1 | MODULE seddsrjac |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE seddsr *** |
---|
4 | !! Sediment : dissolution and reaction in pore water related |
---|
5 | !! related to organic matter |
---|
6 | !!===================================================================== |
---|
7 | !! * Modules used |
---|
8 | USE sed ! sediment global variable |
---|
9 | USE sedini |
---|
10 | USE seddsr |
---|
11 | USE lib_mpp ! distribued memory computing library |
---|
12 | USE lib_fortran |
---|
13 | |
---|
14 | IMPLICIT NONE |
---|
15 | PRIVATE |
---|
16 | |
---|
17 | PUBLIC sed_dsrjac |
---|
18 | |
---|
19 | !! * Module variables |
---|
20 | |
---|
21 | !! $Id: seddsr.F90 10362 2018-11-30 15:38:17Z aumont $ |
---|
22 | CONTAINS |
---|
23 | |
---|
24 | SUBROUTINE sed_dsrjac( ji ) |
---|
25 | !!---------------------------------------------------------------------- |
---|
26 | !! *** ROUTINE sed_dsr *** |
---|
27 | !! |
---|
28 | !! ** Purpose : computes pore water dissolution and reaction |
---|
29 | !! |
---|
30 | !! ** Methode : Computation of the redox reactions in sediment. |
---|
31 | !! The main redox reactions are solved in sed_dsr whereas |
---|
32 | !! the secondary reactions are solved in sed_dsr_redoxb. |
---|
33 | !! A strand spliting approach is being used here (see |
---|
34 | !! sed_dsr_redoxb for more information). |
---|
35 | !! |
---|
36 | !! History : |
---|
37 | !! ! 98-08 (E. Maier-Reimer, Christoph Heinze ) Original code |
---|
38 | !! ! 04-10 (N. Emprin, M. Gehlen ) f90 |
---|
39 | !! ! 06-04 (C. Ethe) Re-organization |
---|
40 | !! ! 19-08 (O. Aumont) Debugging and improvement of the model. |
---|
41 | !! The original method is replaced by a |
---|
42 | !! Strand splitting method which deals |
---|
43 | !! well with stiff reactions. |
---|
44 | !!---------------------------------------------------------------------- |
---|
45 | !! Arguments |
---|
46 | INTEGER, INTENT(in) :: ji ! number of iteration |
---|
47 | ! --- local variables |
---|
48 | INTEGER :: jni, jnj, jk, js, jw, jn ! dummy looop indices |
---|
49 | |
---|
50 | REAL(wp), DIMENSION(jpksed) ::zlimo2, zlimno3, zlimso4, zlimfeo ! undersaturation ; indice jpwatp1 is for calcite |
---|
51 | REAL(wp) :: zvolw, zreasat, zlimtmpo2, zlimtmpno3 |
---|
52 | !! |
---|
53 | !!---------------------------------------------------------------------- |
---|
54 | |
---|
55 | IF( ln_timing ) CALL timing_start('sed_dsrjac') |
---|
56 | ! |
---|
57 | ! Initializations |
---|
58 | !---------------------- |
---|
59 | |
---|
60 | zlimo2 (:) = 0. ; zlimno3(:) = 0. |
---|
61 | zlimso4(:) = 0. |
---|
62 | |
---|
63 | !---------------------------------------------------------- |
---|
64 | ! 5. Beginning of solid reaction |
---|
65 | !--------------------------------------------------------- |
---|
66 | |
---|
67 | ! Computes SMS of oxygen |
---|
68 | DO jk = 2, jpksed |
---|
69 | zlimo2(jk) = pwcp(ji,jk,jwoxy) / ( pwcp(ji,jk,jwoxy) + xksedo2 ) |
---|
70 | ! Acid Silicic |
---|
71 | jni = (jk-1)*jpvode+isvode(jwoxy) |
---|
72 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - so2ut * rearatpom(ji,jk) * xksedo2 & |
---|
73 | & / ( pwcp(ji,jk,jwoxy) + xksedo2 )**2 |
---|
74 | ENDDO |
---|
75 | |
---|
76 | !-------------------------------------------------------------------- |
---|
77 | ! Denitrification |
---|
78 | !-------------------------------------------------------------------- |
---|
79 | DO jk = 2, jpksed |
---|
80 | zlimno3(jk) = ( 1.0 - zlimo2(jk) ) * pwcp(ji,jk,jwno3) / ( pwcp(ji,jk,jwno3) + xksedno3 ) |
---|
81 | ! For nitrates |
---|
82 | jni = (jk-1)*jpvode+isvode(jwno3) |
---|
83 | jnj = (jk-1)*jpvode+isvode(jwoxy) |
---|
84 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - srDnit * rearatpom(ji,jk) * (1.0 - zlimo2(jk) ) & |
---|
85 | & * xksedno3 / ( pwcp(ji,jk,jwno3) + xksedno3 )**2 |
---|
86 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + srDnit * rearatpom(ji,jk) * pwcp(ji,jk,jwno3) & |
---|
87 | & / ( pwcp(ji,jk,jwno3) + xksedno3 ) * xksedo2 / ( pwcp(ji,jk,jwoxy) + xksedo2 )**2 |
---|
88 | ENDDO |
---|
89 | |
---|
90 | |
---|
91 | !-------------------------------------------------------------------- |
---|
92 | ! Begining POC iron reduction |
---|
93 | !-------------------------------------------------------------------- |
---|
94 | |
---|
95 | DO jk = 2, jpksed |
---|
96 | zlimfeo(jk) = ( 1.0 - zlimno3(jk) - zlimo2(jk) ) * solcp(ji,jk,jsfeo) / ( solcp(ji,jk,jsfeo) + xksedfeo ) |
---|
97 | ! For FEOH |
---|
98 | jni = (jk-1)*jpvode+isvode(jpwat+jsfeo) |
---|
99 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - 4.0 * rearatpom(ji,jk) / volc(ji,jk,jsfeo) & |
---|
100 | & * ( 1.0 - zlimno3(jk) - zlimo2(jk) ) * xksedfeo / ( solcp(ji,jk,jsfeo) + xksedfeo )**2 |
---|
101 | jnj = (jk-1)*jpvode+isvode(jwoxy) |
---|
102 | zlimtmpo2 = solcp(ji,jk,jsfeo) / ( solcp(ji,jk,jsfeo) + xksedfeo ) * xksedo2 & |
---|
103 | & / ( pwcp(ji,jk,jwoxy) + xksedo2 )**2 * ( 1.0 - pwcp(ji,jk,jwno3) / ( pwcp(ji,jk,jwno3) + xksedno3 ) ) |
---|
104 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + 4.0 * rearatpom(ji,jk) / volc(ji,jk,jsfeo) * zlimtmpo2 |
---|
105 | jnj = (jk-1)*jpvode+isvode(jwno3) |
---|
106 | zlimtmpno3 = solcp(ji,jk,jsfeo) / ( solcp(ji,jk,jsfeo) + xksedfeo ) * xksedno3 & |
---|
107 | & / ( pwcp(ji,jk,jwno3) + xksedno3 )**2 * ( 1.0 - zlimo2(jk) ) |
---|
108 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + 4.0 * rearatpom(ji,jk) / volc(ji,jk,jsfeo) * zlimtmpno3 |
---|
109 | ! Iron |
---|
110 | zreasat = rearatpom(ji,jk) * 4.0 / ( 1.0 + adsfe2 * por1(jk) ) |
---|
111 | jni = (jk-1)*jpvode+isvode(jwfe2) |
---|
112 | jnj = (jk-1)*jpvode+isvode(jpwat+jsfeo) |
---|
113 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + zreasat & |
---|
114 | & * ( 1.0 - zlimno3(jk) - zlimo2(jk) ) * xksedfeo / ( solcp(ji,jk,jsfeo) + xksedfeo )**2 |
---|
115 | jnj = (jk-1)*jpvode+isvode(jwoxy) |
---|
116 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - zreasat * zlimtmpo2 |
---|
117 | jnj = (jk-1)*jpvode+isvode(jwno3) |
---|
118 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - zreasat * zlimtmpno3 |
---|
119 | ENDDO |
---|
120 | |
---|
121 | ! write(*,*) 'plante sedfeo1 ',jacobian(ji,15,9) / dtsed |
---|
122 | |
---|
123 | !-------------------------------------------------------------------- |
---|
124 | ! Begining POC denitrification and NO3- diffusion |
---|
125 | !-------------------------------------------------------------------- |
---|
126 | |
---|
127 | DO jk = 2, jpksed |
---|
128 | zlimso4(jk) = ( 1.0 - zlimno3(jk) - zlimo2(jk) - zlimfeo(jk) ) * pwcp(ji,jk,jwso4) / ( pwcp(ji,jk,jwso4) + xksedso4 ) |
---|
129 | ! For sulfur |
---|
130 | jni = (jk-1) * jpvode + isvode(jwso4) |
---|
131 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - 0.5 * rearatpom(ji,jk) * ( 1.0 - zlimno3(jk) & |
---|
132 | & - zlimo2(jk) - zlimfeo(jk) ) * xksedso4 / ( pwcp(ji,jk,jwso4) + xksedso4 )**2 |
---|
133 | jnj = (jk-1) * jpvode + isvode(jwoxy) |
---|
134 | zlimtmpo2 = pwcp(ji,jk,jwso4) / ( pwcp(ji,jk,jwso4) + xksedso4 ) * xksedo2 & |
---|
135 | & / (pwcp(ji,jk,jwoxy) + xksedo2 )**2 * ( 1.0 - pwcp(ji,jk,jwno3) / ( xksedno3 + pwcp(ji,jk,jwno3) ) ) & |
---|
136 | & * ( 1.0 - solcp(ji,jk,jsfeo) / ( solcp(ji,jk,jsfeo) + xksedfeo ) ) |
---|
137 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + 0.5 * rearatpom(ji,jk) * zlimtmpo2 |
---|
138 | jnj = (jk-1) * jpvode + isvode(jwno3) |
---|
139 | zlimtmpno3 = pwcp(ji,jk,jwso4) / ( pwcp(ji,jk,jwso4) + xksedso4 ) * xksedno3 & |
---|
140 | & / ( pwcp(ji,jk,jwno3) + xksedno3 )**2 * ( 1.0 - zlimo2(jk) ) * ( 1.0 - solcp(ji,jk,jsfeo) & |
---|
141 | & / ( solcp(ji,jk,jsfeo) + xksedfeo ) ) |
---|
142 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + 0.5 * rearatpom(ji,jk) * zlimtmpno3 |
---|
143 | jnj = (jk-1) * jpvode + isvode(jpwat+jsfeo) |
---|
144 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + 0.5 * rearatpom(ji,jk) * pwcp(ji,jk,jwso4) & |
---|
145 | & / ( pwcp(ji,jk,jwso4) + xksedso4 ) * xksedfeo / ( solcp(ji,jk,jsfeo) + xksedfeo )**2 & |
---|
146 | & * ( 1.0 - zlimo2(jk) - zlimno3(jk) ) |
---|
147 | jni = (jk-1) * jpvode + isvode(jwh2s) |
---|
148 | jnj = (jk-1) * jpvode + isvode(jwso4) |
---|
149 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + 0.5 * rearatpom(ji,jk) * ( 1.0 - zlimno3(jk) & |
---|
150 | & - zlimo2(jk) - zlimfeo(jk) ) * xksedso4 / ( pwcp(ji,jk,jwso4) + xksedso4 )**2 |
---|
151 | jnj = (jk-1) * jpvode + isvode(jwoxy) |
---|
152 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - 0.5 * rearatpom(ji,jk) * zlimtmpo2 |
---|
153 | jnj = (jk-1) * jpvode + isvode(jwno3) |
---|
154 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - 0.5 * rearatpom(ji,jk) * zlimtmpno3 |
---|
155 | jnj = (jk-1) * jpvode + isvode(jpwat+jsfeo) |
---|
156 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - 0.5 * rearatpom(ji,jk) * pwcp(ji,jk,jwso4) & |
---|
157 | & / ( pwcp(ji,jk,jwso4) + xksedso4 ) * xksedfeo / ( solcp(ji,jk,jsfeo) + xksedfeo )**2 & |
---|
158 | & * ( 1.0 - zlimo2(jk) - zlimno3(jk) ) |
---|
159 | ENDDO |
---|
160 | |
---|
161 | ! Secondary redox reactions |
---|
162 | ! ------------------------- |
---|
163 | |
---|
164 | call sed_dsr_redoxbjac( ji ) |
---|
165 | |
---|
166 | IF( ln_timing ) CALL timing_stop('sed_dsrjac') |
---|
167 | ! |
---|
168 | END SUBROUTINE sed_dsrjac |
---|
169 | |
---|
170 | SUBROUTINE sed_dsr_redoxbjac(ji) |
---|
171 | !!---------------------------------------------------------------------- |
---|
172 | !! *** ROUTINE sed_dsr_redox *** |
---|
173 | !! |
---|
174 | !! ** Purpose : computes secondary redox reactions |
---|
175 | !! |
---|
176 | !! History : |
---|
177 | !! ! 18-08 (O. Aumont) Original code |
---|
178 | !!---------------------------------------------------------------------- |
---|
179 | !! Arguments |
---|
180 | ! --- local variables |
---|
181 | INTEGER, INTENT(IN) :: ji |
---|
182 | INTEGER :: jni, jnj, jk ! dummy looop indices |
---|
183 | |
---|
184 | REAL(wp) :: zalpha, zexcess, zh2seq, zsedfer, zdsedfer |
---|
185 | !! |
---|
186 | !!---------------------------------------------------------------------- |
---|
187 | |
---|
188 | IF( ln_timing ) CALL timing_start('sed_dsr_redoxbjac') |
---|
189 | |
---|
190 | DO jk = 2, jpksed |
---|
191 | zalpha = ( pwcp(ji,jk,jwfe2) - pwcp(ji,jk,jwlgw) ) * 1E9 |
---|
192 | zsedfer = ( zalpha + SQRT( zalpha**2 + 1.E-10 ) ) /2.0 * 1E-9 |
---|
193 | zdsedfer = zsedfer*1E9 / SQRT( zalpha**2 +1E-10 ) |
---|
194 | |
---|
195 | |
---|
196 | ! First pass of the scheme. At the end, it is 1st order |
---|
197 | ! ----------------------------------------------------- |
---|
198 | ! Fe (both adsorbed and solute) + O2 |
---|
199 | jni = (jk-1) * jpvode + isvode(jwfe2) |
---|
200 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - reac_fe2 * dtsed * pwcp(ji,jk,jwoxy) * zdsedfer |
---|
201 | jnj = (jk-1) * jpvode + isvode(jwoxy) |
---|
202 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - reac_fe2 * dtsed * zsedfer |
---|
203 | jni = (jk-1) * jpvode + isvode(jwoxy) |
---|
204 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - 0.25 * reac_fe2 * dtsed * zsedfer / radsfe2(jk) |
---|
205 | jnj = (jk-1) * jpvode + isvode(jwfe2) |
---|
206 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - 0.25 * reac_fe2 * dtsed / radsfe2(jk) * pwcp(ji,jk,jwoxy) * zdsedfer |
---|
207 | jni = (jk-1) * jpvode + isvode(jpwat+jsfeo) |
---|
208 | jnj = (jk-1) * jpvode + isvode(jwfe2) |
---|
209 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_fe2 * dtsed / radsfe2(jk) * pwcp(ji,jk,jwoxy) & |
---|
210 | & * zdsedfer / volc(ji,jk,jsfeo) |
---|
211 | jnj = (jk-1) * jpvode + isvode(jwoxy) |
---|
212 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_fe2 * dtsed / radsfe2(jk) * zsedfer & |
---|
213 | & / volc(ji,jk,jsfeo) |
---|
214 | |
---|
215 | |
---|
216 | ! H2S + O2 |
---|
217 | jni = (jk-1) * jpvode + isvode(jwh2s) |
---|
218 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - reac_h2s * dtsed * pwcp(ji,jk,jwoxy) |
---|
219 | jnj = (jk-1) * jpvode + isvode(jwoxy) |
---|
220 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - reac_h2s * dtsed * pwcp(ji,jk,jwh2s) |
---|
221 | jni = (jk-1) * jpvode + isvode(jwoxy) |
---|
222 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - 2.0 * reac_h2s * dtsed * pwcp(ji,jk,jwh2s) |
---|
223 | jnj = (jk-1) * jpvode + isvode(jwh2s) |
---|
224 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - 2.0 * reac_h2s * dtsed * pwcp(ji,jk,jwoxy) |
---|
225 | jni = (jk-1) * jpvode + isvode(jwso4) |
---|
226 | jnj = (jk-1) * jpvode + isvode(jwh2s) |
---|
227 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_h2s * dtsed * pwcp(ji,jk,jwoxy) |
---|
228 | jnj = (jk-1) * jpvode + isvode(jwoxy) |
---|
229 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_h2s * dtsed * pwcp(ji,jk,jwh2s) |
---|
230 | |
---|
231 | ! NH4 + O2 |
---|
232 | jni = (jk-1) * jpvode + isvode(jwnh4) |
---|
233 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - reac_nh4 * dtsed * pwcp(ji,jk,jwoxy) |
---|
234 | jnj = (jk-1) * jpvode + isvode(jwoxy) |
---|
235 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - reac_nh4 * dtsed * pwcp(ji,jk,jwnh4) |
---|
236 | jni = (jk-1) * jpvode + isvode(jwoxy) |
---|
237 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - 2.0 * reac_nh4 * dtsed * pwcp(ji,jk,jwnh4) / radsnh4(jk) |
---|
238 | jnj = (jk-1) * jpvode + isvode(jwnh4) |
---|
239 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - 2.0 * reac_nh4 * dtsed * pwcp(ji,jk,jwoxy) / radsnh4(jk) |
---|
240 | jni = (jk-1) * jpvode + isvode(jwno3) |
---|
241 | jnj = (jk-1) * jpvode + isvode(jwoxy) |
---|
242 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_nh4 * dtsed * pwcp(ji,jk,jwnh4) / radsnh4(jk) |
---|
243 | jnj = (jk-1) * jpvode + isvode(jwnh4) |
---|
244 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_nh4 * dtsed * pwcp(ji,jk,jwoxy) / radsnh4(jk) |
---|
245 | |
---|
246 | ! FeS - O2 |
---|
247 | jni = (jk-1) * jpvode + isvode(jpwat+jsfes) |
---|
248 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - reac_feso * dtsed * pwcp(ji,jk,jwoxy) |
---|
249 | jnj = (jk-1) * jpvode + isvode(jwoxy) |
---|
250 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - reac_feso * dtsed * solcp(ji,jk,jsfes) |
---|
251 | jni = (jk-1) * jpvode + isvode(jwoxy) |
---|
252 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - 2.0 * reac_feso * dtsed * solcp(ji,jk,jsfes) & |
---|
253 | & * volc(ji,jk,jsfes) |
---|
254 | jnj = (jk-1) * jpvode + isvode(jpwat+jsfes) |
---|
255 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - 2.0 * reac_feso * dtsed * pwcp(ji,jk,jwoxy) & |
---|
256 | & * volc(ji,jk,jsfes) |
---|
257 | jni = (jk-1) * jpvode + isvode(jwfe2) |
---|
258 | jnj = (jk-1) * jpvode + isvode(jwoxy) |
---|
259 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_feso * dtsed * solcp(ji,jk,jsfes) & |
---|
260 | & * volc(ji,jk,jsfes) * radsfe2(jk) |
---|
261 | jnj = (jk-1) * jpvode + isvode(jpwat+jsfes) |
---|
262 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_feso * dtsed * pwcp(ji,jk,jwoxy) & |
---|
263 | & * volc(ji,jk,jsfes) * radsfe2(jk) |
---|
264 | jni = (jk-1) * jpvode + isvode(jwso4) |
---|
265 | jnj = (jk-1) * jpvode + isvode(jwoxy) |
---|
266 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_feso * dtsed * solcp(ji,jk,jsfes) & |
---|
267 | & * volc(ji,jk,jsfes) |
---|
268 | jnj = (jk-1) * jpvode + isvode(jpwat+jsfes) |
---|
269 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_feso * dtsed * pwcp(ji,jk,jwoxy) & |
---|
270 | & * volc(ji,jk,jsfes) |
---|
271 | |
---|
272 | ! FEOH + H2S |
---|
273 | jni = (jk-1) * jpvode + isvode(jpwat+jsfeo) |
---|
274 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - 8.0 * reac_feh2s * dtsed * pwcp(ji,jk,jwh2s) |
---|
275 | jnj = (jk-1) * jpvode + isvode(jwh2s) |
---|
276 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - 8.0 * reac_feh2s * dtsed * solcp(ji,jk,jsfeo) |
---|
277 | jni = (jk-1) * jpvode + isvode(jwh2s) |
---|
278 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - reac_feh2s * dtsed * solcp(ji,jk,jsfeo) & |
---|
279 | & * volc(ji,jk,jsfeo) |
---|
280 | jnj = (jk-1) * jpvode + isvode(jpwat+jsfeo) |
---|
281 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - reac_feh2s * dtsed * pwcp(ji,jk,jwh2s) & |
---|
282 | & * volc(ji,jk,jsfeo) |
---|
283 | jni = (jk-1) * jpvode + isvode(jwfe2) |
---|
284 | jnj = (jk-1) * jpvode + isvode(jwh2s) |
---|
285 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + 8.0 * reac_feh2s * dtsed * solcp(ji,jk,jsfeo) & |
---|
286 | & * volc(ji,jk,jsfeo) * radsfe2(jk) |
---|
287 | jnj = (jk-1) * jpvode + isvode(jpwat+jsfeo) |
---|
288 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + 8.0 * reac_feh2s * dtsed * pwcp(ji,jk,jwh2s) & |
---|
289 | & * volc(ji,jk,jsfeo) * radsfe2(jk) |
---|
290 | jni = (jk-1) * jpvode + isvode(jwso4) |
---|
291 | jnj = (jk-1) * jpvode + isvode(jwh2s) |
---|
292 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_feh2s * dtsed * solcp(ji,jk,jsfeo) & |
---|
293 | & * volc(ji,jk,jsfeo) |
---|
294 | jnj = (jk-1) * jpvode + isvode(jpwat+jsfeo) |
---|
295 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_feh2s * dtsed * pwcp(ji,jk,jwh2s) & |
---|
296 | & * volc(ji,jk,jsfeo) |
---|
297 | |
---|
298 | ! Fe + H2S |
---|
299 | zh2seq = MAX(rtrn, 2.1E-3 * hipor(ji,jk)) |
---|
300 | zexcess = pwcp(ji,jk,jwh2s) * zsedfer / zh2seq - 1.0 |
---|
301 | IF ( zexcess >= 0.0 ) THEN |
---|
302 | jni = (jk-1) * jpvode + isvode(jwfe2) |
---|
303 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - reac_fesp * dtsed * pwcp(ji,jk,jwh2s) * zdsedfer / zh2seq * radsfe2(jk) |
---|
304 | jnj = (jk-1) * jpvode + isvode(jwh2s) |
---|
305 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - reac_fesp * dtsed * zsedfer / zh2seq * radsfe2(jk) |
---|
306 | jni = (jk-1) * jpvode + isvode(jpwat+jsfes) |
---|
307 | jnj = (jk-1) * jpvode + isvode(jwfe2) |
---|
308 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_fesp * dtsed * pwcp(ji,jk,jwh2s) / zh2seq & |
---|
309 | & * zdsedfer / volc(ji,jk,jsfes) |
---|
310 | jnj = (jk-1) * jpvode + isvode(jwh2s) |
---|
311 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_fesp * dtsed * zsedfer / zh2seq & |
---|
312 | & / volc(ji,jk,jsfes) |
---|
313 | jni = (jk-1) * jpvode + isvode(jwh2s) |
---|
314 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - reac_fesp * dtsed * zsedfer / zh2seq |
---|
315 | jnj = (jk-1) * jpvode + isvode(jwfe2) |
---|
316 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - reac_fesp * dtsed * pwcp(ji,jk,jwh2s) * zdsedfer / zh2seq |
---|
317 | ELSE |
---|
318 | jni = (jk-1) * jpvode + isvode(jwfe2) |
---|
319 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - reac_fesd * dtsed * pwcp(ji,jk,jwh2s) / zh2seq & |
---|
320 | & * zdsedfer * radsfe2(jk) * solcp(ji,jk,jsfes) * volc(ji,jk,jsfes) |
---|
321 | jnj = (jk-1) * jpvode + isvode(jwh2s) |
---|
322 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - reac_fesd * dtsed * zsedfer / zh2seq * radsfe2(jk) & |
---|
323 | & * solcp(ji,jk,jsfes) * volc(ji,jk,jsfes) |
---|
324 | jnj = (jk-1) * jpvode + isvode(jpwat+jsfes) |
---|
325 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - reac_fesd * dtsed * zexcess * radsfe2(jk) * volc(ji,jk,jsfes) |
---|
326 | jni = (jk-1) * jpvode + isvode(jpwat+jsfes) |
---|
327 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) + reac_fesd * dtsed * zexcess |
---|
328 | jnj = (jk-1) * jpvode + isvode(jwfe2) |
---|
329 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_fesd * dtsed * solcp(ji,jk,jsfes) & |
---|
330 | & * zdsedfer * pwcp(ji,jk,jwh2s) / zh2seq |
---|
331 | jnj = (jk-1) * jpvode + isvode(jwh2s) |
---|
332 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) + reac_fesd * dtsed * solcp(ji,jk,jsfes) & |
---|
333 | & * zsedfer / zh2seq |
---|
334 | jni = (jk-1) * jpvode + isvode(jwh2s) |
---|
335 | Jacobian(ji,jni,jni) = Jacobian(ji,jni,jni) - reac_fesd * dtsed * zsedfer / zh2seq & |
---|
336 | & * solcp(ji,jk,jsfes) * volc(ji,jk,jsfes) |
---|
337 | jnj = (jk-1) * jpvode + isvode(jwfe2) |
---|
338 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - reac_fesd * dtsed * pwcp(ji,jk,jwh2s) / zh2seq & |
---|
339 | & * zdsedfer * solcp(ji,jk,jsfes) * volc(ji,jk,jsfes) |
---|
340 | jnj = (jk-1) * jpvode + isvode(jpwat+jsfes) |
---|
341 | Jacobian(ji,jni,jnj) = Jacobian(ji,jni,jnj) - reac_fesd * dtsed * zexcess * radsfe2(jk) * volc(ji,jk,jsfes) |
---|
342 | ENDIF |
---|
343 | END DO |
---|
344 | |
---|
345 | ! write(*,*) 'plante sedfeo2 ',jacobian(ji,15,9) / dtsed |
---|
346 | |
---|
347 | IF( ln_timing ) CALL timing_stop('sed_dsr_redoxbjac') |
---|
348 | |
---|
349 | END SUBROUTINE sed_dsr_redoxbjac |
---|
350 | |
---|
351 | END MODULE seddsrjac |
---|