ARRAY_IN |
---|
315 | DO jj = 1, nn_hls + 1 |
---|
316 | ij1 = jpj - (nn_hls + 1) + jj ! last nn_hls + 1 lines until jpj |
---|
317 | ij2 = ipj2 - (nn_hls + 1) + jj ! last nn_hls + 1 lines until ipj2 |
---|
318 | DO ji= 1, jpi |
---|
319 | ii2 = mig(ji) |
---|
320 | ptab(jf)%pt4d(ji,ij1,jk,jl) = ztabglo(jf)%pt4d(ii2,ij2,jk,jl) |
---|
321 | END DO |
---|
322 | END DO |
---|
323 | END DO ; END DO ; END DO |
---|
324 | ! |
---|
325 | DO jf = 1, ipf |
---|
326 | DEALLOCATE( ztabglo(jf)%pt4d ) |
---|
327 | END DO |
---|
328 | DEALLOCATE( ztabglo ) |
---|
329 | ! |
---|
330 | ENDIF ! l_north_nogather |
---|
331 | ! |
---|
332 | END SUBROUTINE mpp_nfd_/**/PRECISION |
---|
333 | |
---|