1 | MODULE p5zlim |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p5zlim *** |
---|
4 | !! TOP : PISCES-QUOTA : Computes the various nutrient limitation terms |
---|
5 | !! of phytoplankton |
---|
6 | !!====================================================================== |
---|
7 | !! History : 1.0 ! 2004 (O. Aumont) Original code |
---|
8 | !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 |
---|
9 | !! 3.4 ! 2011-04 (O. Aumont, C. Ethe) Limitation for iron modelled in quota |
---|
10 | !! 3.6 ! 2015-05 (O. Aumont) PISCES quota |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! p5z_lim : Compute the nutrients limitation terms |
---|
13 | !! p5z_lim_init : Read the namelist |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | USE oce_trc ! Shared ocean-passive tracers variables |
---|
16 | USE trc ! Tracers defined |
---|
17 | USE p4zlim ! Nutrient limitation |
---|
18 | USE sms_pisces ! PISCES variables |
---|
19 | USE iom ! I/O manager |
---|
20 | |
---|
21 | IMPLICIT NONE |
---|
22 | PRIVATE |
---|
23 | |
---|
24 | PUBLIC p5z_lim ! called in p4zbio.F90 |
---|
25 | PUBLIC p5z_lim_init ! called in trcsms_pisces.F90 |
---|
26 | PUBLIC p5z_lim_alloc ! called in trcini_pisces.F90 |
---|
27 | |
---|
28 | !! * Shared module variables |
---|
29 | REAL(wp), PUBLIC :: concpno3 !: NO3 half saturation for picophyto |
---|
30 | REAL(wp), PUBLIC :: concpnh4 !: NH4 half saturation for picophyto |
---|
31 | REAL(wp), PUBLIC :: concnpo4 !: PO4 half saturation for nanophyto |
---|
32 | REAL(wp), PUBLIC :: concppo4 !: PO4 half saturation for picophyto |
---|
33 | REAL(wp), PUBLIC :: concdpo4 !: PO4 half saturation for diatoms |
---|
34 | REAL(wp), PUBLIC :: concpfer !: Iron half saturation for picophyto |
---|
35 | REAL(wp), PUBLIC :: concbpo4 !: PO4 half saturation for bacteria |
---|
36 | REAL(wp), PUBLIC :: xsizepic !: Minimum size criteria for picophyto |
---|
37 | REAL(wp), PUBLIC :: xsizerp !: Size ratio for picophytoplankton |
---|
38 | REAL(wp), PUBLIC :: qfnopt !: optimal Fe quota for nanophyto |
---|
39 | REAL(wp), PUBLIC :: qfpopt !: optimal Fe quota for picophyto |
---|
40 | REAL(wp), PUBLIC :: qfdopt !: optimal Fe quota for diatoms |
---|
41 | REAL(wp), PUBLIC :: qnnmin !: minimum N quota for nanophyto |
---|
42 | REAL(wp), PUBLIC :: qnnmax !: maximum N quota for nanophyto |
---|
43 | REAL(wp), PUBLIC :: qpnmin !: minimum P quota for nanophyto |
---|
44 | REAL(wp), PUBLIC :: qpnmax !: maximum P quota for nanophyto |
---|
45 | REAL(wp), PUBLIC :: qnpmin !: minimum N quota for nanophyto |
---|
46 | REAL(wp), PUBLIC :: qnpmax !: maximum N quota for nanophyto |
---|
47 | REAL(wp), PUBLIC :: qppmin !: minimum P quota for nanophyto |
---|
48 | REAL(wp), PUBLIC :: qppmax !: maximum P quota for nanophyto |
---|
49 | REAL(wp), PUBLIC :: qndmin !: minimum N quota for diatoms |
---|
50 | REAL(wp), PUBLIC :: qndmax !: maximum N quota for diatoms |
---|
51 | REAL(wp), PUBLIC :: qpdmin !: minimum P quota for diatoms |
---|
52 | REAL(wp), PUBLIC :: qpdmax !: maximum P quota for diatoms |
---|
53 | REAL(wp), PUBLIC :: qfnmax !: maximum Fe quota for nanophyto |
---|
54 | REAL(wp), PUBLIC :: qfpmax !: maximum Fe quota for picophyto |
---|
55 | REAL(wp), PUBLIC :: qfdmax !: maximum Fe quota for diatoms |
---|
56 | REAL(wp), PUBLIC :: zpsinh4 !: respiration cost of NH4 assimilation |
---|
57 | REAL(wp), PUBLIC :: zpsino3 !: respiration cost of NO3 assimilation |
---|
58 | REAL(wp), PUBLIC :: zpsiuptk !: Mean respiration cost |
---|
59 | |
---|
60 | !!* Allometric variations of the quotas |
---|
61 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqnnmin !: Minimum N quota of nanophyto |
---|
62 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqnnmax !: Maximum N quota of nanophyto |
---|
63 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqpnmin !: Minimum P quota of nanophyto |
---|
64 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqpnmax !: Maximum P quota of picophyto |
---|
65 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqnpmin !: Minimum N quota of picophyto |
---|
66 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqnpmax !: Maximum N quota of picophyto |
---|
67 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqppmin !: Minimum P quota of picophyto |
---|
68 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqppmax !: Maximum P quota of picophyto |
---|
69 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqndmin !: Minimum N quota of diatoms |
---|
70 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqndmax !: Maximum N quota of diatoms |
---|
71 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqpdmin !: Minimum P quota of diatoms |
---|
72 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqpdmax !: Maximum P quota of diatoms |
---|
73 | |
---|
74 | !!* Phytoplankton nutrient limitation terms |
---|
75 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xpicono3 !: Limitation of NO3 uptake by picophyto |
---|
76 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xpiconh4 !: Limitation of NH4 uptake by picophyto |
---|
77 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xpicopo4 !: Limitation of PO4 uptake by picophyto |
---|
78 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xnanodop !: Limitation of DOP uptake by nanophyto |
---|
79 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xpicodop !: Limitation of DOP uptake by picophyto |
---|
80 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xdiatdop !: Limitation of DOP uptake by diatoms |
---|
81 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xpicofer !: Limitation of Fe uptake by picophyto |
---|
82 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimpic !: Limitation of picophyto PP by nutrients |
---|
83 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimpics !: Limitation of picophyto PP by nutrients |
---|
84 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimphys !: Limitation of nanophyto PP by nutrients |
---|
85 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimdias !: Limitation of diatoms PP by nutrients |
---|
86 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimpfe !: Limitation of picophyto PP by Fe |
---|
87 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: fvnuptk !: Maximum potential uptake rate of nanophyto |
---|
88 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: fvpuptk !: Maximum potential uptake rate of picophyto |
---|
89 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: fvduptk !: Maximum potential uptake rate of diatoms |
---|
90 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqfuncfecp !: |
---|
91 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimnpn, xlimnpp, xlimnpd |
---|
92 | |
---|
93 | ! Coefficient for iron limitation following Flynn and Hipkin (1999) |
---|
94 | REAL(wp) :: xcoef1 = 0.00167 / 55.85 |
---|
95 | REAL(wp) :: xcoef2 = 1.21E-5 * 14. / 55.85 / 7.625 * 0.5 * 1.5 |
---|
96 | REAL(wp) :: xcoef3 = 1.15E-4 * 14. / 55.85 / 7.625 * 0.5 |
---|
97 | !! * Substitutions |
---|
98 | # include "do_loop_substitute.h90" |
---|
99 | !!---------------------------------------------------------------------- |
---|
100 | !! NEMO/TOP 4.0 , NEMO Consortium (2018) |
---|
101 | !! $Id: p5zlim.F90 10070 2018-08-28 14:30:54Z nicolasmartin $ |
---|
102 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
103 | !!---------------------------------------------------------------------- |
---|
104 | |
---|
105 | CONTAINS |
---|
106 | |
---|
107 | SUBROUTINE p5z_lim( kt, knt, Kbb, Kmm ) |
---|
108 | !!--------------------------------------------------------------------- |
---|
109 | !! *** ROUTINE p5z_lim *** |
---|
110 | !! |
---|
111 | !! ** Purpose : Compute the co-limitations by the various nutrients |
---|
112 | !! for the various phytoplankton species. Quota based |
---|
113 | !! approach. The quota model is derived from theoretical |
---|
114 | !! models proposed by Pahlow and Oschlies (2009) and |
---|
115 | !! Flynn (2001). Various adaptations from several |
---|
116 | !! publications by these authors have been also adopted. |
---|
117 | !! |
---|
118 | !! ** Method : Quota based approach. The quota model is derived from |
---|
119 | !! theoretical models by Pahlow and Oschlies (2009) and |
---|
120 | !! Flynn (2001). Various adaptations from several publications |
---|
121 | !! by these authors have been also adopted. |
---|
122 | !!--------------------------------------------------------------------- |
---|
123 | ! |
---|
124 | INTEGER, INTENT(in) :: kt, knt |
---|
125 | INTEGER, INTENT(in) :: Kbb, Kmm ! time level indices |
---|
126 | ! |
---|
127 | INTEGER :: ji, jj, jk |
---|
128 | REAL(wp) :: zlim1, zlim2, zlim3, zlim4, zno3, zferlim |
---|
129 | REAL(wp) :: z1_trndia, z1_trnpic, z1_trnphy, ztem1, ztem2, zetot1 |
---|
130 | REAL(wp) :: zratio, zration, zratiof, znutlim, zfalim, zzpsiuptk |
---|
131 | REAL(wp) :: zconc1d, zconc1dnh4, zconc0n, zconc0nnh4, zconc0npo4, zconc0dpo4 |
---|
132 | REAL(wp) :: zconc0p, zconc0pnh4, zconc0ppo4, zconcpfe, zconcnfe, zconcdfe |
---|
133 | REAL(wp) :: fanano, fananop, fananof, fadiat, fadiatp, fadiatf |
---|
134 | REAL(wp) :: fapico, fapicop, fapicof, zlimpo4, zlimdop |
---|
135 | REAL(wp) :: zrpho, zrass, zcoef, zfuptk, zratchl, ztrn, ztrp |
---|
136 | REAL(wp) :: zfvn, zfvp, zfvf, zsizen, zsizep, zsized, znanochl, zpicochl, zdiatchl |
---|
137 | REAL(wp) :: zqfemn, zqfemp, zqfemd, zbactno3, zbactnh4, zbiron |
---|
138 | REAL(wp) :: znutlimtot, zlimno3, zlimnh4, zlim1f, zsizetmp |
---|
139 | REAL(wp) :: zrtp, zrtn |
---|
140 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zrassn, zrassp, zrassd |
---|
141 | !!--------------------------------------------------------------------- |
---|
142 | ! |
---|
143 | IF( ln_timing ) CALL timing_start('p5z_lim') |
---|
144 | ! |
---|
145 | zratchl = 6.0 |
---|
146 | sizena(:,:,:) = 0.0 ; sizepa(:,:,:) = 0.0 ; sizeda(:,:,:) = 0.0 |
---|
147 | ! |
---|
148 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
149 | ! Computation of the Chl/C ratio of each phytoplankton group |
---|
150 | ! ------------------------------------------------------- |
---|
151 | z1_trnphy = 1. / ( tr(ji,jj,jk,jpphy,Kbb) + rtrn ) |
---|
152 | z1_trnpic = 1. / ( tr(ji,jj,jk,jppic,Kbb) + rtrn ) |
---|
153 | z1_trndia = 1. / ( tr(ji,jj,jk,jpdia,Kbb) + rtrn ) |
---|
154 | znanochl = tr(ji,jj,jk,jpnch,Kbb) * z1_trnphy |
---|
155 | zpicochl = tr(ji,jj,jk,jppch,Kbb) * z1_trnpic |
---|
156 | zdiatchl = tr(ji,jj,jk,jpdch,Kbb) * z1_trndia |
---|
157 | |
---|
158 | ! Computation of a variable Ks for the different phytoplankton |
---|
159 | ! group as a function of their relative size. Allometry |
---|
160 | ! from Edwards et al. (2012) |
---|
161 | !------------------------------------------------ |
---|
162 | |
---|
163 | ! diatoms |
---|
164 | zsized = sized(ji,jj,jk)**0.81 |
---|
165 | zconcdfe = concdfer * zsized |
---|
166 | zconc1d = concdno3 * zsized |
---|
167 | zconc1dnh4 = concdnh4 * zsized |
---|
168 | zconc0dpo4 = concdpo4 * zsized |
---|
169 | |
---|
170 | ! picophytoplankton |
---|
171 | zsizep = sizep(ji,jj,jk)**0.81 |
---|
172 | zconcpfe = concpfer * zsizep |
---|
173 | zconc0p = concpno3 * zsizep |
---|
174 | zconc0pnh4 = concpnh4 * zsizep |
---|
175 | zconc0ppo4 = concppo4 * zsizep |
---|
176 | |
---|
177 | ! nanophytoplankton |
---|
178 | zsizen = sizen(ji,jj,jk)**0.81 |
---|
179 | zconcnfe = concnfer * zsizen |
---|
180 | zconc0n = concnno3 * zsizen |
---|
181 | zconc0nnh4 = concnnh4 * zsizen |
---|
182 | zconc0npo4 = concnpo4 * zsizen |
---|
183 | |
---|
184 | ! Allometric variations of the minimum and maximum quotas |
---|
185 | ! From Talmy et al. (2014) and Maranon et al. (2013) |
---|
186 | ! ------------------------------------------------------- |
---|
187 | xqnnmin(ji,jj,jk) = qnnmin * sizen(ji,jj,jk)**(-0.36) |
---|
188 | xqnnmax(ji,jj,jk) = qnnmax |
---|
189 | xqndmin(ji,jj,jk) = qndmin * sized(ji,jj,jk)**(-0.36) |
---|
190 | xqndmax(ji,jj,jk) = qndmax |
---|
191 | xqnpmin(ji,jj,jk) = qnpmin * sizep(ji,jj,jk)**(-0.36) |
---|
192 | xqnpmax(ji,jj,jk) = qnpmax |
---|
193 | |
---|
194 | ! Computation of the optimal allocation parameters |
---|
195 | ! Based on the different papers by Pahlow et al., and Smith et al. |
---|
196 | ! ----------------------------------------------------------------- |
---|
197 | zbiron = ( 75.0 * ( 1.0 - plig(ji,jj,jk) ) + plig(ji,jj,jk) ) * biron(ji,jj,jk) |
---|
198 | |
---|
199 | ! Nanophytoplankton |
---|
200 | znutlim = MAX( tr(ji,jj,jk,jpnh4,Kbb) / zconc0nnh4, & |
---|
201 | & tr(ji,jj,jk,jpno3,Kbb) / zconc0n) |
---|
202 | fanano = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
203 | znutlim = tr(ji,jj,jk,jppo4,Kbb) / zconc0npo4 |
---|
204 | fananop = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
205 | znutlim = zbiron / zconcnfe |
---|
206 | fananof = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
207 | |
---|
208 | ! Picophytoplankton |
---|
209 | znutlim = MAX( tr(ji,jj,jk,jpnh4,Kbb) / zconc0pnh4, & |
---|
210 | & tr(ji,jj,jk,jpno3,Kbb) / zconc0p) |
---|
211 | fapico = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
212 | znutlim = tr(ji,jj,jk,jppo4,Kbb) / zconc0ppo4 |
---|
213 | fapicop = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
214 | znutlim = zbiron / zconcpfe |
---|
215 | fapicof = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
216 | |
---|
217 | ! Diatoms |
---|
218 | znutlim = MAX( tr(ji,jj,jk,jpnh4,Kbb) / zconc1dnh4, & |
---|
219 | & tr(ji,jj,jk,jpno3,Kbb) / zconc1d ) |
---|
220 | fadiat = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
221 | znutlim = tr(ji,jj,jk,jppo4,Kbb) / zconc0dpo4 |
---|
222 | fadiatp = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
223 | znutlim = zbiron / zconcdfe |
---|
224 | fadiatf = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) ) |
---|
225 | |
---|
226 | ! |
---|
227 | ! Michaelis-Menten Limitation term by nutrients of |
---|
228 | ! heterotrophic bacteria |
---|
229 | ! ------------------------------------------------------------- |
---|
230 | zlimnh4 = tr(ji,jj,jk,jpnh4,Kbb) / ( concbnh4 + tr(ji,jj,jk,jpnh4,Kbb) ) |
---|
231 | zlimno3 = tr(ji,jj,jk,jpno3,Kbb) / ( concbno3 + tr(ji,jj,jk,jpno3,Kbb) ) |
---|
232 | znutlimtot = ( tr(ji,jj,jk,jpnh4,Kbb) + tr(ji,jj,jk,jpno3,Kbb) ) & |
---|
233 | & / ( concbno3 + tr(ji,jj,jk,jpnh4,Kbb) + tr(ji,jj,jk,jpno3,Kbb) ) |
---|
234 | zbactnh4 = znutlimtot * 5.0 * zlimnh4 / ( zlimno3 + 5.0 * zlimnh4 + rtrn ) |
---|
235 | zbactno3 = znutlimtot * zlimno3 / ( zlimno3 + 5.0 * zlimnh4 + rtrn ) |
---|
236 | ! |
---|
237 | zlim1 = zbactno3 + zbactnh4 |
---|
238 | zlim2 = tr(ji,jj,jk,jppo4,Kbb) / ( tr(ji,jj,jk,jppo4,Kbb) + concbpo4) |
---|
239 | zlim3 = biron(ji,jj,jk) / ( concbfe + biron(ji,jj,jk) ) |
---|
240 | zlim4 = tr(ji,jj,jk,jpdoc,Kbb) / ( xkdoc + tr(ji,jj,jk,jpdoc,Kbb) ) |
---|
241 | |
---|
242 | ! Xlimbac is used for DOC solubilization whereas xlimbacl |
---|
243 | ! is used for all the other bacterial-dependent term |
---|
244 | ! ------------------------------------------------------- |
---|
245 | xlimbacl(ji,jj,jk) = MIN( zlim1, zlim2, zlim3 ) |
---|
246 | xlimbac (ji,jj,jk) = xlimbacl(ji,jj,jk) * zlim4 |
---|
247 | ! |
---|
248 | ! Michaelis-Menten Limitation term for nutrients Small flagellates |
---|
249 | ! ----------------------------------------------- |
---|
250 | zrtn = tr(ji,jj,jk,jpnh4,Kbb) + tr(ji,jj,jk,jpno3,Kbb) |
---|
251 | zrtp = tr(ji,jj,jk,jppo4,Kbb) + tr(ji,jj,jk,jpdop,Kbb) |
---|
252 | ! |
---|
253 | ! Limitation of N based nutrients uptake (NO3 and NH4) |
---|
254 | zfalim = (1.-fanano) / fanano |
---|
255 | zlimnh4 = tr(ji,jj,jk,jpnh4,Kbb) / ( zconc0n + tr(ji,jj,jk,jpnh4,Kbb) ) |
---|
256 | zlimno3 = tr(ji,jj,jk,jpno3,Kbb) / ( zconc0n + tr(ji,jj,jk,jpno3,Kbb) ) |
---|
257 | znutlimtot = (1. - fanano) * zrtn / ( zfalim * zconc0n + ztrn ) |
---|
258 | xnanonh4(ji,jj,jk) = znutlimtot * 5.0 * zlimnh4 / ( zlimno3 + 5.0 * zlimnh4 + rtrn ) |
---|
259 | xnanono3(ji,jj,jk) = znutlimtot * zlimno3 / ( zlimno3 + 5.0 * zlimnh4 + rtrn ) |
---|
260 | ! |
---|
261 | ! Limitation of P based nutrients (PO4 and DOP) |
---|
262 | zfalim = (1.-fananop) / fananop |
---|
263 | zlimpo4 = tr(ji,jj,jk,jppo4,Kbb) / ( tr(ji,jj,jk,jppo4,Kbb) + zconc0npo4 ) |
---|
264 | zlimdop = tr(ji,jj,jk,jpdop,Kbb) / ( tr(ji,jj,jk,jpdop,Kbb) + zconc0npo4 ) |
---|
265 | znutlimtot = (1. - fananop) * ztrp / ( zfalim * zconc0npo4 + ztrp ) |
---|
266 | xnanopo4(ji,jj,jk) = znutlimtot * 100.0 * zlimpo4 / ( zlimdop + 100.0 * zlimpo4 + rtrn ) |
---|
267 | xnanodop(ji,jj,jk) = znutlimtot * zlimdop / ( zlimdop + 100.0 * zlimpo4 + rtrn ) |
---|
268 | ! |
---|
269 | ! Limitation of Fe uptake |
---|
270 | zfalim = (1.-fananof) / fananof |
---|
271 | xnanofer(ji,jj,jk) = (1. - fananof) * zbiron / ( zbiron + zfalim * zconcnfe ) |
---|
272 | ! |
---|
273 | ! The minimum iron quota depends on the size of PSU, respiration |
---|
274 | ! and the reduction of nitrate following the parameterization |
---|
275 | ! proposed by Flynn and Hipkin (1999) |
---|
276 | zratiof = tr(ji,jj,jk,jpnfe,Kbb) * z1_trnphy |
---|
277 | zqfemn = xcoef1 * znanochl + xcoef2 + xcoef3 * xnanono3(ji,jj,jk) |
---|
278 | xqfuncfecn(ji,jj,jk) = zqfemn + qfnopt |
---|
279 | ! |
---|
280 | zration = tr(ji,jj,jk,jpnph,Kbb) * z1_trnphy |
---|
281 | zration = MIN(xqnnmax(ji,jj,jk), MAX( xqnnmin(ji,jj,jk), zration )) |
---|
282 | fvnuptk(ji,jj,jk) = 2.5 * zpsiuptk * xqnnmin(ji,jj,jk) / (zration + rtrn) & |
---|
283 | & * MAX(0., (1. - zratchl * znanochl / 12. ) ) |
---|
284 | ! |
---|
285 | zlim1 = max(0., (zration - xqnnmin(ji,jj,jk) ) & |
---|
286 | & / (xqnnmax(ji,jj,jk) - xqnnmin(ji,jj,jk) ) ) * xqnnmax(ji,jj,jk) & |
---|
287 | & / (zration + rtrn) |
---|
288 | ! The value of the optimal quota in the formulation below |
---|
289 | ! has been found by solving a non linear equation |
---|
290 | zlim1f = max(0., ( 1.13 - xqnnmin(ji,jj,jk) ) & |
---|
291 | & / (xqnnmax(ji,jj,jk) - xqnnmin(ji,jj,jk) ) ) * xqnnmax(ji,jj,jk) |
---|
292 | zlim3 = MAX( 0.,( zratiof - zqfemn ) / qfnopt ) |
---|
293 | ! computation of the various limitation terms of nanophyto |
---|
294 | ! growth and PP |
---|
295 | xlimnfe (ji,jj,jk) = MIN( 1., zlim3 ) |
---|
296 | xlimphy (ji,jj,jk) = MIN( 1., zlim1, zlim3 ) |
---|
297 | xlimphys(ji,jj,jk) = MIN( 1., zlim1/( zlim1f + rtrn ), zlim3 ) |
---|
298 | xlimnpn (ji,jj,jk) = MIN( 1., zlim1) |
---|
299 | |
---|
300 | |
---|
301 | ! |
---|
302 | ! Michaelis-Menten Limitation term for nutrients picophytoplankton |
---|
303 | ! ---------------------------------------------------------------- |
---|
304 | ! Limitation of N based nutrients uptake (NO3 and NH4) |
---|
305 | zfalim = (1.-fapico) / fapico |
---|
306 | zlimnh4 = tr(ji,jj,jk,jpnh4,Kbb) / ( zconc0p + tr(ji,jj,jk,jpnh4,Kbb) ) |
---|
307 | zlimno3 = tr(ji,jj,jk,jpno3,Kbb) / ( zconc0p + tr(ji,jj,jk,jpno3,Kbb) ) |
---|
308 | znutlimtot = (1. - fapico) * zrtn / ( zfalim * zconc0p + ztrn ) |
---|
309 | xpiconh4(ji,jj,jk) = znutlimtot * 5.0 * zlimnh4 / ( zlimno3 + 5.0 * zlimnh4 + rtrn ) |
---|
310 | xpicono3(ji,jj,jk) = znutlimtot * zlimno3 / ( zlimno3 + 5.0 * zlimnh4 + rtrn ) |
---|
311 | ! |
---|
312 | ! Limitation of P based nutrients uptake (PO4 and DOP) |
---|
313 | zfalim = (1.-fapicop) / fapicop |
---|
314 | zlimpo4 = tr(ji,jj,jk,jppo4,Kbb) / ( tr(ji,jj,jk,jppo4,Kbb) + zconc0ppo4 ) |
---|
315 | zlimdop = tr(ji,jj,jk,jpdop,Kbb) / ( tr(ji,jj,jk,jpdop,Kbb) + zconc0ppo4 ) |
---|
316 | znutlimtot = (1. - fapicop) * ztrp / ( zfalim * zconc0ppo4 + ztrp) |
---|
317 | xpicopo4(ji,jj,jk) = znutlimtot * 100.0 * zlimpo4 / ( zlimdop + 100.0 * zlimpo4 + rtrn ) |
---|
318 | xpicodop(ji,jj,jk) = znutlimtot * zlimdop / ( zlimdop + 100.0 * zlimpo4 + rtrn ) |
---|
319 | ! |
---|
320 | zfalim = (1.-fapicof) / fapicof |
---|
321 | xpicofer(ji,jj,jk) = (1. - fapicof) * zbiron / ( zbiron + zfalim * zconcpfe ) |
---|
322 | ! |
---|
323 | ! The minimum iron quota depends on the size of PSU, respiration |
---|
324 | ! and the reduction of nitrate following the parameterization |
---|
325 | ! proposed by Flynn and Hipkin (1999) |
---|
326 | zratiof = tr(ji,jj,jk,jppfe,Kbb) * z1_trnpic |
---|
327 | zqfemp = xcoef1 * zpicochl + xcoef2 + xcoef3 * xpicono3(ji,jj,jk) |
---|
328 | xqfuncfecp(ji,jj,jk) = zqfemp + qfpopt |
---|
329 | ! |
---|
330 | zration = tr(ji,jj,jk,jpnpi,Kbb) * z1_trnpic |
---|
331 | zration = MIN(xqnpmax(ji,jj,jk), MAX( xqnpmin(ji,jj,jk), zration )) |
---|
332 | fvpuptk(ji,jj,jk) = 2.5 * zpsiuptk * xqnpmin(ji,jj,jk) / (zration + rtrn) & |
---|
333 | & * MAX(0., (1. - zratchl * zpicochl / 12. ) ) |
---|
334 | ! |
---|
335 | zlim1 = max(0., (zration - xqnpmin(ji,jj,jk) ) & |
---|
336 | & / (xqnpmax(ji,jj,jk) - xqnpmin(ji,jj,jk) ) ) * xqnpmax(ji,jj,jk) & |
---|
337 | & / (zration + rtrn) |
---|
338 | ! The value of the optimal quota in the formulation below |
---|
339 | ! has been found by solving a non linear equation |
---|
340 | zlim1f = max(0., (1.29 - xqnpmin(ji,jj,jk) ) & |
---|
341 | & / (xqnpmax(ji,jj,jk) - xqnpmin(ji,jj,jk) ) ) * xqnpmax(ji,jj,jk) |
---|
342 | zlim3 = MAX( 0.,( zratiof - zqfemp ) / qfpopt ) |
---|
343 | |
---|
344 | ! computation of the various limitation terms of picophyto |
---|
345 | ! growth and PP |
---|
346 | xlimpfe (ji,jj,jk) = MIN( 1., zlim3 ) |
---|
347 | xlimpic (ji,jj,jk) = MIN( 1., zlim1, zlim3 ) |
---|
348 | xlimnpp (ji,jj,jk) = MIN( 1., zlim1 ) |
---|
349 | xlimpics(ji,jj,jk) = MIN( 1., zlim1/( zlim1f + rtrn ), zlim3 ) |
---|
350 | |
---|
351 | |
---|
352 | ! |
---|
353 | ! Michaelis-Menten Limitation term for nutrients Diatoms |
---|
354 | ! ------------------------------------------------------ |
---|
355 | ! |
---|
356 | ! Limitation of N based nutrients uptake (NO3 and NH4) |
---|
357 | zfalim = (1.-fadiat) / fadiat |
---|
358 | zlimnh4 = tr(ji,jj,jk,jpnh4,Kbb) / ( zconc1d + tr(ji,jj,jk,jpnh4,Kbb) ) |
---|
359 | zlimno3 = tr(ji,jj,jk,jpno3,Kbb) / ( zconc1d + tr(ji,jj,jk,jpno3,Kbb) ) |
---|
360 | znutlimtot = (1.0 - fadiat) * ztrn / ( zfalim * zconc1d + ztrn ) |
---|
361 | xdiatnh4(ji,jj,jk) = znutlimtot * 5.0 * zlimnh4 / ( zlimno3 + 5.0 * zlimnh4 + rtrn ) |
---|
362 | xdiatno3(ji,jj,jk) = znutlimtot * zlimno3 / ( zlimno3 + 5.0 * zlimnh4 + rtrn ) |
---|
363 | ! |
---|
364 | ! Limitation of P based nutrients uptake (PO4 and DOP) |
---|
365 | zfalim = (1.-fadiatp) / fadiatp |
---|
366 | zlimpo4 = tr(ji,jj,jk,jppo4,Kbb) / ( tr(ji,jj,jk,jppo4,Kbb) + zconc0dpo4 ) |
---|
367 | zlimdop = tr(ji,jj,jk,jpdop,Kbb) / ( tr(ji,jj,jk,jpdop,Kbb) + zconc0dpo4 ) |
---|
368 | znutlimtot = (1. - fadiatp) * ztrp / ( zfalim * zconc0dpo4 + ztrp ) |
---|
369 | xdiatpo4(ji,jj,jk) = znutlimtot * 100.0 * zlimpo4 / ( zlimdop + 100.0 * zlimpo4 + rtrn ) |
---|
370 | xdiatdop(ji,jj,jk) = znutlimtot * zlimdop / ( zlimdop + 100.0 * zlimpo4 + rtrn ) |
---|
371 | ! |
---|
372 | ! Limitation of Fe uptake |
---|
373 | zfalim = (1.-fadiatf) / fadiatf |
---|
374 | xdiatfer(ji,jj,jk) = (1. - fadiatf) * zbiron / ( zbiron + zfalim * zconcdfe ) |
---|
375 | ! |
---|
376 | ! The minimum iron quota depends on the size of PSU, respiration |
---|
377 | ! and the reduction of nitrate following the parameterization |
---|
378 | ! proposed by Flynn and Hipkin (1999) |
---|
379 | zratiof = tr(ji,jj,jk,jpdfe,Kbb) * z1_trndia |
---|
380 | zqfemd = xcoef1 * zdiatchl + xcoef2 + xcoef3 * xdiatno3(ji,jj,jk) |
---|
381 | xqfuncfecd(ji,jj,jk) = zqfemd + qfdopt |
---|
382 | ! |
---|
383 | zration = tr(ji,jj,jk,jpndi,Kbb) * z1_trndia |
---|
384 | zration = MIN(xqndmax(ji,jj,jk), MAX( xqndmin(ji,jj,jk), zration )) |
---|
385 | fvduptk(ji,jj,jk) = 2.5 * zpsiuptk * xqndmin(ji,jj,jk) / (zration + rtrn) & |
---|
386 | & * MAX(0., (1. - zratchl * zdiatchl / 12. ) ) |
---|
387 | ! |
---|
388 | zlim1 = max(0., (zration - xqndmin(ji,jj,jk) ) & |
---|
389 | & / (xqndmax(ji,jj,jk) - xqndmin(ji,jj,jk) ) ) & |
---|
390 | & * xqndmax(ji,jj,jk) / (zration + rtrn) |
---|
391 | ! The value of the optimal quota in the formulation below |
---|
392 | ! has been found by solving a non linear equation |
---|
393 | zlim1f = max(0., (1.13 - xqndmin(ji,jj,jk) ) & |
---|
394 | & / (xqndmax(ji,jj,jk) - xqndmin(ji,jj,jk) ) ) & |
---|
395 | & * xqndmax(ji,jj,jk) |
---|
396 | zlim3 = tr(ji,jj,jk,jpsil,Kbb) / ( tr(ji,jj,jk,jpsil,Kbb) + xksi(ji,jj) ) |
---|
397 | zlim4 = MAX( 0., ( zratiof - zqfemd ) / qfdopt ) |
---|
398 | ! computation of the various limitation terms of diatoms |
---|
399 | ! growth and PP |
---|
400 | xlimdfe(ji,jj,jk) = MIN( 1., zlim4 ) |
---|
401 | xlimdia(ji,jj,jk) = MIN( 1., zlim1, zlim3, zlim4 ) |
---|
402 | xlimdias(ji,jj,jk) = MIN (1.0, zlim1 / (zlim1f + rtrn ), zlim3, zlim4 ) |
---|
403 | xlimsi(ji,jj,jk) = MIN( zlim1, zlim4 ) |
---|
404 | xlimnpd(ji,jj,jk) = MIN( 1., zlim1 ) |
---|
405 | END_3D |
---|
406 | |
---|
407 | ! |
---|
408 | ! Compute the phosphorus quota values. It is based on Litchmann et al., 2004 and Daines et al, 2013. |
---|
409 | ! The relative contribution of three fonctional pools are computed: light harvesting apparatus, |
---|
410 | ! nutrient uptake pool and assembly machinery. DNA is assumed to represent 1% of the dry mass of |
---|
411 | ! phytoplankton (see Daines et al., 2013). |
---|
412 | ! -------------------------------------------------------------------------------------------------- |
---|
413 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
414 | ! Size estimation of nanophytoplankton based on total biomass |
---|
415 | ! Assumes that larger biomass implies addition of larger cells |
---|
416 | ! ------------------------------------------------------------ |
---|
417 | zcoef = tr(ji,jj,jk,jpphy,Kbb) - MIN(xsizephy, tr(ji,jj,jk,jpphy,Kbb) ) |
---|
418 | sizena(ji,jj,jk) = 1. + ( xsizern -1.0 ) * zcoef / ( xsizephy + zcoef ) |
---|
419 | ! N/P ratio of nanophytoplankton |
---|
420 | ! ------------------------------ |
---|
421 | zfuptk = 0.2 + 0.12 / ( 3.0 * sizen(ji,jj,jk) + rtrn ) |
---|
422 | ! Computed from Inomura et al. (2020) using Pavlova Lutheri |
---|
423 | zrpho = 11.55 * tr(ji,jj,jk,jpnch,Kbb) / ( tr(ji,jj,jk,jpphy,Kbb) * 12. + rtrn ) |
---|
424 | zrass = MAX(0.62/4., ( 1. - zrpho - zfuptk ) * xlimnpn(ji,jj,jk) ) |
---|
425 | zrassn(ji,jj,jk) = zrass |
---|
426 | xqpnmin(ji,jj,jk) = ( 0.0 + 0.0078 + 0.62/4. * 0.0783 ) * 16. |
---|
427 | xqpnmax(ji,jj,jk) = ( zrpho * 0.0089 + zrass * 0.0783 ) * 16. |
---|
428 | xqpnmax(ji,jj,jk) = xqpnmax(ji,jj,jk) + (0.033 + 0.0078 ) * 16. |
---|
429 | xqpnmax(ji,jj,jk) = MIN( qpnmax, xqpnmax(ji,jj,jk) ) |
---|
430 | |
---|
431 | ! Size estimation of picophytoplankton based on total biomass |
---|
432 | ! Assumes that larger biomass implies addition of larger cells |
---|
433 | ! ------------------------------------------------------------ |
---|
434 | zcoef = tr(ji,jj,jk,jppic,Kbb) - MIN(xsizepic, tr(ji,jj,jk,jppic,Kbb) ) |
---|
435 | sizepa(ji,jj,jk) = 1. + ( xsizerp -1.0 ) * zcoef / ( xsizepic + zcoef ) |
---|
436 | |
---|
437 | ! N/P ratio of picophytoplankton |
---|
438 | ! ------------------------------ |
---|
439 | zfuptk = 0.2 + 0.12 / ( 0.8 * sizep(ji,jj,jk) + rtrn ) |
---|
440 | ! Computed from Inomura et al. (2020) using a synechococcus |
---|
441 | zrpho = 13.4 * tr(ji,jj,jk,jppch,Kbb) / ( tr(ji,jj,jk,jppic,Kbb) * 12. + rtrn ) |
---|
442 | zrass = MAX(0.4/4., ( 1. - zrpho - zfuptk ) * xlimnpp(ji,jj,jk) ) |
---|
443 | zrassp(ji,jj,jk) = zrass |
---|
444 | xqppmin(ji,jj,jk) = ( (0.0 + 0.0078 ) + 0.4/4. * 0.0517 ) * 16. |
---|
445 | xqppmax(ji,jj,jk) = ( zrpho * 0.0076 + zrass * 0.0517 ) * 16. |
---|
446 | xqppmax(ji,jj,jk) = xqppmax(ji,jj,jk) + (0.033 + 0.0078 ) * 16 |
---|
447 | xqppmax(ji,jj,jk) = MIN( qppmax, xqppmax(ji,jj,jk) ) |
---|
448 | |
---|
449 | ! Size estimation of diatoms based on total biomass |
---|
450 | ! Assumes that larger biomass implies addition of larger cells |
---|
451 | ! ------------------------------------------------------------ |
---|
452 | zcoef = tr(ji,jj,jk,jpdia,Kbb) - MIN(xsizedia, tr(ji,jj,jk,jpdia,Kbb) ) |
---|
453 | sizeda(ji,jj,jk) = 1. + ( xsizerd - 1.0 ) * zcoef / ( xsizedia + zcoef ) |
---|
454 | ! N/P ratio of diatoms |
---|
455 | ! -------------------- |
---|
456 | zfuptk = 0.2 + 0.12 / ( 5.0 * sized(ji,jj,jk) + rtrn ) |
---|
457 | ! Computed from Inomura et al. (2020) using a synechococcus |
---|
458 | zrpho = 8.08 * tr(ji,jj,jk,jpdch,Kbb) / ( tr(ji,jj,jk,jpndi,Kbb) * 12. + rtrn ) |
---|
459 | zrass = MAX(0.66/4., ( 1. - zrpho - zfuptk ) * xlimnpd(ji,jj,jk) ) |
---|
460 | zrassd(ji,jj,jk)=zrass |
---|
461 | xqpdmin(ji,jj,jk) = ( ( 0.0 + 0.0078 ) + 0.66/4. * 0.0783 ) * 16. |
---|
462 | xqpdmax(ji,jj,jk) = ( zrpho * 0.0135 + zrass * 0.0783 ) * 16. |
---|
463 | xqpdmax(ji,jj,jk) = xqpdmax(ji,jj,jk) + ( 0.0078 + 0.033 ) * 16. |
---|
464 | xqpdmax(ji,jj,jk) = MIN(qpdmax, xqpdmax(ji,jj,jk) ) |
---|
465 | END_3D |
---|
466 | |
---|
467 | ! Compute the fraction of nanophytoplankton that is made of calcifiers |
---|
468 | ! This is a purely adhoc formulation described in Aumont et al. (2015) |
---|
469 | ! This fraction depends on nutrient limitation, light, temperature |
---|
470 | ! -------------------------------------------------------------------- |
---|
471 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
472 | zlim1 = tr(ji,jj,jk,jpnh4,Kbb) / ( tr(ji,jj,jk,jpnh4,Kbb) + concnnh4 ) + tr(ji,jj,jk,jpno3,Kbb) & |
---|
473 | & / ( tr(ji,jj,jk,jpno3,Kbb) + concnno3 ) * ( 1.0 - tr(ji,jj,jk,jpnh4,Kbb) & |
---|
474 | & / ( tr(ji,jj,jk,jpnh4,Kbb) + concnnh4 ) ) |
---|
475 | zlim2 = tr(ji,jj,jk,jppo4,Kbb) / ( tr(ji,jj,jk,jppo4,Kbb) + concnpo4 ) |
---|
476 | zlim3 = tr(ji,jj,jk,jpfer,Kbb) / ( tr(ji,jj,jk,jpfer,Kbb) + 6.E-11 ) |
---|
477 | ztem1 = MAX( 0., ts(ji,jj,jk,jp_tem,Kmm) + 1.8 ) |
---|
478 | ztem2 = ts(ji,jj,jk,jp_tem,Kmm) - 10. |
---|
479 | zetot1 = MAX( 0., etot_ndcy(ji,jj,jk) - 1.) / ( 4. + etot_ndcy(ji,jj,jk) ) * 30. / ( 30. + etot_ndcy(ji,jj,jk) ) |
---|
480 | |
---|
481 | xfracal(ji,jj,jk) = caco3r * xlimphy(ji,jj,jk) & |
---|
482 | & * ztem1 / ( 0.1 + ztem1 ) * MAX( 1., tr(ji,jj,jk,jpphy,Kbb)*1E6 ) & |
---|
483 | & * ( 1. + EXP(-ztem2 * ztem2 / 25. ) ) & |
---|
484 | & * zetot1 * MIN( 1., 50. / ( hmld(ji,jj) + rtrn ) ) |
---|
485 | xfracal(ji,jj,jk) = MAX( 0.02, MIN( 0.8 , xfracal(ji,jj,jk) ) ) |
---|
486 | END_3D |
---|
487 | ! |
---|
488 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
489 | ! denitrification factor computed from O2 levels |
---|
490 | nitrfac(ji,jj,jk) = MAX( 0.e0, 0.4 * ( 6.e-6 - tr(ji,jj,jk,jpoxy,Kbb) ) & |
---|
491 | & / ( oxymin + tr(ji,jj,jk,jpoxy,Kbb) ) ) |
---|
492 | nitrfac(ji,jj,jk) = MIN( 1., nitrfac(ji,jj,jk) ) |
---|
493 | ! |
---|
494 | ! redox factor computed from NO3 levels |
---|
495 | nitrfac2(ji,jj,jk) = MAX( 0.e0, ( 1.E-6 - tr(ji,jj,jk,jpno3,Kbb) ) & |
---|
496 | & / ( 1.E-6 + tr(ji,jj,jk,jpno3,Kbb) ) ) |
---|
497 | nitrfac2(ji,jj,jk) = MIN( 1., nitrfac2(ji,jj,jk) ) |
---|
498 | END_3D |
---|
499 | ! |
---|
500 | IF( lk_iomput .AND. knt == nrdttrc ) THEN ! save output diagnostics |
---|
501 | CALL iom_put( "xfracal", xfracal(:,:,:) * tmask(:,:,:) ) ! euphotic layer deptht |
---|
502 | CALL iom_put( "LNnut" , xlimphy(:,:,:) * tmask(:,:,:) ) ! Nutrient limitation term |
---|
503 | CALL iom_put( "LPnut" , xlimpic(:,:,:) * tmask(:,:,:) ) ! Nutrient limitation term |
---|
504 | CALL iom_put( "LDnut" , xlimdia(:,:,:) * tmask(:,:,:) ) ! Nutrient limitation term |
---|
505 | CALL iom_put( "LNFe" , xlimnfe(:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
506 | CALL iom_put( "LPFe" , xlimpfe(:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
507 | CALL iom_put( "LDFe" , xlimdfe(:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
508 | CALL iom_put( "SIZEN" , sizen (:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
509 | CALL iom_put( "SIZEP" , sizep (:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
510 | CALL iom_put( "SIZED" , sized (:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
511 | CALL iom_put( "RASSN" , zrassn (:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
512 | CALL iom_put( "RASSP" , zrassp (:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
513 | CALL iom_put( "RASSD" , zrassd (:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
514 | ENDIF |
---|
515 | ! |
---|
516 | IF( ln_timing ) CALL timing_stop('p5z_lim') |
---|
517 | ! |
---|
518 | END SUBROUTINE p5z_lim |
---|
519 | |
---|
520 | |
---|
521 | SUBROUTINE p5z_lim_init |
---|
522 | !!---------------------------------------------------------------------- |
---|
523 | !! *** ROUTINE p5z_lim_init *** |
---|
524 | !! |
---|
525 | !! ** Purpose : Initialization of nutrient limitation parameters |
---|
526 | !! |
---|
527 | !! ** Method : Read the namp5zlim and nampisquota namelists and check |
---|
528 | !! the parameters called at the first timestep (nittrc000) |
---|
529 | !! |
---|
530 | !! ** input : Namelist namp5zlim |
---|
531 | !! |
---|
532 | !!---------------------------------------------------------------------- |
---|
533 | INTEGER :: ios ! Local integer output status for namelist read |
---|
534 | !! |
---|
535 | NAMELIST/namp5zlim/ concnno3, concpno3, concdno3, concnnh4, concpnh4, concdnh4, & |
---|
536 | & concnfer, concpfer, concdfer, concbfe, concnpo4, concppo4, & |
---|
537 | & concdpo4, concbno3, concbnh4, concbpo4, xsizedia, xsizepic, & |
---|
538 | & xsizephy, xsizern, xsizerp, xsizerd, xksi1, xksi2, xkdoc, & |
---|
539 | & caco3r, oxymin |
---|
540 | ! |
---|
541 | NAMELIST/namp5zquota/ qnnmin, qnnmax, qpnmin, qpnmax, qnpmin, qnpmax, qppmin, & |
---|
542 | & qppmax, qndmin, qndmax, qpdmin, qpdmax, qfnmax, qfpmax, qfdmax, & |
---|
543 | & qfnopt, qfpopt, qfdopt |
---|
544 | !!---------------------------------------------------------------------- |
---|
545 | ! |
---|
546 | READ ( numnatp_ref, namp5zlim, IOSTAT = ios, ERR = 901) |
---|
547 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namp5zlim in reference namelist' ) |
---|
548 | ! |
---|
549 | READ ( numnatp_cfg, namp5zlim, IOSTAT = ios, ERR = 902 ) |
---|
550 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namp5zlim in configuration namelist' ) |
---|
551 | IF(lwm) WRITE ( numonp, namp5zlim ) |
---|
552 | ! |
---|
553 | IF(lwp) THEN ! control print |
---|
554 | WRITE(numout,*) ' ' |
---|
555 | WRITE(numout,*) ' Namelist parameters for nutrient limitations, namp5zlim' |
---|
556 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
557 | WRITE(numout,*) ' mean rainratio caco3r = ', caco3r |
---|
558 | WRITE(numout,*) ' NO3 half saturation of nanophyto concnno3 = ', concnno3 |
---|
559 | WRITE(numout,*) ' NO3 half saturation of picophyto concpno3 = ', concpno3 |
---|
560 | WRITE(numout,*) ' NO3 half saturation of diatoms concdno3 = ', concdno3 |
---|
561 | WRITE(numout,*) ' NH4 half saturation for phyto concnnh4 = ', concnnh4 |
---|
562 | WRITE(numout,*) ' NH4 half saturation for pico concpnh4 = ', concpnh4 |
---|
563 | WRITE(numout,*) ' NH4 half saturation for diatoms concdnh4 = ', concdnh4 |
---|
564 | WRITE(numout,*) ' PO4 half saturation for phyto concnpo4 = ', concnpo4 |
---|
565 | WRITE(numout,*) ' PO4 half saturation for pico concppo4 = ', concppo4 |
---|
566 | WRITE(numout,*) ' PO4 half saturation for diatoms concdpo4 = ', concdpo4 |
---|
567 | WRITE(numout,*) ' half saturation constant for Si uptake xksi1 = ', xksi1 |
---|
568 | WRITE(numout,*) ' half saturation constant for Si/C xksi2 = ', xksi2 |
---|
569 | WRITE(numout,*) ' half-sat. of DOC remineralization xkdoc = ', xkdoc |
---|
570 | WRITE(numout,*) ' Iron half saturation for nanophyto concnfer = ', concnfer |
---|
571 | WRITE(numout,*) ' Iron half saturation for picophyto concpfer = ', concpfer |
---|
572 | WRITE(numout,*) ' Iron half saturation for diatoms concdfer = ', concdfer |
---|
573 | WRITE(numout,*) ' size ratio for nanophytoplankton xsizern = ', xsizern |
---|
574 | WRITE(numout,*) ' size ratio for picophytoplankton xsizerp = ', xsizerp |
---|
575 | WRITE(numout,*) ' size ratio for diatoms xsizerd = ', xsizerd |
---|
576 | WRITE(numout,*) ' NO3 half saturation of bacteria concbno3 = ', concbno3 |
---|
577 | WRITE(numout,*) ' NH4 half saturation for bacteria concbnh4 = ', concbnh4 |
---|
578 | WRITE(numout,*) ' Minimum size criteria for diatoms xsizedia = ', xsizedia |
---|
579 | WRITE(numout,*) ' Minimum size criteria for picophyto xsizepic = ', xsizepic |
---|
580 | WRITE(numout,*) ' Minimum size criteria for nanophyto xsizephy = ', xsizephy |
---|
581 | WRITE(numout,*) ' Fe half saturation for bacteria concbfe = ', concbfe |
---|
582 | WRITE(numout,*) ' halk saturation constant for anoxia oxymin =' , oxymin |
---|
583 | ENDIF |
---|
584 | |
---|
585 | READ ( numnatp_ref, namp5zquota, IOSTAT = ios, ERR = 903) |
---|
586 | 903 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisquota in reference namelist' ) |
---|
587 | ! |
---|
588 | READ ( numnatp_cfg, namp5zquota, IOSTAT = ios, ERR = 904 ) |
---|
589 | 904 IF( ios > 0 ) CALL ctl_nam ( ios , 'nampisquota in configuration namelist' ) |
---|
590 | IF(lwm) WRITE ( numonp, namp5zquota ) |
---|
591 | ! |
---|
592 | IF(lwp) THEN ! control print |
---|
593 | WRITE(numout,*) ' ' |
---|
594 | WRITE(numout,*) ' Namelist parameters for nutrient limitations, namp5zquota' |
---|
595 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
596 | WRITE(numout,*) ' optimal Fe quota for nano. qfnopt = ', qfnopt |
---|
597 | WRITE(numout,*) ' optimal Fe quota for pico. qfpopt = ', qfpopt |
---|
598 | WRITE(numout,*) ' Optimal Fe quota for diatoms qfdopt = ', qfdopt |
---|
599 | WRITE(numout,*) ' Minimal N quota for nano qnnmin = ', qnnmin |
---|
600 | WRITE(numout,*) ' Maximal N quota for nano qnnmax = ', qnnmax |
---|
601 | WRITE(numout,*) ' Minimal P quota for nano qpnmin = ', qpnmin |
---|
602 | WRITE(numout,*) ' Maximal P quota for nano qpnmax = ', qpnmax |
---|
603 | WRITE(numout,*) ' Minimal N quota for pico qnpmin = ', qnpmin |
---|
604 | WRITE(numout,*) ' Maximal N quota for pico qnpmax = ', qnpmax |
---|
605 | WRITE(numout,*) ' Minimal P quota for pico qppmin = ', qppmin |
---|
606 | WRITE(numout,*) ' Maximal P quota for pico qppmax = ', qppmax |
---|
607 | WRITE(numout,*) ' Minimal N quota for diatoms qndmin = ', qndmin |
---|
608 | WRITE(numout,*) ' Maximal N quota for diatoms qndmax = ', qndmax |
---|
609 | WRITE(numout,*) ' Minimal P quota for diatoms qpdmin = ', qpdmin |
---|
610 | WRITE(numout,*) ' Maximal P quota for diatoms qpdmax = ', qpdmax |
---|
611 | WRITE(numout,*) ' Maximal Fe quota for nanophyto. qfnmax = ', qfnmax |
---|
612 | WRITE(numout,*) ' Maximal Fe quota for picophyto. qfpmax = ', qfpmax |
---|
613 | WRITE(numout,*) ' Maximal Fe quota for diatoms qfdmax = ', qfdmax |
---|
614 | ENDIF |
---|
615 | ! |
---|
616 | ! Metabolic cost of nitrate and ammonium utilisation |
---|
617 | zpsino3 = 2.3 * rno3 |
---|
618 | zpsinh4 = 1.8 * rno3 |
---|
619 | zpsiuptk = 1.0 / 6.625 |
---|
620 | ! |
---|
621 | nitrfac(:,:,jpk) = 0._wp |
---|
622 | xfracal(:,:,jpk) = 0._wp |
---|
623 | xlimphy(:,:,jpk) = 0._wp |
---|
624 | xlimpic(:,:,jpk) = 0._wp |
---|
625 | xlimdia(:,:,jpk) = 0._wp |
---|
626 | xlimnfe(:,:,jpk) = 0._wp |
---|
627 | xlimpfe(:,:,jpk) = 0._wp |
---|
628 | xlimdfe(:,:,jpk) = 0._wp |
---|
629 | sizen (:,:,jpk) = 0._wp |
---|
630 | sizep (:,:,jpk) = 0._wp |
---|
631 | sized (:,:,jpk) = 0._wp |
---|
632 | ! |
---|
633 | END SUBROUTINE p5z_lim_init |
---|
634 | |
---|
635 | |
---|
636 | INTEGER FUNCTION p5z_lim_alloc() |
---|
637 | !!---------------------------------------------------------------------- |
---|
638 | !! *** ROUTINE p5z_lim_alloc *** |
---|
639 | !!---------------------------------------------------------------------- |
---|
640 | USE lib_mpp , ONLY: ctl_stop |
---|
641 | INTEGER :: ierr(2) ! Local variables |
---|
642 | !!---------------------------------------------------------------------- |
---|
643 | ierr(:) = 0 |
---|
644 | ! |
---|
645 | !* Biological arrays for phytoplankton growth |
---|
646 | ALLOCATE( xpicono3(jpi,jpj,jpk), xpiconh4(jpi,jpj,jpk), & |
---|
647 | & xpicopo4(jpi,jpj,jpk), xpicodop(jpi,jpj,jpk), & |
---|
648 | & xnanodop(jpi,jpj,jpk), xdiatdop(jpi,jpj,jpk), & |
---|
649 | & xpicofer(jpi,jpj,jpk), xlimpfe (jpi,jpj,jpk), & |
---|
650 | & fvnuptk (jpi,jpj,jpk), fvduptk (jpi,jpj,jpk), & |
---|
651 | & xlimphys(jpi,jpj,jpk), xlimdias(jpi,jpj,jpk), & |
---|
652 | & xlimnpp (jpi,jpj,jpk), xlimnpn (jpi,jpj,jpk), & |
---|
653 | & xlimnpd (jpi,jpj,jpk), & |
---|
654 | & xlimpics(jpi,jpj,jpk), xqfuncfecp(jpi,jpj,jpk), & |
---|
655 | & fvpuptk (jpi,jpj,jpk), xlimpic (jpi,jpj,jpk), STAT=ierr(1) ) |
---|
656 | ! |
---|
657 | !* Minimum/maximum quotas of phytoplankton |
---|
658 | ALLOCATE( xqnnmin (jpi,jpj,jpk), xqnnmax(jpi,jpj,jpk), & |
---|
659 | & xqpnmin (jpi,jpj,jpk), xqpnmax(jpi,jpj,jpk), & |
---|
660 | & xqnpmin (jpi,jpj,jpk), xqnpmax(jpi,jpj,jpk), & |
---|
661 | & xqppmin (jpi,jpj,jpk), xqppmax(jpi,jpj,jpk), & |
---|
662 | & xqndmin (jpi,jpj,jpk), xqndmax(jpi,jpj,jpk), & |
---|
663 | & xqpdmin (jpi,jpj,jpk), xqpdmax(jpi,jpj,jpk), STAT=ierr(2) ) |
---|
664 | ! |
---|
665 | p5z_lim_alloc = MAXVAL( ierr ) |
---|
666 | ! |
---|
667 | IF( p5z_lim_alloc /= 0 ) CALL ctl_stop( 'STOP', 'p5z_lim_alloc : failed to allocate arrays.' ) |
---|
668 | ! |
---|
669 | END FUNCTION p5z_lim_alloc |
---|
670 | !!====================================================================== |
---|
671 | END MODULE p5zlim |
---|