1 | MODULE p4zprod |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p4zprod *** |
---|
4 | !! TOP : Growth Rate of the two phytoplankton groups of PISCES |
---|
5 | !!====================================================================== |
---|
6 | !! History : 1.0 ! 2004 (O. Aumont) Original code |
---|
7 | !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 |
---|
8 | !! 3.4 ! 2011-05 (O. Aumont, C. Ethe) New parameterization of light limitation |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | !! p4z_prod : Compute the growth Rate of the two phytoplanktons groups |
---|
11 | !! p4z_prod_init : Initialization of the parameters for growth |
---|
12 | !! p4z_prod_alloc : Allocate variables for growth |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
15 | USE trc ! passive tracers common variables |
---|
16 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
17 | USE p4zlim ! Co-limitations of differents nutrients |
---|
18 | USE prtctl ! print control for debugging |
---|
19 | USE iom ! I/O manager |
---|
20 | |
---|
21 | IMPLICIT NONE |
---|
22 | PRIVATE |
---|
23 | |
---|
24 | PUBLIC p4z_prod ! called in p4zbio.F90 |
---|
25 | PUBLIC p4z_prod_init ! called in trcsms_pisces.F90 |
---|
26 | PUBLIC p4z_prod_alloc ! called in trcini_pisces.F90 |
---|
27 | |
---|
28 | REAL(wp), PUBLIC :: pislopen !: P-I slope of nanophytoplankton |
---|
29 | REAL(wp), PUBLIC :: pisloped !: P-I slope of diatoms |
---|
30 | REAL(wp), PUBLIC :: xadap !: Adaptation factor to low light |
---|
31 | REAL(wp), PUBLIC :: excretn !: Excretion ratio of nanophyto |
---|
32 | REAL(wp), PUBLIC :: excretd !: Excretion ratio of diatoms |
---|
33 | REAL(wp), PUBLIC :: bresp !: Basal respiration rate |
---|
34 | REAL(wp), PUBLIC :: chlcnm !: Maximum Chl/C ratio of nano |
---|
35 | REAL(wp), PUBLIC :: chlcdm !: Maximum Chl/C ratio of diatoms |
---|
36 | REAL(wp), PUBLIC :: chlcmin !: Minimum Chl/C ratio of phytoplankton |
---|
37 | REAL(wp), PUBLIC :: fecnm !: Maximum Fe/C ratio of nano |
---|
38 | REAL(wp), PUBLIC :: fecdm !: Maximum Fe/C ratio of diatoms |
---|
39 | REAL(wp), PUBLIC :: grosip !: Mean Si/C ratio of diatoms |
---|
40 | |
---|
41 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: quotan !: proxy of N quota in Nanophyto |
---|
42 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: quotad !: proxy of N quota in diatoms |
---|
43 | |
---|
44 | REAL(wp) :: r1_rday ! 1 / rday |
---|
45 | REAL(wp) :: texcretn ! 1 - excretn |
---|
46 | REAL(wp) :: texcretd ! 1 - excretd |
---|
47 | |
---|
48 | !! * Substitutions |
---|
49 | # include "do_loop_substitute.h90" |
---|
50 | # include "domzgr_substitute.h90" |
---|
51 | !!---------------------------------------------------------------------- |
---|
52 | !! NEMO/TOP 4.0 , NEMO Consortium (2018) |
---|
53 | !! $Id$ |
---|
54 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
55 | !!---------------------------------------------------------------------- |
---|
56 | CONTAINS |
---|
57 | |
---|
58 | SUBROUTINE p4z_prod( kt , knt, Kbb, Kmm, Krhs ) |
---|
59 | !!--------------------------------------------------------------------- |
---|
60 | !! *** ROUTINE p4z_prod *** |
---|
61 | !! |
---|
62 | !! ** Purpose : Computes phytoplankton production depending on |
---|
63 | !! light, temperature and nutrient availability |
---|
64 | !! Computes also the uptake of Iron and Si as well |
---|
65 | !! as the chlorophyll content of the cells |
---|
66 | !! PISCES relies on a mixed Monod-Quota formalism |
---|
67 | !!--------------------------------------------------------------------- |
---|
68 | INTEGER, INTENT(in) :: kt, knt ! |
---|
69 | INTEGER, INTENT(in) :: Kbb, Kmm, Krhs ! time level indices |
---|
70 | ! |
---|
71 | INTEGER :: ji, jj, jk |
---|
72 | REAL(wp) :: zsilfac, znanotot, zdiattot, zconctemp, zconctemp2 |
---|
73 | REAL(wp) :: zratio, zmax, zsilim, ztn, zadap, zlim, zsiborn |
---|
74 | REAL(wp) :: zpptot, zpnewtot, zpregtot, zprochln, zprochld |
---|
75 | REAL(wp) :: zproddoc, zprodsil, zprodfer, zprodlig |
---|
76 | REAL(wp) :: zpislopen, zpisloped, zfact |
---|
77 | REAL(wp) :: zratiosi, zmaxsi, zlimfac, zsizetmp, zfecnm, zfecdm |
---|
78 | REAL(wp) :: zprod, zval |
---|
79 | CHARACTER (len=25) :: charout |
---|
80 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zprmaxn,zprmaxd |
---|
81 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zpislopeadn, zpislopeadd, zysopt |
---|
82 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zprdia, zprbio, zprchld, zprchln |
---|
83 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zprdch, zprnch |
---|
84 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zprorcan, zprorcad, zprofed, zprofen |
---|
85 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zpronewn, zpronewd |
---|
86 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zmxl_fac, zmxl_chl |
---|
87 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: zpligprod |
---|
88 | !!--------------------------------------------------------------------- |
---|
89 | ! |
---|
90 | IF( ln_timing ) CALL timing_start('p4z_prod') |
---|
91 | ! |
---|
92 | ! Allocate temporary workspace |
---|
93 | ! |
---|
94 | zprorcan(:,:,:) = 0._wp ; zprorcad(:,:,:) = 0._wp ; zprofed(:,:,:) = 0._wp |
---|
95 | zprofen (:,:,:) = 0._wp ; zysopt (:,:,:) = 0._wp |
---|
96 | zpronewn(:,:,:) = 0._wp ; zpronewd(:,:,:) = 0._wp ; zprdia(:,:,:) = 0._wp |
---|
97 | zprbio (:,:,:) = 0._wp ; zprdch (:,:,:) = 0._wp ; zprnch(:,:,:) = 0._wp |
---|
98 | zmxl_fac(:,:,:) = 0._wp ; zmxl_chl(:,:,:) = 0._wp |
---|
99 | consfe3 (:,:,:) = 0._wp |
---|
100 | |
---|
101 | ! Computation of the maximimum production. Based on a Q10 description |
---|
102 | ! of the thermal dependency |
---|
103 | ! Parameters are taken from Bissinger et al. (2008) |
---|
104 | zprmaxn(:,:,:) = 0.8_wp * r1_rday * tgfunc(:,:,:) |
---|
105 | zprmaxd(:,:,:) = zprmaxn(:,:,:) |
---|
106 | |
---|
107 | ! Intermittency is supposed to have a similar effect on production as |
---|
108 | ! day length (Shatwell et al., 2012). The correcting factor is zmxl_fac. |
---|
109 | ! zmxl_chl is the fractional day length and is used to compute the mean |
---|
110 | ! PAR during daytime. The effect of mixing is computed using the |
---|
111 | ! absolute light level definition of the euphotic zone |
---|
112 | ! ------------------------------------------------------------------------- |
---|
113 | DO jk = 1, jpkm1 |
---|
114 | DO jj = 1 ,jpj |
---|
115 | DO ji = 1, jpi |
---|
116 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
117 | zval = MAX( 1., strn(ji,jj) ) |
---|
118 | IF( gdepw(ji,jj,jk+1,Kmm) <= hmld(ji,jj) ) THEN |
---|
119 | zval = zval * MIN(1., heup_01(ji,jj) / ( hmld(ji,jj) + rtrn )) |
---|
120 | ENDIF |
---|
121 | zmxl_chl(ji,jj,jk) = zval / 24. |
---|
122 | zmxl_fac(ji,jj,jk) = 1.0 - exp( -0.26 * zval ) |
---|
123 | ENDIF |
---|
124 | END DO |
---|
125 | END DO |
---|
126 | END DO |
---|
127 | |
---|
128 | zprbio(:,:,:) = zprmaxn(:,:,:) * zmxl_fac(:,:,:) |
---|
129 | zprdia(:,:,:) = zprmaxd(:,:,:) * zmxl_fac(:,:,:) |
---|
130 | |
---|
131 | ! The formulation proposed by Geider et al. (1997) has been modified |
---|
132 | ! to exclude the effect of nutrient limitation and temperature in the PI |
---|
133 | ! curve following Vichi et al. (2007) |
---|
134 | ! ----------------------------------------------------------------------- |
---|
135 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
136 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
137 | ztn = MAX( 0., ts(ji,jj,jk,jp_tem,Kmm) - 15. ) |
---|
138 | zadap = xadap * ztn / ( 2.+ ztn ) |
---|
139 | zconctemp = MAX( 0.e0 , tr(ji,jj,jk,jpdia,Kbb) - xsizedia ) |
---|
140 | zconctemp2 = tr(ji,jj,jk,jpdia,Kbb) - zconctemp |
---|
141 | ! |
---|
142 | ! The initial slope of the PI curve can be increased for nano |
---|
143 | ! to account for photadaptation, for instance in the DCM |
---|
144 | ! This parameterization is adhoc and should be either |
---|
145 | ! improved or removed in future versions of the model |
---|
146 | |
---|
147 | ! Nanophytoplankton |
---|
148 | zpislopeadn(ji,jj,jk) = pislopen * ( 1.+ zadap * EXP( -0.25 * enano(ji,jj,jk) ) ) & |
---|
149 | & * tr(ji,jj,jk,jpnch,Kbb) /( tr(ji,jj,jk,jpphy,Kbb) * 12. + rtrn) |
---|
150 | |
---|
151 | ! Diatoms |
---|
152 | zpislopeadd(ji,jj,jk) = (pislopen * zconctemp2 + pisloped * zconctemp) / ( tr(ji,jj,jk,jpdia,Kbb) + rtrn ) & |
---|
153 | & * tr(ji,jj,jk,jpdch,Kbb) /( tr(ji,jj,jk,jpdia,Kbb) * 12. + rtrn) |
---|
154 | ENDIF |
---|
155 | END_3D |
---|
156 | |
---|
157 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
158 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
159 | ! Computation of production function for Carbon |
---|
160 | ! Actual light levels are used here |
---|
161 | ! ---------------------------------------------- |
---|
162 | zpislopen = zpislopeadn(ji,jj,jk) / ( ( r1_rday + bresp * r1_rday ) & |
---|
163 | & * zmxl_fac(ji,jj,jk) * rday + rtrn) |
---|
164 | zpisloped = zpislopeadd(ji,jj,jk) / ( ( r1_rday + bresp * r1_rday ) & |
---|
165 | & * zmxl_fac(ji,jj,jk) * rday + rtrn) |
---|
166 | zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * ( 1.- EXP( -zpislopen * enano(ji,jj,jk) ) ) |
---|
167 | zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * ( 1.- EXP( -zpisloped * ediat(ji,jj,jk) ) ) |
---|
168 | |
---|
169 | ! Computation of production function for Chlorophyll |
---|
170 | ! Mean light level in the mixed layer (when appropriate) |
---|
171 | ! is used here (acclimation is in general slower than |
---|
172 | ! the characteristic time scales of vertical mixing) |
---|
173 | ! ------------------------------------------------------ |
---|
174 | zpislopen = zpislopeadn(ji,jj,jk) / ( zprmaxn(ji,jj,jk) * zmxl_chl(ji,jj,jk) * rday + rtrn ) |
---|
175 | zpisloped = zpislopeadd(ji,jj,jk) / ( zprmaxd(ji,jj,jk) * zmxl_chl(ji,jj,jk) * rday + rtrn ) |
---|
176 | zprnch(ji,jj,jk) = zprmaxn(ji,jj,jk) * ( 1.- EXP( -zpislopen * enanom(ji,jj,jk) ) ) |
---|
177 | zprdch(ji,jj,jk) = zprmaxd(ji,jj,jk) * ( 1.- EXP( -zpisloped * ediatm(ji,jj,jk) ) ) |
---|
178 | ENDIF |
---|
179 | END_3D |
---|
180 | |
---|
181 | ! Computation of a proxy of the N/C quota from nutrient limitation |
---|
182 | ! and light limitation. Steady state is assumed to allow the computation |
---|
183 | ! ---------------------------------------------------------------------- |
---|
184 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
185 | zval = MIN( xnanopo4(ji,jj,jk), ( xnanonh4(ji,jj,jk) + xnanono3(ji,jj,jk) ) ) & |
---|
186 | & * zprmaxn(ji,jj,jk) / ( zprbio(ji,jj,jk) + rtrn ) |
---|
187 | quotan(ji,jj,jk) = MIN( 1., 0.2 + 0.8 * zval ) |
---|
188 | zval = MIN( xdiatpo4(ji,jj,jk), ( xdiatnh4(ji,jj,jk) + xdiatno3(ji,jj,jk) ) ) & |
---|
189 | & * zprmaxd(ji,jj,jk) / ( zprdia(ji,jj,jk) + rtrn ) |
---|
190 | quotad(ji,jj,jk) = MIN( 1., 0.2 + 0.8 * zval ) |
---|
191 | END_3D |
---|
192 | |
---|
193 | |
---|
194 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
195 | |
---|
196 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
197 | ! Si/C of diatoms |
---|
198 | ! ------------------------ |
---|
199 | ! Si/C increases with iron stress and silicate availability |
---|
200 | ! Si/C is arbitrariliy increased for very high Si concentrations |
---|
201 | ! to mimic the very high ratios observed in the Southern Ocean (zsilfac) |
---|
202 | ! A parameterization derived from Flynn (2003) is used for the control |
---|
203 | ! when Si is not limiting which is similar to the parameterisation |
---|
204 | ! proposed by Gurney and Davidson (1999). |
---|
205 | ! ----------------------------------------------------------------------- |
---|
206 | zlim = tr(ji,jj,jk,jpsil,Kbb) / ( tr(ji,jj,jk,jpsil,Kbb) + xksi1 ) |
---|
207 | zsilim = xlimdia(ji,jj,jk) * zprdia(ji,jj,jk) / ( zprmaxd(ji,jj,jk) + rtrn ) |
---|
208 | zsiborn = tr(ji,jj,jk,jpsil,Kbb) * tr(ji,jj,jk,jpsil,Kbb) * tr(ji,jj,jk,jpsil,Kbb) |
---|
209 | IF (gphit(ji,jj) < -30 ) THEN |
---|
210 | zsilfac = 1. + 2. * zsiborn / ( zsiborn + xksi2**3 ) |
---|
211 | ELSE |
---|
212 | zsilfac = 1. + zsiborn / ( zsiborn + xksi2**3 ) |
---|
213 | ENDIF |
---|
214 | zratiosi = 1.0 - tr(ji,jj,jk,jpdsi,Kbb) / ( tr(ji,jj,jk,jpdia,Kbb) + rtrn ) / ( zsilfac * grosip * 3.0 + rtrn ) |
---|
215 | zratiosi = MAX(0., MIN(1.0, zratiosi) ) |
---|
216 | zmaxsi = (1.0 + 0.1**4) * zratiosi**4 / ( zratiosi**4 + 0.1**4 ) |
---|
217 | IF( xlimsi(ji,jj,jk) /= xlimdia(ji,jj,jk) ) THEN |
---|
218 | zysopt(ji,jj,jk) = zlim * zsilfac * grosip * 1.0 * zmaxsi |
---|
219 | ELSE |
---|
220 | zysopt(ji,jj,jk) = zlim * zsilfac * grosip * 1.0 * zsilim**0.7 * zmaxsi |
---|
221 | ENDIF |
---|
222 | ENDIF |
---|
223 | END_3D |
---|
224 | |
---|
225 | ! Sea-ice effect on production |
---|
226 | ! No production is assumed below sea ice |
---|
227 | ! -------------------------------------- |
---|
228 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
229 | zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * ( 1. - fr_i(ji,jj) ) |
---|
230 | zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * ( 1. - fr_i(ji,jj) ) |
---|
231 | END_3D |
---|
232 | |
---|
233 | ! Computation of the various production and nutrient uptake terms |
---|
234 | ! --------------------------------------------------------------- |
---|
235 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
236 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
237 | ! production terms for nanophyto. (C) |
---|
238 | zprorcan(ji,jj,jk) = zprbio(ji,jj,jk) * xlimphy(ji,jj,jk) * tr(ji,jj,jk,jpphy,Kbb) * rfact2 |
---|
239 | |
---|
240 | ! New production (uptake of NO3) |
---|
241 | zpronewn(ji,jj,jk) = zprorcan(ji,jj,jk)* xnanono3(ji,jj,jk) / ( xnanono3(ji,jj,jk) + xnanonh4(ji,jj,jk) + rtrn ) |
---|
242 | ! |
---|
243 | ! Size computation |
---|
244 | ! Size is made a function of the limitation of of phytoplankton growth |
---|
245 | ! Strongly limited cells are supposed to be smaller. sizena is the |
---|
246 | ! size at time step t+1 and is thus updated at the end of the |
---|
247 | ! current time step |
---|
248 | ! -------------------------------------------------------------------- |
---|
249 | zlimfac = xlimphy(ji,jj,jk) * zprchln(ji,jj,jk) / ( zprmaxn(ji,jj,jk) + rtrn ) |
---|
250 | zsizetmp = 1.0 + 1.3 * ( xsizern - 1.0 ) * zlimfac**3/(0.3 + zlimfac**3) |
---|
251 | sizena(ji,jj,jk) = min(xsizern, max( sizena(ji,jj,jk), zsizetmp ) ) |
---|
252 | |
---|
253 | ! Iron uptake rates of nanophytoplankton. Upregulation is |
---|
254 | ! not parameterized at low iron concentrations as observations |
---|
255 | ! do not suggest it for accimated cells. Uptake is |
---|
256 | ! downregulated when the quota is close to the maximum quota |
---|
257 | zfecnm = xqfuncfecn(ji,jj,jk) + ( fecnm - xqfuncfecn(ji,jj,jk) ) * ( xnanono3(ji,jj,jk) + xnanonh4(ji,jj,jk) ) |
---|
258 | zratio = 1.0 - MIN(1.0,tr(ji,jj,jk,jpnfe,Kbb) / ( tr(ji,jj,jk,jpphy,Kbb) * zfecnm + rtrn ) ) |
---|
259 | zmax = MAX( 0., MIN( 1.0, zratio**2/ (0.05**2+zratio**2) ) ) |
---|
260 | zprofen(ji,jj,jk) = zfecnm * zprmaxn(ji,jj,jk) * ( 1.0 - fr_i(ji,jj) ) & |
---|
261 | & * (1. + 0.8 * xnanono3(ji,jj,jk) / ( rtrn + xnanono3(ji,jj,jk) & |
---|
262 | & + xnanonh4(ji,jj,jk) ) * (1. - xnanofer(ji,jj,jk) ) ) & |
---|
263 | & * xnanofer(ji,jj,jk) * zmax * tr(ji,jj,jk,jpphy,Kbb) * rfact2 |
---|
264 | |
---|
265 | ! production terms of diatoms (C) |
---|
266 | zprorcad(ji,jj,jk) = zprdia(ji,jj,jk) * xlimdia(ji,jj,jk) * tr(ji,jj,jk,jpdia,Kbb) * rfact2 |
---|
267 | |
---|
268 | ! New production (uptake of NO3) |
---|
269 | zpronewd(ji,jj,jk) = zprorcad(ji,jj,jk) * xdiatno3(ji,jj,jk) / ( xdiatno3(ji,jj,jk) + xdiatnh4(ji,jj,jk) + rtrn ) |
---|
270 | |
---|
271 | ! Size computation |
---|
272 | ! Size is made a function of the limitation of of phytoplankton growth |
---|
273 | ! Strongly limited cells are supposed to be smaller. sizeda is |
---|
274 | ! size at time step t+1 and is thus updated at the end of the |
---|
275 | ! current time step. |
---|
276 | ! -------------------------------------------------------------------- |
---|
277 | zlimfac = zprchld(ji,jj,jk) * xlimdia(ji,jj,jk) / ( zprmaxd(ji,jj,jk) + rtrn ) |
---|
278 | zsizetmp = 1.0 + 1.3 * ( xsizerd - 1.0 ) * zlimfac**3/(0.3 + zlimfac**3) |
---|
279 | sizeda(ji,jj,jk) = min(xsizerd, max( sizeda(ji,jj,jk), zsizetmp ) ) |
---|
280 | |
---|
281 | ! Iron uptake rates of diatoms. Upregulation is |
---|
282 | ! not parameterized at low iron concentrations as observations |
---|
283 | ! do not suggest it for accimated cells. Uptake is |
---|
284 | ! downregulated when the quota is close to the maximum quota |
---|
285 | zfecdm = xqfuncfecd(ji,jj,jk) + ( fecdm - xqfuncfecd(ji,jj,jk) ) * ( xdiatno3(ji,jj,jk) + xdiatnh4(ji,jj,jk) ) |
---|
286 | zratio = 1.0 - MIN(1.0, tr(ji,jj,jk,jpdfe,Kbb) / ( tr(ji,jj,jk,jpdia,Kbb) * zfecdm + rtrn ) ) |
---|
287 | zmax = MAX( 0., MIN( 1.0, zratio**2/ (0.05**2+zratio**2) ) ) |
---|
288 | zprofed(ji,jj,jk) = zfecdm * zprmaxd(ji,jj,jk) * (1.0 - fr_i(ji,jj) ) & |
---|
289 | & * (1. + 0.8 * xdiatno3(ji,jj,jk) / ( rtrn + xdiatno3(ji,jj,jk) & |
---|
290 | & + xdiatnh4(ji,jj,jk) ) * (1. - xdiatfer(ji,jj,jk) ) ) & |
---|
291 | & * xdiatfer(ji,jj,jk) * zmax * tr(ji,jj,jk,jpdia,Kbb) * rfact2 |
---|
292 | ENDIF |
---|
293 | END_3D |
---|
294 | |
---|
295 | ! Computation of the chlorophyll production terms |
---|
296 | ! The parameterization is taken from Geider et al. (1997) |
---|
297 | ! ------------------------------------------------------- |
---|
298 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
299 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
300 | ! production terms for nanophyto. ( chlorophyll ) |
---|
301 | znanotot = enanom(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
302 | zprod = rday * zprorcan(ji,jj,jk) * zprnch(ji,jj,jk) * xlimphy(ji,jj,jk) |
---|
303 | zprochln = chlcmin * 12. * zprorcan (ji,jj,jk) |
---|
304 | zprochln = zprochln + (chlcnm - chlcmin) * 12. * zprod / & |
---|
305 | & ( zpislopeadn(ji,jj,jk) * znanotot +rtrn) |
---|
306 | |
---|
307 | ! production terms for diatoms ( chlorophyll ) |
---|
308 | zdiattot = ediatm(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
309 | zprod = rday * zprorcad(ji,jj,jk) * zprdch(ji,jj,jk) * xlimdia(ji,jj,jk) |
---|
310 | zprochld = chlcmin * 12. * zprorcad(ji,jj,jk) |
---|
311 | zprochld = zprochld + (chlcdm - chlcmin) * 12. * zprod / & |
---|
312 | & ( zpislopeadd(ji,jj,jk) * zdiattot +rtrn ) |
---|
313 | |
---|
314 | ! Update the arrays TRA which contain the Chla sources and sinks |
---|
315 | tr(ji,jj,jk,jpnch,Krhs) = tr(ji,jj,jk,jpnch,Krhs) + zprochln * texcretn |
---|
316 | tr(ji,jj,jk,jpdch,Krhs) = tr(ji,jj,jk,jpdch,Krhs) + zprochld * texcretd |
---|
317 | ENDIF |
---|
318 | END_3D |
---|
319 | |
---|
320 | ! Update the arrays TRA which contain the biological sources and sinks |
---|
321 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
322 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
323 | zpptot = zprorcan(ji,jj,jk) + zprorcad(ji,jj,jk) |
---|
324 | zpnewtot = zpronewn(ji,jj,jk) + zpronewd(ji,jj,jk) |
---|
325 | zpregtot = zpptot - zpnewtot |
---|
326 | zprodsil = zprmaxd(ji,jj,jk) * zysopt(ji,jj,jk) * rfact2 * tr(ji,jj,jk,jpdia,Kbb) |
---|
327 | zproddoc = excretd * zprorcad(ji,jj,jk) + excretn * zprorcan(ji,jj,jk) |
---|
328 | zprodfer = texcretn * zprofen(ji,jj,jk) + texcretd * zprofed(ji,jj,jk) |
---|
329 | ! |
---|
330 | tr(ji,jj,jk,jppo4,Krhs) = tr(ji,jj,jk,jppo4,Krhs) - zpptot |
---|
331 | tr(ji,jj,jk,jpno3,Krhs) = tr(ji,jj,jk,jpno3,Krhs) - zpnewtot |
---|
332 | tr(ji,jj,jk,jpnh4,Krhs) = tr(ji,jj,jk,jpnh4,Krhs) - zpregtot |
---|
333 | tr(ji,jj,jk,jpphy,Krhs) = tr(ji,jj,jk,jpphy,Krhs) + zprorcan(ji,jj,jk) * texcretn |
---|
334 | tr(ji,jj,jk,jpnfe,Krhs) = tr(ji,jj,jk,jpnfe,Krhs) + zprofen(ji,jj,jk) * texcretn |
---|
335 | tr(ji,jj,jk,jpdia,Krhs) = tr(ji,jj,jk,jpdia,Krhs) + zprorcad(ji,jj,jk) * texcretd |
---|
336 | tr(ji,jj,jk,jpdfe,Krhs) = tr(ji,jj,jk,jpdfe,Krhs) + zprofed(ji,jj,jk) * texcretd |
---|
337 | tr(ji,jj,jk,jpdsi,Krhs) = tr(ji,jj,jk,jpdsi,Krhs) + zprodsil |
---|
338 | tr(ji,jj,jk,jpsil,Krhs) = tr(ji,jj,jk,jpsil,Krhs) - zprodsil |
---|
339 | tr(ji,jj,jk,jpdoc,Krhs) = tr(ji,jj,jk,jpdoc,Krhs) + zproddoc |
---|
340 | tr(ji,jj,jk,jpoxy,Krhs) = tr(ji,jj,jk,jpoxy,Krhs) + o2ut * zpregtot + ( o2ut + o2nit ) * zpnewtot |
---|
341 | ! |
---|
342 | tr(ji,jj,jk,jpfer,Krhs) = tr(ji,jj,jk,jpfer,Krhs) - zprodfer |
---|
343 | consfe3(ji,jj,jk) = zprodfer * 75.0 / ( rtrn + ( plig(ji,jj,jk) + 75.0 * (1.0 - plig(ji,jj,jk) ) ) & |
---|
344 | & * tr(ji,jj,jk,jpfer,Kbb) ) / rfact2 |
---|
345 | |
---|
346 | ! |
---|
347 | tr(ji,jj,jk,jpdic,Krhs) = tr(ji,jj,jk,jpdic,Krhs) - zpptot |
---|
348 | tr(ji,jj,jk,jptal,Krhs) = tr(ji,jj,jk,jptal,Krhs) + rno3 * ( zpnewtot - zpregtot ) |
---|
349 | ENDIF |
---|
350 | END_3D |
---|
351 | |
---|
352 | ! Production and uptake of ligands by phytoplankton. This part is activated |
---|
353 | ! when ln_ligand is set to .true. in the namelist. Ligand uptake is small |
---|
354 | ! and based on the FeL model by Morel et al. (2008) and on the study of |
---|
355 | ! Shaked et al. (2020) |
---|
356 | ! ------------------------------------------------------------------------- |
---|
357 | IF( ln_ligand ) THEN |
---|
358 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
359 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
360 | zproddoc = excretd * zprorcad(ji,jj,jk) + excretn * zprorcan(ji,jj,jk) |
---|
361 | zprodfer = texcretn * zprofen(ji,jj,jk) + texcretd * zprofed(ji,jj,jk) |
---|
362 | zprodlig = plig(ji,jj,jk) / ( rtrn + plig(ji,jj,jk) + 75.0 * (1.0 - plig(ji,jj,jk) ) ) * lthet |
---|
363 | ! |
---|
364 | tr(ji,jj,jk,jplgw,Krhs) = tr(ji,jj,jk,jplgw,Krhs) + zproddoc * ldocp - zprodfer * zprodlig |
---|
365 | ENDIF |
---|
366 | END_3D |
---|
367 | ENDIF |
---|
368 | |
---|
369 | |
---|
370 | ! Output of the diagnostics |
---|
371 | ! Total primary production per year |
---|
372 | IF( iom_use( "tintpp" ) .OR. ( ln_check_mass .AND. kt == nitend .AND. knt == nrdttrc ) ) & |
---|
373 | & tpp = glob_sum( 'p4zprod', ( zprorcan(:,:,:) + zprorcad(:,:,:) ) * cvol(:,:,:) ) |
---|
374 | |
---|
375 | IF( lk_iomput .AND. knt == nrdttrc ) THEN |
---|
376 | zfact = 1.e+3 * rfact2r ! conversion from mol/l/kt to mol/m3/s |
---|
377 | ! |
---|
378 | CALL iom_put( "PPPHYN" , zprorcan(:,:,:) * zfact * tmask(:,:,:) ) ! primary production by nanophyto |
---|
379 | CALL iom_put( "PPPHYD" , zprorcad(:,:,:) * zfact * tmask(:,:,:) ) ! primary production by diatomes |
---|
380 | CALL iom_put( "PPNEWN" , zpronewn(:,:,:) * zfact * tmask(:,:,:) ) ! new primary production by nanophyto |
---|
381 | CALL iom_put( "PPNEWD" , zpronewd(:,:,:) * zfact * tmask(:,:,:) ) ! new primary production by diatomes |
---|
382 | CALL iom_put( "PBSi" , zprorcad(:,:,:) * zfact * tmask(:,:,:) * zysopt(:,:,:) ) ! biogenic silica production |
---|
383 | CALL iom_put( "PFeN" , zprofen(:,:,:) * zfact * tmask(:,:,:) ) ! biogenic iron production by nanophyto |
---|
384 | CALL iom_put( "PFeD" , zprofed(:,:,:) * zfact * tmask(:,:,:) ) ! biogenic iron production by diatomes |
---|
385 | IF( ln_ligand .AND. ( iom_use( "LPRODP" ) .OR. iom_use( "LDETP" ) ) ) THEN |
---|
386 | ALLOCATE( zpligprod(jpi,jpj,jpk) ) |
---|
387 | zpligprod(:,:,:) = excretd * zprorcad(:,:,:) + excretn * zprorcan(:,:,:) |
---|
388 | CALL iom_put( "LPRODP" , zpligprod(:,:,:) * ldocp * 1e9 * zfact * tmask(:,:,:) ) |
---|
389 | ! |
---|
390 | zpligprod(:,:,:) = ( texcretn * zprofen(:,:,:) + texcretd * zprofed(:,:,:) ) & |
---|
391 | & * plig(:,:,:) / ( rtrn + plig(:,:,:) + 75.0 * (1.0 - plig(:,:,:) ) ) |
---|
392 | CALL iom_put( "LDETP" , zpligprod(:,:,:) * lthet * 1e9 * zfact * tmask(:,:,:) ) |
---|
393 | DEALLOCATE( zpligprod ) |
---|
394 | ENDIF |
---|
395 | CALL iom_put( "Mumax" , zprmaxn(:,:,:) * tmask(:,:,:) ) ! Maximum growth rate |
---|
396 | CALL iom_put( "MuN" , zprbio(:,:,:) * xlimphy(:,:,:) * tmask(:,:,:) ) ! Realized growth rate for nanophyto |
---|
397 | CALL iom_put( "MuD" , zprdia(:,:,:) * xlimdia(:,:,:) * tmask(:,:,:) ) ! Realized growth rate for diatoms |
---|
398 | CALL iom_put( "LNlight" , zprbio (:,:,:) / (zprmaxn(:,:,:) + rtrn) * tmask(:,:,:) ) ! light limitation term |
---|
399 | CALL iom_put( "LDlight" , zprdia (:,:,:) / (zprmaxd(:,:,:) + rtrn) * tmask(:,:,:) ) |
---|
400 | CALL iom_put( "TPP" , ( zprorcan(:,:,:) + zprorcad(:,:,:) ) * zfact * tmask(:,:,:) ) ! total primary production |
---|
401 | CALL iom_put( "TPNEW" , ( zpronewn(:,:,:) + zpronewd(:,:,:) ) * zfact * tmask(:,:,:) ) ! total new production |
---|
402 | CALL iom_put( "TPBFE" , ( zprofen(:,:,:) + zprofed(:,:,:) ) * zfact * tmask(:,:,:) ) ! total biogenic iron production |
---|
403 | CALL iom_put( "tintpp" , tpp * zfact ) ! global total integrated primary production molC/s |
---|
404 | ENDIF |
---|
405 | |
---|
406 | IF(sn_cfctl%l_prttrc) THEN ! print mean trends (used for debugging) |
---|
407 | WRITE(charout, FMT="('prod')") |
---|
408 | CALL prt_ctl_info( charout, cdcomp = 'top' ) |
---|
409 | CALL prt_ctl(tab4d_1=tr(:,:,:,:,Krhs), mask1=tmask, clinfo=ctrcnm) |
---|
410 | ENDIF |
---|
411 | ! |
---|
412 | IF( ln_timing ) CALL timing_stop('p4z_prod') |
---|
413 | ! |
---|
414 | END SUBROUTINE p4z_prod |
---|
415 | |
---|
416 | |
---|
417 | SUBROUTINE p4z_prod_init |
---|
418 | !!---------------------------------------------------------------------- |
---|
419 | !! *** ROUTINE p4z_prod_init *** |
---|
420 | !! |
---|
421 | !! ** Purpose : Initialization of phytoplankton production parameters |
---|
422 | !! |
---|
423 | !! ** Method : Read the namp4zprod namelist and check the parameters |
---|
424 | !! called at the first timestep (nittrc000) |
---|
425 | !! |
---|
426 | !! ** input : Namelist namp4zprod |
---|
427 | !!---------------------------------------------------------------------- |
---|
428 | INTEGER :: ios ! Local integer |
---|
429 | ! |
---|
430 | ! Namelist block |
---|
431 | NAMELIST/namp4zprod/ pislopen, pisloped, xadap, bresp, excretn, excretd, & |
---|
432 | & chlcnm, chlcdm, chlcmin, fecnm, fecdm, grosip |
---|
433 | !!---------------------------------------------------------------------- |
---|
434 | ! |
---|
435 | IF(lwp) THEN ! control print |
---|
436 | WRITE(numout,*) |
---|
437 | WRITE(numout,*) 'p4z_prod_init : phytoplankton growth' |
---|
438 | WRITE(numout,*) '~~~~~~~~~~~~~' |
---|
439 | ENDIF |
---|
440 | ! |
---|
441 | READ ( numnatp_ref, namp4zprod, IOSTAT = ios, ERR = 901) |
---|
442 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namp4zprod in reference namelist' ) |
---|
443 | |
---|
444 | READ ( numnatp_cfg, namp4zprod, IOSTAT = ios, ERR = 902 ) |
---|
445 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namp4zprod in configuration namelist' ) |
---|
446 | IF(lwm) WRITE( numonp, namp4zprod ) |
---|
447 | |
---|
448 | IF(lwp) THEN ! control print |
---|
449 | WRITE(numout,*) ' Namelist : namp4zprod' |
---|
450 | WRITE(numout,*) ' mean Si/C ratio grosip =', grosip |
---|
451 | WRITE(numout,*) ' P-I slope pislopen =', pislopen |
---|
452 | WRITE(numout,*) ' Acclimation factor to low light xadap =', xadap |
---|
453 | WRITE(numout,*) ' excretion ratio of nanophytoplankton excretn =', excretn |
---|
454 | WRITE(numout,*) ' excretion ratio of diatoms excretd =', excretd |
---|
455 | WRITE(numout,*) ' basal respiration in phytoplankton bresp =', bresp |
---|
456 | WRITE(numout,*) ' Maximum Chl/C in phytoplankton chlcmin =', chlcmin |
---|
457 | WRITE(numout,*) ' P-I slope for diatoms pisloped =', pisloped |
---|
458 | WRITE(numout,*) ' Minimum Chl/C in nanophytoplankton chlcnm =', chlcnm |
---|
459 | WRITE(numout,*) ' Minimum Chl/C in diatoms chlcdm =', chlcdm |
---|
460 | WRITE(numout,*) ' Maximum Fe/C in nanophytoplankton fecnm =', fecnm |
---|
461 | WRITE(numout,*) ' Minimum Fe/C in diatoms fecdm =', fecdm |
---|
462 | ENDIF |
---|
463 | ! |
---|
464 | r1_rday = 1._wp / rday |
---|
465 | texcretn = 1._wp - excretn |
---|
466 | texcretd = 1._wp - excretd |
---|
467 | tpp = 0._wp |
---|
468 | ! |
---|
469 | END SUBROUTINE p4z_prod_init |
---|
470 | |
---|
471 | |
---|
472 | INTEGER FUNCTION p4z_prod_alloc() |
---|
473 | !!---------------------------------------------------------------------- |
---|
474 | !! *** ROUTINE p4z_prod_alloc *** |
---|
475 | !!---------------------------------------------------------------------- |
---|
476 | ALLOCATE( quotan(jpi,jpj,jpk), quotad(jpi,jpj,jpk), STAT = p4z_prod_alloc ) |
---|
477 | ! |
---|
478 | IF( p4z_prod_alloc /= 0 ) CALL ctl_stop( 'STOP', 'p4z_prod_alloc : failed to allocate arrays.' ) |
---|
479 | ! |
---|
480 | END FUNCTION p4z_prod_alloc |
---|
481 | |
---|
482 | !!====================================================================== |
---|
483 | END MODULE p4zprod |
---|