1 | MODULE p5zprod |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p5zprod *** |
---|
4 | !! TOP : Growth Rate of the three phytoplanktons groups |
---|
5 | !! PISCES-QUOTA version of the module |
---|
6 | !!====================================================================== |
---|
7 | !! History : 1.0 ! 2004 (O. Aumont) Original code |
---|
8 | !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 |
---|
9 | !! 3.4 ! 2011-05 (O. Aumont, C. Ethe) New parameterization of light limitation |
---|
10 | !! 3.6 ! 2015-05 (O. Aumont) PISCES quota |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! p5z_prod : Compute the growth Rate of the two phytoplanktons groups |
---|
13 | !! p5z_prod_init : Initialization of the parameters for growth |
---|
14 | !! p5z_prod_alloc : Allocate variables for growth |
---|
15 | !!---------------------------------------------------------------------- |
---|
16 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
17 | USE trc ! passive tracers common variables |
---|
18 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
19 | USE p4zlim |
---|
20 | USE p5zlim ! Co-limitations of differents nutrients |
---|
21 | USE prtctl ! print control for debugging |
---|
22 | USE iom ! I/O manager |
---|
23 | |
---|
24 | IMPLICIT NONE |
---|
25 | PRIVATE |
---|
26 | |
---|
27 | PUBLIC p5z_prod ! called in p5zbio.F90 |
---|
28 | PUBLIC p5z_prod_init ! called in trcsms_pisces.F90 |
---|
29 | PUBLIC p5z_prod_alloc |
---|
30 | |
---|
31 | !! * Shared module variables |
---|
32 | REAL(wp), PUBLIC :: pislopen !: P-I slope of nanophytoplankton |
---|
33 | REAL(wp), PUBLIC :: pislopep !: P-I slope of picophytoplankton |
---|
34 | REAL(wp), PUBLIC :: pisloped !: P-I slope of diatoms |
---|
35 | REAL(wp), PUBLIC :: xadap !: Adaptation factor to low light |
---|
36 | REAL(wp), PUBLIC :: excretn !: Excretion ratio of nanophyto |
---|
37 | REAL(wp), PUBLIC :: excretp !: Excretion ratio of picophyto |
---|
38 | REAL(wp), PUBLIC :: excretd !: Excretion ratio of diatoms |
---|
39 | REAL(wp), PUBLIC :: bresp !: Basal respiration rate |
---|
40 | REAL(wp), PUBLIC :: thetanpm !: Maximum Chl/N ratio of picophyto |
---|
41 | REAL(wp), PUBLIC :: thetannm !: Maximum Chl/N ratio of nanophyto |
---|
42 | REAL(wp), PUBLIC :: thetandm !: Maximum Chl/N ratio of diatoms |
---|
43 | REAL(wp), PUBLIC :: chlcmin !: Minimum Chl/C ratio of phytoplankton |
---|
44 | REAL(wp), PUBLIC :: grosip !: Mean Si/C ratio of diatoms |
---|
45 | |
---|
46 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: zdaylen ! day length |
---|
47 | |
---|
48 | REAL(wp) :: r1_rday !: 1 / rday |
---|
49 | REAL(wp) :: texcretn !: 1 - excretn |
---|
50 | REAL(wp) :: texcretp !: 1 - excretp |
---|
51 | REAL(wp) :: texcretd !: 1 - excretd |
---|
52 | |
---|
53 | !! * Substitutions |
---|
54 | # include "do_loop_substitute.h90" |
---|
55 | # include "domzgr_substitute.h90" |
---|
56 | !!---------------------------------------------------------------------- |
---|
57 | !! NEMO/TOP 4.0 , NEMO Consortium (2018) |
---|
58 | !! $Id$ |
---|
59 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
60 | !!---------------------------------------------------------------------- |
---|
61 | CONTAINS |
---|
62 | |
---|
63 | SUBROUTINE p5z_prod( kt , knt, Kbb, Kmm, Krhs ) |
---|
64 | !!--------------------------------------------------------------------- |
---|
65 | !! *** ROUTINE p5z_prod *** |
---|
66 | !! |
---|
67 | !! ** Purpose : Compute the phytoplankton production depending on |
---|
68 | !! light, temperature and nutrient availability |
---|
69 | !! Computes also the uptake of nutrients. PISCES-quota |
---|
70 | !! relies on a full quota formalism |
---|
71 | !!--------------------------------------------------------------------- |
---|
72 | ! |
---|
73 | INTEGER, INTENT(in) :: kt, knt |
---|
74 | INTEGER, INTENT(in) :: Kbb, Kmm, Krhs ! time level indices |
---|
75 | ! |
---|
76 | INTEGER :: ji, jj, jk |
---|
77 | REAL(wp) :: zsilfac, znanotot, zpicotot, zdiattot, zconctemp, zconctemp2 |
---|
78 | REAL(wp) :: zration, zratiop, zratiof, zmax, ztn, zadap |
---|
79 | REAL(wp) :: zpronmax, zpropmax, zprofmax, zratio |
---|
80 | REAL(wp) :: zlim, zsilfac2, zsiborn, zprod, zprontot, zproptot, zprodtot |
---|
81 | REAL(wp) :: zproddoc, zproddon, zproddop, zprodsil, zprodfer, zprodlig, zresptot |
---|
82 | REAL(wp) :: zprnutmax, zprochln, zprochld, zprochlp |
---|
83 | REAL(wp) :: zpislopen, zpislopep, zpisloped |
---|
84 | REAL(wp) :: zval, zpptot, zpnewtot, zpregtot |
---|
85 | REAL(wp) :: zqfpmax, zqfnmax, zqfdmax |
---|
86 | REAL(wp) :: zfact, zrfact2, zmaxsi, zratiosi, zsizetmp, zlimfac, zsilim |
---|
87 | CHARACTER (len=25) :: charout |
---|
88 | REAL(wp), DIMENSION(jpi,jpj ) :: zmixnano, zmixpico, zmixdiat |
---|
89 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zpislopeadn, zpislopeadp, zpislopeadd |
---|
90 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zprnut, zprmaxp, zprmaxn, zprmaxd |
---|
91 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zprbio, zprpic, zprdia, zysopt |
---|
92 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zprchln, zprchlp, zprchld |
---|
93 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zprorcan, zprorcap, zprorcad |
---|
94 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zprofed, zprofep, zprofen |
---|
95 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zpronewn, zpronewp, zpronewd |
---|
96 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zproregn, zproregp, zproregd |
---|
97 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zpropo4n, zpropo4p, zpropo4d |
---|
98 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zprodopn, zprodopp, zprodopd |
---|
99 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zrespn, zrespp, zrespd |
---|
100 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zmxl_fac, zmxl_chl |
---|
101 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: zpligprod |
---|
102 | !!--------------------------------------------------------------------- |
---|
103 | ! |
---|
104 | IF( ln_timing ) CALL timing_start('p5z_prod') |
---|
105 | |
---|
106 | ! Initialize the local arrays |
---|
107 | zprorcan(:,:,:) = 0._wp ; zprorcap(:,:,:) = 0._wp ; zprorcad(:,:,:) = 0._wp |
---|
108 | zprofed (:,:,:) = 0._wp ; zprofep (:,:,:) = 0._wp ; zprofen (:,:,:) = 0._wp |
---|
109 | zpronewn(:,:,:) = 0._wp ; zpronewp(:,:,:) = 0._wp ; zpronewd(:,:,:) = 0._wp |
---|
110 | zproregn(:,:,:) = 0._wp ; zproregp(:,:,:) = 0._wp ; zproregd(:,:,:) = 0._wp |
---|
111 | zpropo4n(:,:,:) = 0._wp ; zpropo4p(:,:,:) = 0._wp ; zpropo4d(:,:,:) = 0._wp |
---|
112 | zprdia (:,:,:) = 0._wp ; zprpic (:,:,:) = 0._wp ; zprbio (:,:,:) = 0._wp |
---|
113 | zprodopn(:,:,:) = 0._wp ; zprodopp(:,:,:) = 0._wp ; zprodopd(:,:,:) = 0._wp |
---|
114 | zysopt (:,:,:) = 0._wp |
---|
115 | zrespn (:,:,:) = 0._wp ; zrespp (:,:,:) = 0._wp ; zrespd (:,:,:) = 0._wp |
---|
116 | zmxl_fac(:,:,:) = 0._wp ; zmxl_chl(:,:,:) = 0._wp |
---|
117 | consfe3 (:,:,:) = 0._wp |
---|
118 | |
---|
119 | ! Computation of the optimal production rates and nutrient uptake |
---|
120 | ! rates. Based on a Q10 description of the thermal dependency. |
---|
121 | zprnut (:,:,:) = 0.8_wp * r1_rday * tgfunc(:,:,:) |
---|
122 | zprmaxn(:,:,:) = 0.8_wp * (1. + zpsino3 * qnnmax ) * r1_rday * tgfunc(:,:,:) |
---|
123 | zprmaxd(:,:,:) = 0.8_wp * (1. + zpsino3 * qndmax ) * r1_rday * tgfunc(:,:,:) |
---|
124 | zprmaxp(:,:,:) = 0.6_wp * (1. + zpsino3 * qnpmax ) * r1_rday * tgfunc(:,:,:) |
---|
125 | |
---|
126 | ! Impact of the day duration and light intermittency on phytoplankton growth |
---|
127 | ! Intermittency is supposed to have a similar effect on production as |
---|
128 | ! day length (Shatwell et al., 2012). The correcting factor is zmxl_fac. |
---|
129 | ! zmxl_chl is the fractional day length and is used to compute the mean |
---|
130 | ! PAR during daytime. The effect of mixing is computed using the |
---|
131 | ! absolute light level definition of the euphotic zone |
---|
132 | ! ------------------------------------------------------------------------- |
---|
133 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
134 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
135 | zval = MAX( 1., strn(ji,jj) ) |
---|
136 | IF( gdepw(ji,jj,jk+1,Kmm) <= hmld(ji,jj) ) THEN |
---|
137 | zval = zval * MIN(1., heup_01(ji,jj) / ( hmld(ji,jj) + rtrn )) |
---|
138 | ENDIF |
---|
139 | zmxl_chl(ji,jj,jk) = zval / 24. |
---|
140 | zmxl_fac(ji,jj,jk) = 1.0 - exp( -0.26 * zval ) |
---|
141 | ENDIF |
---|
142 | END_3D |
---|
143 | |
---|
144 | zprbio(:,:,:) = zprmaxn(:,:,:) * zmxl_fac(:,:,:) |
---|
145 | zprdia(:,:,:) = zprmaxd(:,:,:) * zmxl_fac(:,:,:) |
---|
146 | zprpic(:,:,:) = zprmaxp(:,:,:) * zmxl_fac(:,:,:) |
---|
147 | |
---|
148 | ! Maximum light intensity |
---|
149 | zdaylen(:,:) = MAX(1., strn(:,:)) / 24. |
---|
150 | |
---|
151 | ! Computation of the P-I slope for nanos, picos and diatoms |
---|
152 | ! The formulation proposed by Geider et al. (1997) has been used. |
---|
153 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
154 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
155 | ! Computation of the P-I slope for nanos and diatoms |
---|
156 | ztn = MAX( 0., ts(ji,jj,jk,jp_tem,Kmm) - 15. ) |
---|
157 | zadap = xadap * ztn / ( 2.+ ztn ) |
---|
158 | ! |
---|
159 | ! Nanophytoplankton |
---|
160 | zpislopeadn(ji,jj,jk) = pislopen * tr(ji,jj,jk,jpnch,Kbb) & |
---|
161 | & /( tr(ji,jj,jk,jpphy,Kbb) * 12. + rtrn) |
---|
162 | |
---|
163 | ! Picophytoplankton |
---|
164 | zpislopeadp(ji,jj,jk) = pislopep * ( 1. + zadap * EXP( -0.25 * epico(ji,jj,jk) ) ) & |
---|
165 | & * tr(ji,jj,jk,jppch,Kbb) /( tr(ji,jj,jk,jppic,Kbb) * 12. + rtrn) |
---|
166 | |
---|
167 | ! Diatoms |
---|
168 | zpislopeadd(ji,jj,jk) = pisloped * tr(ji,jj,jk,jpdch,Kbb) & |
---|
169 | & /( tr(ji,jj,jk,jpdia,Kbb) * 12. + rtrn) |
---|
170 | ! |
---|
171 | zpislopen = zpislopeadn(ji,jj,jk) / ( zprbio(ji,jj,jk) * rday * xlimphy(ji,jj,jk) + rtrn ) |
---|
172 | zpislopep = zpislopeadp(ji,jj,jk) / ( zprpic(ji,jj,jk) * rday * xlimpic(ji,jj,jk) + rtrn ) |
---|
173 | zpisloped = zpislopeadd(ji,jj,jk) / ( zprdia(ji,jj,jk) * rday * xlimdia(ji,jj,jk) + rtrn ) |
---|
174 | |
---|
175 | ! Computation of production function for Carbon |
---|
176 | ! Actual light levels are used here |
---|
177 | ! --------------------------------------------- |
---|
178 | zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * ( 1.- EXP( -zpislopen * enano(ji,jj,jk) / zmxl_fac(ji,jj,jk) ) ) |
---|
179 | zprpic(ji,jj,jk) = zprpic(ji,jj,jk) * ( 1.- EXP( -zpislopep * epico(ji,jj,jk) / zmxl_fac(ji,jj,jk) ) ) |
---|
180 | zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * ( 1.- EXP( -zpisloped * ediat(ji,jj,jk) / zmxl_fac(ji,jj,jk) ) ) |
---|
181 | |
---|
182 | ! Computation of production function for Chlorophyll |
---|
183 | ! Mean light level in the mixed layer (when appropriate) |
---|
184 | ! is used here (acclimation is in general slower than |
---|
185 | ! the characteristic time scales of vertical mixing) |
---|
186 | ! ------------------------------------------------------ |
---|
187 | zpislopen = zpislopen * zmxl_fac(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
188 | zpisloped = zpisloped * zmxl_fac(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
189 | zpislopep = zpislopep * zmxl_fac(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
190 | zprchln(ji,jj,jk) = zprmaxn(ji,jj,jk) * ( 1.- EXP( -zpislopen * enanom(ji,jj,jk) ) ) |
---|
191 | zprchlp(ji,jj,jk) = zprmaxp(ji,jj,jk) * ( 1.- EXP( -zpislopep * epicom(ji,jj,jk) ) ) |
---|
192 | zprchld(ji,jj,jk) = zprmaxd(ji,jj,jk) * ( 1.- EXP( -zpisloped * ediatm(ji,jj,jk) ) ) |
---|
193 | ENDIF |
---|
194 | END_3D |
---|
195 | |
---|
196 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
197 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
198 | ! Si/C of diatoms |
---|
199 | ! ------------------------ |
---|
200 | ! Si/C increases with iron stress and silicate availability (zsilfac) |
---|
201 | ! Si/C is arbitrariliy increased for very high Si concentrations |
---|
202 | ! to mimic the very high ratios observed in the Southern Ocean (zsilfac2) |
---|
203 | ! A parameterization derived from Flynn (2003) is used for the control |
---|
204 | ! when Si is not limiting which is similar to the parameterisation |
---|
205 | ! proposed by Gurney and Davidson (1999). |
---|
206 | ! ----------------------------------------------------------------------- |
---|
207 | zlim = tr(ji,jj,jk,jpsil,Kbb) / ( tr(ji,jj,jk,jpsil,Kbb) + xksi1 ) |
---|
208 | zsilim = xlimdia(ji,jj,jk) * zprdia(ji,jj,jk) / ( zprmaxd(ji,jj,jk) + rtrn ) |
---|
209 | zsiborn = tr(ji,jj,jk,jpsil,Kbb) * tr(ji,jj,jk,jpsil,Kbb) * tr(ji,jj,jk,jpsil,Kbb) |
---|
210 | IF (gphit(ji,jj) < -30 ) THEN |
---|
211 | zsilfac2 = 1. + 1. * zsiborn / ( zsiborn + xksi2**3 ) |
---|
212 | ELSE |
---|
213 | zsilfac2 = 1. |
---|
214 | ENDIF |
---|
215 | zratiosi = 1.0 - tr(ji,jj,jk,jpdsi,Kbb) / ( tr(ji,jj,jk,jpdia,Kbb) + rtrn ) / ( zsilfac2 * grosip * 3.0 + rtrn ) |
---|
216 | zratiosi = MAX(0., MIN(1.0, zratiosi) ) |
---|
217 | zmaxsi = (1.0 + 0.1**4) * zratiosi**4 / ( zratiosi**4 + 0.1**4 ) |
---|
218 | IF ( xlimsi(ji,jj,jk) /= xlimdia(ji,jj,jk) ) THEN |
---|
219 | zysopt(ji,jj,jk) = zlim * zsilfac2 * grosip * 1.0 * zmaxsi |
---|
220 | ELSE |
---|
221 | zysopt(ji,jj,jk) = zlim * zsilfac2 * grosip * 1.0 * zsilim**0.7 * zmaxsi |
---|
222 | ENDIF |
---|
223 | ENDIF |
---|
224 | END_3D |
---|
225 | |
---|
226 | ! Sea-ice effect on production |
---|
227 | ! No production is assumed below sea ice |
---|
228 | ! -------------------------------------- |
---|
229 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
230 | zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * ( 1. - fr_i(ji,jj) ) |
---|
231 | zprpic(ji,jj,jk) = zprpic(ji,jj,jk) * ( 1. - fr_i(ji,jj) ) |
---|
232 | zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * ( 1. - fr_i(ji,jj) ) |
---|
233 | zprnut(ji,jj,jk) = zprnut(ji,jj,jk) * ( 1. - fr_i(ji,jj) ) |
---|
234 | END_3D |
---|
235 | |
---|
236 | ! Computation of the various production and uptake terms of nanophytoplankton |
---|
237 | ! Interactions between N and P are modeled according to the Chain Model |
---|
238 | ! of Pahlow et al. (2009). Iron uptake is modeled following traditional |
---|
239 | ! Droop kinetics. When the quota is approaching the maximum achievable |
---|
240 | ! quota, uptake is downregulated according to a sigmoidal function |
---|
241 | ! (power 2), as proposed by Flynn (2003) |
---|
242 | ! --------------------------------------------------------------------------- |
---|
243 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
244 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
245 | ! production terms for nanophyto. |
---|
246 | zprorcan(ji,jj,jk) = zprbio(ji,jj,jk) * xlimphy(ji,jj,jk) * tr(ji,jj,jk,jpphy,Kbb) * rfact2 |
---|
247 | |
---|
248 | ! Size computation |
---|
249 | ! Size is made a function of the limitation of of phytoplankton growth |
---|
250 | ! Strongly limited cells are supposed to be smaller. sizena is the |
---|
251 | ! size at time step t+1 and is thus updated at the end of the |
---|
252 | ! current time step |
---|
253 | ! -------------------------------------------------------------------- |
---|
254 | zlimfac = xlimphys(ji,jj,jk) * zprchln(ji,jj,jk) / ( zprmaxn(ji,jj,jk) + rtrn ) |
---|
255 | zsizetmp = 1.0 + 1.3 * ( xsizern - 1.0 ) * zlimfac**3/(0.3 + zlimfac**3) |
---|
256 | sizena(ji,jj,jk) = MIN(xsizern, MAX( sizena(ji,jj,jk), zsizetmp ) ) |
---|
257 | ! Maximum potential uptake rate |
---|
258 | zration = tr(ji,jj,jk,jpnph,Kbb) / ( tr(ji,jj,jk,jpphy,Kbb) + rtrn ) |
---|
259 | zratiop = tr(ji,jj,jk,jppph,Kbb) / ( tr(ji,jj,jk,jpphy,Kbb) + rtrn ) |
---|
260 | zratiof = tr(ji,jj,jk,jpnfe,Kbb) / ( tr(ji,jj,jk,jpphy,Kbb) + rtrn ) |
---|
261 | zprnutmax = zprnut(ji,jj,jk) * fvnuptk(ji,jj,jk) / rno3 * tr(ji,jj,jk,jpphy,Kbb) * rfact2 |
---|
262 | ! Uptake of nitrogen |
---|
263 | zratio = 1.0 - MIN( 1., zration / (xqnnmax(ji,jj,jk) + rtrn) ) |
---|
264 | zmax = MAX(0., MIN(1., zratio**2 / (0.05**2 + zratio**2) ) ) |
---|
265 | zpronmax = zprnutmax * zmax * MAX(0., MIN(1., ( zratiop - xqpnmin(ji,jj,jk) ) & |
---|
266 | & / ( xqpnmax(ji,jj,jk) - xqpnmin(ji,jj,jk) + rtrn ), xlimnfe(ji,jj,jk) ) ) |
---|
267 | zpronmax = zpronmax * xqnnmin(ji,jj,jk) / qnnmin |
---|
268 | zpronewn(ji,jj,jk) = zpronmax * xnanono3(ji,jj,jk) |
---|
269 | zproregn(ji,jj,jk) = zpronmax * xnanonh4(ji,jj,jk) |
---|
270 | ! Uptake of phosphorus and DOP |
---|
271 | zratio = 1.0 - MIN( 1., zratiop / (xqpnmax(ji,jj,jk) + rtrn) ) |
---|
272 | zmax = MAX(0., MIN(1., zratio**2 / (0.05**2 + zratio**2) ) ) |
---|
273 | zpropmax = zprnutmax * zmax * xlimnfe(ji,jj,jk) |
---|
274 | zpropo4n(ji,jj,jk) = zpropmax * xnanopo4(ji,jj,jk) |
---|
275 | zprodopn(ji,jj,jk) = zpropmax * xnanodop(ji,jj,jk) |
---|
276 | ! Uptake of iron |
---|
277 | zqfnmax = xqfuncfecn(ji,jj,jk) + ( qfnmax - xqfuncfecn(ji,jj,jk) ) * xlimnpn(ji,jj,jk) |
---|
278 | zratio = 1.0 - MIN( 1., zratiof / zqfnmax ) |
---|
279 | zmax = MAX(0., MIN(1., zratio**2/ (0.05**2 + zratio**2) ) ) |
---|
280 | zprofmax = zprnutmax * zqfnmax * zmax |
---|
281 | zprofen(ji,jj,jk) = zprofmax * xnanofer(ji,jj,jk) & |
---|
282 | & * (1. + 0.8 * xnanono3(ji,jj,jk) / ( rtrn & |
---|
283 | & + xnanono3(ji,jj,jk) + xnanonh4(ji,jj,jk) ) * (1. - xnanofer(ji,jj,jk) ) ) |
---|
284 | ENDIF |
---|
285 | END_3D |
---|
286 | |
---|
287 | ! Computation of the various production and uptake terms of picophytoplankton |
---|
288 | ! Interactions between N and P are modeled according to the Chain Model |
---|
289 | ! of Pahlow et al. (2009). Iron uptake is modeled following traditional |
---|
290 | ! Droop kinetics. When the quota is approaching the maximum achievable |
---|
291 | ! quota, uptake is downregulated according to a sigmoidal function |
---|
292 | ! (power 2), as proposed by Flynn (2003) |
---|
293 | ! --------------------------------------------------------------------------- |
---|
294 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
295 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
296 | ! production terms for picophyto. |
---|
297 | zprorcap(ji,jj,jk) = zprpic(ji,jj,jk) * xlimpic(ji,jj,jk) * tr(ji,jj,jk,jppic,Kbb) * rfact2 |
---|
298 | ! Size computation |
---|
299 | ! Size is made a function of the limitation of of phytoplankton growth |
---|
300 | ! Strongly limited cells are supposed to be smaller. sizepa is |
---|
301 | ! size at time step t+1 and is thus updated at the end of the |
---|
302 | ! current time step |
---|
303 | ! -------------------------------------------------------------------- |
---|
304 | zlimfac = zprchlp(ji,jj,jk) * xlimpics(ji,jj,jk) / ( zprmaxp(ji,jj,jk) + rtrn ) |
---|
305 | zsizetmp = 1.0 + 1.3 * ( xsizerp - 1.0 ) * zlimfac**3/(0.3 + zlimfac**3) |
---|
306 | sizepa(ji,jj,jk) = min(xsizerp, max( sizepa(ji,jj,jk), zsizetmp ) ) |
---|
307 | ! Maximum potential uptake rate of nutrients |
---|
308 | zration = tr(ji,jj,jk,jpnpi,Kbb) / ( tr(ji,jj,jk,jppic,Kbb) + rtrn ) |
---|
309 | zratiop = tr(ji,jj,jk,jpppi,Kbb) / ( tr(ji,jj,jk,jppic,Kbb) + rtrn ) |
---|
310 | zratiof = tr(ji,jj,jk,jppfe,Kbb) / ( tr(ji,jj,jk,jppic,Kbb) + rtrn ) |
---|
311 | zprnutmax = zprnut(ji,jj,jk) * fvpuptk(ji,jj,jk) / rno3 * tr(ji,jj,jk,jppic,Kbb) * rfact2 |
---|
312 | ! Uptake of nitrogen |
---|
313 | zratio = 1.0 - MIN( 1., zration / (xqnpmax(ji,jj,jk) + rtrn) ) |
---|
314 | zmax = MAX(0., MIN(1., zratio**2/ (0.05**2 + zratio**2) ) ) |
---|
315 | zpronmax = zprnutmax * zmax * MAX(0., MIN(1., ( zratiop - xqppmin(ji,jj,jk) ) & |
---|
316 | & / ( xqppmax(ji,jj,jk) - xqppmin(ji,jj,jk) + rtrn ), xlimpfe(ji,jj,jk) ) ) |
---|
317 | zpronmax = zpronmax * xqnpmin(ji,jj,jk) / qnnmin |
---|
318 | zpronewp(ji,jj,jk) = zpronmax * xpicono3(ji,jj,jk) |
---|
319 | zproregp(ji,jj,jk) = zpronmax * xpiconh4(ji,jj,jk) |
---|
320 | ! Uptake of phosphorus |
---|
321 | zratio = 1.0 - MIN( 1., zratiop / (xqppmax(ji,jj,jk) + rtrn) ) |
---|
322 | zmax = MAX(0., MIN(1., zratio**2 / (0.05**2 + zratio**2) ) ) |
---|
323 | zpropmax = zprnutmax * zmax * xlimpfe(ji,jj,jk) |
---|
324 | zpropo4p(ji,jj,jk) = zpropmax * xpicopo4(ji,jj,jk) |
---|
325 | zprodopp(ji,jj,jk) = zpropmax * xpicodop(ji,jj,jk) |
---|
326 | ! Uptake of iron |
---|
327 | zqfpmax = xqfuncfecp(ji,jj,jk) + ( qfpmax - xqfuncfecp(ji,jj,jk) ) * xlimnpp(ji,jj,jk) |
---|
328 | zratio = 1.0 - MIN( 1., zratiof / zqfpmax ) |
---|
329 | zmax = MAX(0., MIN(1., zratio**2 / (0.05**2 + zratio**2) ) ) |
---|
330 | zprofmax = zprnutmax * zqfpmax * zmax |
---|
331 | zprofep(ji,jj,jk) = zprofmax * xpicofer(ji,jj,jk) & |
---|
332 | & * (1. + 0.8 * xpicono3(ji,jj,jk) / ( rtrn & |
---|
333 | & + xpicono3(ji,jj,jk) + xpiconh4(ji,jj,jk) ) * (1. - xpicofer(ji,jj,jk) ) ) |
---|
334 | ENDIF |
---|
335 | END_3D |
---|
336 | |
---|
337 | ! Computation of the various production and uptake terms of diatoms |
---|
338 | ! Interactions between N and P are modeled according to the Chain Model |
---|
339 | ! of Pahlow et al. (2009). Iron uptake is modeled following traditional |
---|
340 | ! Droop kinetics. When the quota is approaching the maximum achievable |
---|
341 | ! quota, uptake is downregulated according to a sigmoidal function |
---|
342 | ! (power 2), as proposed by Flynn (2003) |
---|
343 | ! --------------------------------------------------------------------------- |
---|
344 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
345 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
346 | ! production terms for diatomees |
---|
347 | zprorcad(ji,jj,jk) = zprdia(ji,jj,jk) * xlimdia(ji,jj,jk) * tr(ji,jj,jk,jpdia,Kbb) * rfact2 |
---|
348 | ! Size computation |
---|
349 | ! Size is made a function of the limitation of of phytoplankton growth |
---|
350 | ! Strongly limited cells are supposed to be smaller. sizeda is |
---|
351 | ! size at time step t+1 and is thus updated at the end of the |
---|
352 | ! current time step. |
---|
353 | ! -------------------------------------------------------------------- |
---|
354 | zlimfac = zprchld(ji,jj,jk) * xlimdias(ji,jj,jk) / ( zprmaxd(ji,jj,jk) + rtrn ) |
---|
355 | zsizetmp = 1.0 + 1.3 * ( xsizerd - 1.0 ) * zlimfac**3/(0.3 + zlimfac**3) |
---|
356 | sizeda(ji,jj,jk) = min(xsizerd, max( sizeda(ji,jj,jk), zsizetmp ) ) |
---|
357 | ! Maximum potential uptake rate of nutrients |
---|
358 | zration = tr(ji,jj,jk,jpndi,Kbb) / ( tr(ji,jj,jk,jpdia,Kbb) + rtrn ) |
---|
359 | zratiop = tr(ji,jj,jk,jppdi,Kbb) / ( tr(ji,jj,jk,jpdia,Kbb) + rtrn ) |
---|
360 | zratiof = tr(ji,jj,jk,jpdfe,Kbb) / ( tr(ji,jj,jk,jpdia,Kbb) + rtrn ) |
---|
361 | zprnutmax = zprnut(ji,jj,jk) * fvduptk(ji,jj,jk) / rno3 * tr(ji,jj,jk,jpdia,Kbb) * rfact2 |
---|
362 | ! Uptake of nitrogen |
---|
363 | zratio = 1.0 - MIN( 1., zration / (xqndmax(ji,jj,jk) + rtrn) ) |
---|
364 | zmax = MAX(0., MIN(1., zratio**2 / (0.05**2 + zratio**2) ) ) |
---|
365 | zpronmax = zprnutmax * zmax * MAX(0., MIN(1., ( zratiop - xqpdmin(ji,jj,jk) ) & |
---|
366 | & / ( xqpdmax(ji,jj,jk) - xqpdmin(ji,jj,jk) + rtrn ), xlimdfe(ji,jj,jk) ) ) |
---|
367 | zpronmax = zpronmax * xqndmin(ji,jj,jk) / qnnmin |
---|
368 | zpronewd(ji,jj,jk) = zpronmax * xdiatno3(ji,jj,jk) |
---|
369 | zproregd(ji,jj,jk) = zpronmax * xdiatnh4(ji,jj,jk) |
---|
370 | ! Uptake of phosphorus |
---|
371 | zratio = 1.0 - MIN( 1., zratiop / (xqpdmax(ji,jj,jk) + rtrn) ) |
---|
372 | zmax = MAX(0., MIN(1., zratio**2/ (0.05**2 + zratio**2) ) ) |
---|
373 | zpropmax = zprnutmax * zmax * xlimdfe(ji,jj,jk) |
---|
374 | zpropo4d(ji,jj,jk) = zpropmax * xdiatpo4(ji,jj,jk) |
---|
375 | zprodopd(ji,jj,jk) = zpropmax * xdiatdop(ji,jj,jk) |
---|
376 | ! Uptake of iron |
---|
377 | zqfdmax = xqfuncfecd(ji,jj,jk) + ( qfdmax - xqfuncfecd(ji,jj,jk) ) * xlimnpd(ji,jj,jk) |
---|
378 | zratio = 1.0 - MIN( 1., zratiof / zqfdmax ) |
---|
379 | zmax = MAX(0., MIN(1., zratio**2 / (0.05**2 + zratio**2) ) ) |
---|
380 | zprofmax = zprnutmax * zqfdmax * zmax |
---|
381 | zprofed(ji,jj,jk) = zprofmax * xdiatfer(ji,jj,jk) & |
---|
382 | & * (1. + 0.8 * xdiatno3(ji,jj,jk) / ( rtrn & |
---|
383 | & + xdiatno3(ji,jj,jk) + xdiatnh4(ji,jj,jk) ) * (1. - xdiatfer(ji,jj,jk) ) ) |
---|
384 | ENDIF |
---|
385 | END_3D |
---|
386 | |
---|
387 | ! Production of Chlorophyll. The formulation proposed by Geider et al. |
---|
388 | ! is adopted here. |
---|
389 | ! -------------------------------------------------------------------- |
---|
390 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
391 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
392 | ! production terms for nanophyto. ( chlorophyll ) |
---|
393 | znanotot = enanom(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
394 | zprod = rday * (zpronewn(ji,jj,jk) + zproregn(ji,jj,jk)) * zprchln(ji,jj,jk) * xlimphy(ji,jj,jk) |
---|
395 | zprochln = thetannm * zprod / ( zpislopeadn(ji,jj,jk) * znanotot + rtrn ) |
---|
396 | zprochln = MAX(zprochln, chlcmin * 12. * zprorcan (ji,jj,jk) ) |
---|
397 | ! production terms for picophyto. ( chlorophyll ) |
---|
398 | zpicotot = epicom(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
399 | zprod = rday * (zpronewp(ji,jj,jk) + zproregp(ji,jj,jk)) * zprchlp(ji,jj,jk) * xlimpic(ji,jj,jk) |
---|
400 | zprochlp = thetanpm * zprod / ( zpislopeadp(ji,jj,jk) * zpicotot + rtrn ) |
---|
401 | zprochlp = MAX(zprochlp, chlcmin * 12. * zprorcap(ji,jj,jk) ) |
---|
402 | ! production terms for diatoms ( chlorophyll ) |
---|
403 | zdiattot = ediatm(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
404 | zprod = rday * (zpronewd(ji,jj,jk) + zproregd(ji,jj,jk)) * zprchld(ji,jj,jk) * xlimdia(ji,jj,jk) |
---|
405 | zprochld = thetandm * zprod / ( zpislopeadd(ji,jj,jk) * zdiattot + rtrn ) |
---|
406 | zprochld = MAX(zprochld, chlcmin * 12. * zprorcad(ji,jj,jk) ) |
---|
407 | ! Update the arrays TRA which contain the Chla sources and sinks |
---|
408 | tr(ji,jj,jk,jpnch,Krhs) = tr(ji,jj,jk,jpnch,Krhs) + zprochln * texcretn |
---|
409 | tr(ji,jj,jk,jpdch,Krhs) = tr(ji,jj,jk,jpdch,Krhs) + zprochld * texcretd |
---|
410 | tr(ji,jj,jk,jppch,Krhs) = tr(ji,jj,jk,jppch,Krhs) + zprochlp * texcretp |
---|
411 | ENDIF |
---|
412 | END_3D |
---|
413 | |
---|
414 | ! Update the arrays TRA which contain the biological sources and sinks |
---|
415 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
416 | zpptot = zpropo4n(ji,jj,jk) + zpropo4d(ji,jj,jk) + zpropo4p(ji,jj,jk) |
---|
417 | zpnewtot = zpronewn(ji,jj,jk) + zpronewd(ji,jj,jk) + zpronewp(ji,jj,jk) |
---|
418 | zpregtot = zproregn(ji,jj,jk) + zproregd(ji,jj,jk) + zproregp(ji,jj,jk) |
---|
419 | |
---|
420 | zprontot = zpronewn(ji,jj,jk) + zproregn(ji,jj,jk) |
---|
421 | zproptot = zpronewp(ji,jj,jk) + zproregp(ji,jj,jk) |
---|
422 | zprodtot = zpronewd(ji,jj,jk) + zproregd(ji,jj,jk) |
---|
423 | ! |
---|
424 | zproddoc = excretd * zprorcad(ji,jj,jk) & |
---|
425 | & + excretn * zprorcan(ji,jj,jk) & |
---|
426 | & + excretp * zprorcap(ji,jj,jk) |
---|
427 | ! |
---|
428 | zproddop = excretd * zpropo4d(ji,jj,jk) - texcretd * zprodopd(ji,jj,jk) & |
---|
429 | & + excretn * zpropo4n(ji,jj,jk) - texcretn * zprodopn(ji,jj,jk) & |
---|
430 | & + excretp * zpropo4p(ji,jj,jk) - texcretp * zprodopp(ji,jj,jk) |
---|
431 | |
---|
432 | zproddon = excretd * zprodtot + excretn * zprontot + excretp * zproptot |
---|
433 | |
---|
434 | zprodfer = texcretn * zprofen(ji,jj,jk) + texcretd * zprofed(ji,jj,jk) + texcretp * zprofep(ji,jj,jk) |
---|
435 | zresptot = zrespn(ji,jj,jk) + zrespp(ji,jj,jk) + zrespd(ji,jj,jk) |
---|
436 | |
---|
437 | ! |
---|
438 | tr(ji,jj,jk,jppo4,Krhs) = tr(ji,jj,jk,jppo4,Krhs) - zpptot |
---|
439 | tr(ji,jj,jk,jpno3,Krhs) = tr(ji,jj,jk,jpno3,Krhs) - zpnewtot |
---|
440 | tr(ji,jj,jk,jpnh4,Krhs) = tr(ji,jj,jk,jpnh4,Krhs) - zpregtot |
---|
441 | ! |
---|
442 | tr(ji,jj,jk,jpphy,Krhs) = tr(ji,jj,jk,jpphy,Krhs) & |
---|
443 | & + zprorcan(ji,jj,jk) * texcretn & |
---|
444 | & - zpsino3 * zpronewn(ji,jj,jk) & |
---|
445 | & - zpsinh4 * zproregn(ji,jj,jk) & |
---|
446 | & - zrespn(ji,jj,jk) |
---|
447 | |
---|
448 | tr(ji,jj,jk,jpnph,Krhs) = tr(ji,jj,jk,jpnph,Krhs) + zprontot * texcretn |
---|
449 | tr(ji,jj,jk,jppph,Krhs) = tr(ji,jj,jk,jppph,Krhs) + ( zpropo4n(ji,jj,jk) + zprodopn(ji,jj,jk) ) * texcretn |
---|
450 | tr(ji,jj,jk,jpnfe,Krhs) = tr(ji,jj,jk,jpnfe,Krhs) + zprofen(ji,jj,jk) * texcretn |
---|
451 | |
---|
452 | ! |
---|
453 | tr(ji,jj,jk,jppic,Krhs) = tr(ji,jj,jk,jppic,Krhs) & |
---|
454 | & + zprorcap(ji,jj,jk) * texcretp & |
---|
455 | & - zpsino3 * zpronewp(ji,jj,jk) & |
---|
456 | & - zpsinh4 * zproregp(ji,jj,jk) & |
---|
457 | & - zrespp(ji,jj,jk) |
---|
458 | |
---|
459 | tr(ji,jj,jk,jpnpi,Krhs) = tr(ji,jj,jk,jpnpi,Krhs) + zproptot * texcretp |
---|
460 | tr(ji,jj,jk,jpppi,Krhs) = tr(ji,jj,jk,jpppi,Krhs) + ( zpropo4p(ji,jj,jk) + zprodopp(ji,jj,jk) ) * texcretp |
---|
461 | tr(ji,jj,jk,jppfe,Krhs) = tr(ji,jj,jk,jppfe,Krhs) + zprofep(ji,jj,jk) * texcretp |
---|
462 | |
---|
463 | ! |
---|
464 | tr(ji,jj,jk,jpdia,Krhs) = tr(ji,jj,jk,jpdia,Krhs) & |
---|
465 | & + zprorcad(ji,jj,jk) * texcretd & |
---|
466 | & - zpsino3 * zpronewd(ji,jj,jk) & |
---|
467 | & - zpsinh4 * zproregd(ji,jj,jk) & |
---|
468 | & - zrespd(ji,jj,jk) |
---|
469 | |
---|
470 | tr(ji,jj,jk,jpndi,Krhs) = tr(ji,jj,jk,jpndi,Krhs) + zprodtot * texcretd |
---|
471 | tr(ji,jj,jk,jppdi,Krhs) = tr(ji,jj,jk,jppdi,Krhs) + ( zpropo4d(ji,jj,jk) + zprodopd(ji,jj,jk) ) * texcretd |
---|
472 | tr(ji,jj,jk,jpdfe,Krhs) = tr(ji,jj,jk,jpdfe,Krhs) + zprofed(ji,jj,jk) * texcretd |
---|
473 | tr(ji,jj,jk,jpdsi,Krhs) = tr(ji,jj,jk,jpdsi,Krhs) + zprorcad(ji,jj,jk) * zysopt(ji,jj,jk) * texcretd |
---|
474 | |
---|
475 | tr(ji,jj,jk,jpdoc,Krhs) = tr(ji,jj,jk,jpdoc,Krhs) + zproddoc |
---|
476 | tr(ji,jj,jk,jpdon,Krhs) = tr(ji,jj,jk,jpdon,Krhs) + zproddon |
---|
477 | tr(ji,jj,jk,jpdop,Krhs) = tr(ji,jj,jk,jpdop,Krhs) + zproddop |
---|
478 | |
---|
479 | tr(ji,jj,jk,jpoxy,Krhs) = tr(ji,jj,jk,jpoxy,Krhs) & |
---|
480 | & + o2ut * zpregtot + ( o2ut + o2nit ) * zpnewtot - o2ut * zresptot |
---|
481 | |
---|
482 | tr(ji,jj,jk,jpfer,Krhs) = tr(ji,jj,jk,jpfer,Krhs) - zprodfer |
---|
483 | consfe3(ji,jj,jk) = zprodfer * 75.0 / ( rtrn + ( plig(ji,jj,jk) + 75.0 * (1.0 - plig(ji,jj,jk) ) ) & |
---|
484 | & * tr(ji,jj,jk,jpfer,Kbb) ) / rfact2 |
---|
485 | |
---|
486 | tr(ji,jj,jk,jpsil,Krhs) = tr(ji,jj,jk,jpsil,Krhs) - texcretd * zprorcad(ji,jj,jk) * zysopt(ji,jj,jk) |
---|
487 | |
---|
488 | tr(ji,jj,jk,jpdic,Krhs) = tr(ji,jj,jk,jpdic,Krhs) - zpptot & |
---|
489 | & + zpsino3 * zpronewn(ji,jj,jk) + zpsinh4 * zproregn(ji,jj,jk) & |
---|
490 | & + zpsino3 * zpronewp(ji,jj,jk) + zpsinh4 * zproregp(ji,jj,jk) & |
---|
491 | & + zpsino3 * zpronewd(ji,jj,jk) + zpsinh4 * zproregd(ji,jj,jk) |
---|
492 | |
---|
493 | tr(ji,jj,jk,jptal,Krhs) = tr(ji,jj,jk,jptal,Krhs) + rno3 * ( zpnewtot - zpregtot ) |
---|
494 | ! |
---|
495 | END_3D |
---|
496 | |
---|
497 | ! Production and uptake of ligands by phytoplankton. This part is activated |
---|
498 | ! when ln_ligand is set to .true. in the namelist. Ligand uptake is small |
---|
499 | ! and based on the FeL model by Morel et al. (2008) and on the study of |
---|
500 | ! Shaked and Lis (2012) |
---|
501 | ! ------------------------------------------------------------------------- |
---|
502 | IF( ln_ligand ) THEN |
---|
503 | DO_3D( 1, 1, 1, 1, 1, jpkm1 ) |
---|
504 | zproddoc = excretd * zprorcad(ji,jj,jk) + excretn * zprorcan(ji,jj,jk) + excretp * zprorcap(ji,jj,jk) |
---|
505 | zprodfer = texcretn * zprofen(ji,jj,jk) + texcretd * zprofed(ji,jj,jk) + texcretp * zprofep(ji,jj,jk) |
---|
506 | zprodlig = plig(ji,jj,jk) / ( rtrn + plig(ji,jj,jk) + 75.0 * (1.0 - plig(ji,jj,jk) ) ) * lthet |
---|
507 | ! |
---|
508 | tr(ji,jj,jk,jplgw,Krhs) = tr(ji,jj,jk,jplgw,Krhs) + zproddoc * ldocp - zprodfer * zprodlig |
---|
509 | END_3D |
---|
510 | ENDIF |
---|
511 | |
---|
512 | ! Total primary production per year |
---|
513 | IF( iom_use( "tintpp" ) .OR. ( ln_check_mass .AND. kt == nitend .AND. knt == nrdttrc ) ) & |
---|
514 | & tpp = glob_sum( 'p5zprod', ( zprorcan(:,:,:) + zprorcad(:,:,:) + zprorcap(:,:,:) ) * cvol(:,:,:) ) |
---|
515 | |
---|
516 | IF( lk_iomput .AND. knt == nrdttrc ) THEN |
---|
517 | zfact = 1.e+3 * rfact2r ! conversion from mol/l/kt to mol/m3/s |
---|
518 | ! |
---|
519 | CALL iom_put( "PPPHYP" , zprorcap(:,:,:) * zfact * tmask(:,:,:) ) ! primary production by picophyto |
---|
520 | CALL iom_put( "PPPHYN" , zprorcan(:,:,:) * zfact * tmask(:,:,:) ) ! primary production by nanophyto |
---|
521 | CALL iom_put( "PPPHYD" , zprorcad(:,:,:) * zfact * tmask(:,:,:) ) ! primary production by diatomes |
---|
522 | CALL iom_put( "PPNEWN" , zpronewp(:,:,:) * zfact * tmask(:,:,:) ) ! new primary production by picophyto |
---|
523 | CALL iom_put( "PPNEWN" , zpronewn(:,:,:) * zfact * tmask(:,:,:) ) ! new primary production by nanophyto |
---|
524 | CALL iom_put( "PPNEWD" , zpronewd(:,:,:) * zfact * tmask(:,:,:) ) ! new primary production by diatomes |
---|
525 | CALL iom_put( "PBSi" , zprorcad(:,:,:) * zfact * tmask(:,:,:) * zysopt(:,:,:) ) ! biogenic silica production |
---|
526 | CALL iom_put( "PFeP" , zprofep(:,:,:) * zfact * tmask(:,:,:) ) ! biogenic iron production by picophyto |
---|
527 | CALL iom_put( "PFeN" , zprofen(:,:,:) * zfact * tmask(:,:,:) ) ! biogenic iron production by nanophyto |
---|
528 | CALL iom_put( "PFeD" , zprofed(:,:,:) * zfact * tmask(:,:,:) ) ! biogenic iron production by diatomes |
---|
529 | IF( ln_ligand .AND. ( iom_use( "LPRODP" ) .OR. iom_use( "LDETP" ) ) ) THEN |
---|
530 | ALLOCATE( zpligprod(jpi,jpj,jpk) ) |
---|
531 | zpligprod(:,:,:) = excretd * zprorcad(:,:,:) + excretn * zprorcan(:,:,:) + excretp * zprorcap(:,:,:) |
---|
532 | CALL iom_put( "LPRODP" , zpligprod(:,:,:) * ldocp * 1e9 * zfact * tmask(:,:,:) ) |
---|
533 | ! |
---|
534 | zpligprod(:,:,:) = ( texcretn * zprofen(:,:,:) + texcretd * zprofed(:,:,:) + texcretp * zprofep(:,:,:) ) & |
---|
535 | & * plig(:,:,:) / ( rtrn + plig(:,:,:) + 75.0 * (1.0 - plig(:,:,:) ) ) |
---|
536 | CALL iom_put( "LDETP" , zpligprod(:,:,:) * lthet * 1e9 * zfact * tmask(:,:,:) ) |
---|
537 | DEALLOCATE( zpligprod ) |
---|
538 | ENDIF |
---|
539 | CALL iom_put( "Mumax" , zprmaxn(:,:,:) * tmask(:,:,:) ) ! Maximum growth rate |
---|
540 | CALL iom_put( "MuP" , zprpic(:,:,:) * xlimpic(:,:,:) * tmask(:,:,:) ) ! Realized growth rate for picophyto |
---|
541 | CALL iom_put( "MuN" , zprbio(:,:,:) * xlimphy(:,:,:) * tmask(:,:,:) ) ! Realized growth rate for nanophyto |
---|
542 | CALL iom_put( "MuD" , zprdia(:,:,:) * xlimdia(:,:,:) * tmask(:,:,:) ) ! Realized growth rate for diatoms |
---|
543 | CALL iom_put( "LPlight" , zprpic(:,:,:) / (zprmaxp(:,:,:) + rtrn) * tmask(:,:,:) ) ! light limitation term |
---|
544 | CALL iom_put( "LNlight" , zprbio(:,:,:) / (zprmaxn(:,:,:) + rtrn) * tmask(:,:,:) ) ! light limitation term |
---|
545 | CALL iom_put( "LDlight" , zprdia(:,:,:) / (zprmaxd(:,:,:) + rtrn) * tmask(:,:,:) ) |
---|
546 | CALL iom_put( "MunetP" , ( tr(:,:,:,jppic,Krhs)/rfact2/(tr(:,:,:,jppic,Kbb)+ rtrn ) * tmask(:,:,:)) ) ! Realized growth rate for picophyto |
---|
547 | CALL iom_put( "MunetN" , ( tr(:,:,:,jpphy,Krhs)/rfact2/(tr(:,:,:,jpphy,Kbb)+ rtrn ) * tmask(:,:,:)) ) ! Realized growth rate for picophyto |
---|
548 | CALL iom_put( "MunetD" , ( tr(:,:,:,jpdia,Krhs)/rfact2/(tr(:,:,:,jpdia,Kbb)+ rtrn ) * tmask(:,:,:)) ) ! Realized growth rate for picophyto |
---|
549 | CALL iom_put( "TPP" , ( zprorcap(:,:,:) + zprorcan(:,:,:) + zprorcad(:,:,:) ) * zfact * tmask(:,:,:) ) ! total primary production |
---|
550 | CALL iom_put( "TPNEW" , ( zpronewp(:,:,:) + zpronewn(:,:,:) + zpronewd(:,:,:) ) * zfact * tmask(:,:,:) ) ! total new production |
---|
551 | CALL iom_put( "TPBFE" , ( zprofep (:,:,:) + zprofen (:,:,:) + zprofed (:,:,:) ) * zfact * tmask(:,:,:) ) ! total biogenic iron production |
---|
552 | CALL iom_put( "tintpp" , tpp * zfact ) ! global total integrated primary production molC/s |
---|
553 | ENDIF |
---|
554 | |
---|
555 | IF(sn_cfctl%l_prttrc) THEN ! print mean trends (used for debugging) |
---|
556 | WRITE(charout, FMT="('prod')") |
---|
557 | CALL prt_ctl_info( charout, cdcomp = 'top' ) |
---|
558 | CALL prt_ctl(tab4d_1=tr(:,:,:,:,Krhs), mask1=tmask, clinfo=ctrcnm) |
---|
559 | ENDIF |
---|
560 | ! |
---|
561 | IF( ln_timing ) CALL timing_stop('p5z_prod') |
---|
562 | ! |
---|
563 | END SUBROUTINE p5z_prod |
---|
564 | |
---|
565 | |
---|
566 | SUBROUTINE p5z_prod_init |
---|
567 | !!---------------------------------------------------------------------- |
---|
568 | !! *** ROUTINE p5z_prod_init *** |
---|
569 | !! |
---|
570 | !! ** Purpose : Initialization of phytoplankton production parameters |
---|
571 | !! |
---|
572 | !! ** Method : Read the namp5zprod namelist and check the parameters |
---|
573 | !! called at the first timestep (nittrc000) |
---|
574 | !! |
---|
575 | !! ** input : Namelist namp5zprod |
---|
576 | !!---------------------------------------------------------------------- |
---|
577 | INTEGER :: ios ! Local integer output status for namelist read |
---|
578 | !! |
---|
579 | NAMELIST/namp5zprod/ pislopen, pislopep, pisloped, excretn, excretp, excretd, & |
---|
580 | & thetannm, thetanpm, thetandm, chlcmin, grosip, bresp, xadap |
---|
581 | !!---------------------------------------------------------------------- |
---|
582 | |
---|
583 | READ ( numnatp_ref, namp5zprod, IOSTAT = ios, ERR = 901) |
---|
584 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namp5zprod in reference namelist' ) |
---|
585 | |
---|
586 | READ ( numnatp_cfg, namp5zprod, IOSTAT = ios, ERR = 902 ) |
---|
587 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namp5zprod in configuration namelist' ) |
---|
588 | IF(lwm) WRITE ( numonp, namp5zprod ) |
---|
589 | |
---|
590 | IF(lwp) THEN ! control print |
---|
591 | WRITE(numout,*) ' ' |
---|
592 | WRITE(numout,*) ' Namelist parameters for phytoplankton growth, namp5zprod' |
---|
593 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
594 | WRITE(numout,*) ' mean Si/C ratio grosip =', grosip |
---|
595 | WRITE(numout,*) ' P-I slope pislopen =', pislopen |
---|
596 | WRITE(numout,*) ' P-I slope for diatoms pisloped =', pisloped |
---|
597 | WRITE(numout,*) ' P-I slope for picophytoplankton pislopep =', pislopep |
---|
598 | WRITE(numout,*) ' Acclimation factor to low light xadap =', xadap |
---|
599 | WRITE(numout,*) ' excretion ratio of nanophytoplankton excretn =', excretn |
---|
600 | WRITE(numout,*) ' excretion ratio of picophytoplankton excretp =', excretp |
---|
601 | WRITE(numout,*) ' excretion ratio of diatoms excretd =', excretd |
---|
602 | WRITE(numout,*) ' basal respiration in phytoplankton bresp =', bresp |
---|
603 | WRITE(numout,*) ' Maximum Chl/C in phytoplankton chlcmin =', chlcmin |
---|
604 | WRITE(numout,*) ' Minimum Chl/N in nanophytoplankton thetannm =', thetannm |
---|
605 | WRITE(numout,*) ' Minimum Chl/N in picophytoplankton thetanpm =', thetanpm |
---|
606 | WRITE(numout,*) ' Minimum Chl/N in diatoms thetandm =', thetandm |
---|
607 | ENDIF |
---|
608 | ! |
---|
609 | r1_rday = 1._wp / rday |
---|
610 | texcretn = 1._wp - excretn |
---|
611 | texcretp = 1._wp - excretp |
---|
612 | texcretd = 1._wp - excretd |
---|
613 | tpp = 0._wp |
---|
614 | ! |
---|
615 | END SUBROUTINE p5z_prod_init |
---|
616 | |
---|
617 | |
---|
618 | INTEGER FUNCTION p5z_prod_alloc() |
---|
619 | !!---------------------------------------------------------------------- |
---|
620 | !! *** ROUTINE p5z_prod_alloc *** |
---|
621 | !!---------------------------------------------------------------------- |
---|
622 | ALLOCATE( zdaylen(jpi,jpj), STAT = p5z_prod_alloc ) |
---|
623 | ! |
---|
624 | IF( p5z_prod_alloc /= 0 ) CALL ctl_stop( 'STOP', 'p5z_prod_alloc : failed to allocate arrays.' ) |
---|
625 | ! |
---|
626 | END FUNCTION p5z_prod_alloc |
---|
627 | !!====================================================================== |
---|
628 | END MODULE p5zprod |
---|