1 | MODULE isfcavgam |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE isfgammats *** |
---|
4 | !! Ice shelf gamma module : compute exchange coeficient at the ice/ocean interface |
---|
5 | !!====================================================================== |
---|
6 | !! History : 4.1 ! (P. Mathiot) original |
---|
7 | !!---------------------------------------------------------------------- |
---|
8 | |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | !! isfcav_gammats : compute exchange coeficient gamma |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | USE isf_oce |
---|
13 | USE isfutils, ONLY: debug |
---|
14 | USE isftbl , ONLY: isf_tbl |
---|
15 | |
---|
16 | USE oce , ONLY: uu, vv, rn2 ! ocean dynamics and tracers |
---|
17 | USE phycst , ONLY: grav, vkarmn ! physical constant |
---|
18 | USE eosbn2 , ONLY: eos_rab ! equation of state |
---|
19 | ! tipaccs 2d top tidal velocity |
---|
20 | USE zdfdrg , ONLY: rCd0_top, rke0_top ! vertical physics: top/bottom drag coef. |
---|
21 | ! end tipaccs 2d top tidal velocity |
---|
22 | USE iom , ONLY: iom_put ! |
---|
23 | USE lib_mpp , ONLY: ctl_stop |
---|
24 | |
---|
25 | USE dom_oce ! ocean space and time domain |
---|
26 | USE in_out_manager ! I/O manager |
---|
27 | ! |
---|
28 | IMPLICIT NONE |
---|
29 | ! |
---|
30 | PRIVATE |
---|
31 | ! |
---|
32 | PUBLIC isfcav_gammats |
---|
33 | |
---|
34 | # include "domzgr_substitute.h90" |
---|
35 | !!---------------------------------------------------------------------- |
---|
36 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
37 | !! $Id: sbcisf.F90 10536 2019-01-16 19:21:09Z mathiot $ |
---|
38 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
39 | !!---------------------------------------------------------------------- |
---|
40 | CONTAINS |
---|
41 | ! |
---|
42 | !!----------------------------------------------------------------------------------------------------- |
---|
43 | !! PUBLIC SUBROUTINES |
---|
44 | !!----------------------------------------------------------------------------------------------------- |
---|
45 | ! |
---|
46 | SUBROUTINE isfcav_gammats( Kmm, pttbl, pstbl, pqoce, pqfwf, pgt, pgs ) |
---|
47 | !!---------------------------------------------------------------------- |
---|
48 | !! ** Purpose : compute the coefficient echange for heat and fwf flux |
---|
49 | !! |
---|
50 | !! ** Method : select the gamma formulation |
---|
51 | !! 3 method available (cst, vel and vel_stab) |
---|
52 | !!--------------------------------------------------------------------- |
---|
53 | !!-------------------------- OUT ------------------------------------- |
---|
54 | REAL(wp), DIMENSION(jpi,jpj), INTENT( out) :: pgt , pgs ! gamma t and gamma s |
---|
55 | !!-------------------------- IN ------------------------------------- |
---|
56 | INTEGER :: Kmm ! ocean time level index |
---|
57 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: pqoce, pqfwf ! isf heat and fwf |
---|
58 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: pttbl, pstbl ! top boundary layer tracer |
---|
59 | !!--------------------------------------------------------------------- |
---|
60 | REAL(wp), DIMENSION(jpi,jpj) :: zutbl, zvtbl ! top boundary layer velocity |
---|
61 | !!--------------------------------------------------------------------- |
---|
62 | ! |
---|
63 | !========================================== |
---|
64 | ! 1.: compute velocity in the tbl if needed |
---|
65 | !========================================== |
---|
66 | ! |
---|
67 | SELECT CASE ( cn_gammablk ) |
---|
68 | CASE ( 'spe' ) |
---|
69 | ! gamma is constant (specified in namelist) |
---|
70 | ! nothing to do |
---|
71 | CASE ('vel', 'vel_stab') |
---|
72 | ! compute velocity in tbl |
---|
73 | CALL isf_tbl(Kmm, uu(:,:,:,Kmm) ,zutbl(:,:),'U', miku, rhisf_tbl_cav) |
---|
74 | CALL isf_tbl(Kmm, vv(:,:,:,Kmm) ,zvtbl(:,:),'V', mikv, rhisf_tbl_cav) |
---|
75 | ! |
---|
76 | ! mask velocity in tbl with ice shelf mask |
---|
77 | zutbl(:,:) = zutbl(:,:) * mskisf_cav(:,:) |
---|
78 | zvtbl(:,:) = zvtbl(:,:) * mskisf_cav(:,:) |
---|
79 | ! |
---|
80 | ! output |
---|
81 | CALL iom_put('utbl',zutbl(:,:)) |
---|
82 | CALL iom_put('vtbl',zvtbl(:,:)) |
---|
83 | CASE DEFAULT |
---|
84 | CALL ctl_stop('STOP','method to compute gamma (cn_gammablk) is unknown (should not see this)') |
---|
85 | END SELECT |
---|
86 | ! |
---|
87 | !========================================== |
---|
88 | ! 2.: compute gamma |
---|
89 | !========================================== |
---|
90 | ! |
---|
91 | SELECT CASE ( cn_gammablk ) |
---|
92 | CASE ( 'spe' ) ! gamma is constant (specified in namelist) |
---|
93 | pgt(:,:) = rn_gammat0 |
---|
94 | pgs(:,:) = rn_gammas0 |
---|
95 | CASE ( 'vel' ) ! gamma is proportional to u* |
---|
96 | ! tipaccs 2d top tidal velocity |
---|
97 | CALL gammats_vel ( zutbl, zvtbl, rCd0_top, rke0_top, pgt, pgs ) |
---|
98 | CASE ( 'vel_stab' ) ! gamma depends of stability of boundary layer and u* |
---|
99 | CALL gammats_vel_stab (Kmm, pttbl, pstbl, zutbl, zvtbl, rCd0_top, rke0_top, pqoce, pqfwf, pgt, pgs ) |
---|
100 | ! end tipaccs 2d top tidal velocity |
---|
101 | CASE DEFAULT |
---|
102 | CALL ctl_stop('STOP','method to compute gamma (cn_gammablk) is unknown (should not see this)') |
---|
103 | END SELECT |
---|
104 | ! |
---|
105 | !========================================== |
---|
106 | ! 3.: output and debug |
---|
107 | !========================================== |
---|
108 | ! |
---|
109 | CALL iom_put('isfgammat', pgt(:,:)) |
---|
110 | CALL iom_put('isfgammas', pgs(:,:)) |
---|
111 | ! |
---|
112 | IF (ln_isfdebug) THEN |
---|
113 | CALL debug( 'isfcav_gam pgt:', pgt(:,:) ) |
---|
114 | CALL debug( 'isfcav_gam pgs:', pgs(:,:) ) |
---|
115 | END IF |
---|
116 | ! |
---|
117 | END SUBROUTINE isfcav_gammats |
---|
118 | ! |
---|
119 | !!----------------------------------------------------------------------------------------------------- |
---|
120 | !! PRIVATE SUBROUTINES |
---|
121 | !!----------------------------------------------------------------------------------------------------- |
---|
122 | ! |
---|
123 | SUBROUTINE gammats_vel( putbl, pvtbl, pCd, pke2, & ! <<== in |
---|
124 | & pgt, pgs ) ! ==>> out gammats [m/s] |
---|
125 | !!---------------------------------------------------------------------- |
---|
126 | !! ** Purpose : compute the coefficient echange coefficient |
---|
127 | !! |
---|
128 | !! ** Method : gamma is velocity dependent ( gt= gt0 * Ustar ) |
---|
129 | !! |
---|
130 | !! ** Reference : Asay-Davis et al., Geosci. Model Dev., 9, 2471-2497, 2016 |
---|
131 | !!--------------------------------------------------------------------- |
---|
132 | !!-------------------------- OUT ------------------------------------- |
---|
133 | REAL(wp), DIMENSION(jpi,jpj), INTENT( out) :: pgt, pgs ! gammat and gammas [m/s] |
---|
134 | !!-------------------------- IN ------------------------------------- |
---|
135 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: putbl, pvtbl ! velocity in the losch top boundary layer |
---|
136 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: pCd ! drag coefficient |
---|
137 | ! tipaccs (2d tidal velocity) |
---|
138 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: pke2 ! background velocity |
---|
139 | ! end tipaccs (2d tidal velocity) |
---|
140 | !!--------------------------------------------------------------------- |
---|
141 | REAL(wp), DIMENSION(jpi,jpj) :: zustar |
---|
142 | !!--------------------------------------------------------------------- |
---|
143 | ! |
---|
144 | ! compute ustar (AD15 eq. 27) |
---|
145 | ! tipaccs (2d tidal velocity) |
---|
146 | zustar(:,:) = SQRT( pCd(:,:) * ( putbl(:,:) * putbl(:,:) + pvtbl(:,:) * pvtbl(:,:) + pke2(:,:) ) ) * mskisf_cav(:,:) |
---|
147 | ! end tipaccs (2d tidal velocity) |
---|
148 | ! |
---|
149 | ! Compute gammats |
---|
150 | pgt(:,:) = zustar(:,:) * rn_gammat0 |
---|
151 | pgs(:,:) = zustar(:,:) * rn_gammas0 |
---|
152 | ! |
---|
153 | ! output ustar |
---|
154 | CALL iom_put('isfustar',zustar(:,:)) |
---|
155 | ! |
---|
156 | END SUBROUTINE gammats_vel |
---|
157 | |
---|
158 | SUBROUTINE gammats_vel_stab( Kmm, pttbl, pstbl, putbl, pvtbl, pCd, pke2, pqoce, pqfwf, & ! <<== in |
---|
159 | & pgt , pgs ) ! ==>> out gammats [m/s] |
---|
160 | !!---------------------------------------------------------------------- |
---|
161 | !! ** Purpose : compute the coefficient echange coefficient |
---|
162 | !! |
---|
163 | !! ** Method : gamma is velocity dependent and stability dependent |
---|
164 | !! |
---|
165 | !! ** Reference : Holland and Jenkins, 1999, JPO, p1787-1800 |
---|
166 | !!--------------------------------------------------------------------- |
---|
167 | !!-------------------------- OUT ------------------------------------- |
---|
168 | REAL(wp), DIMENSION(jpi,jpj), INTENT( out) :: pgt, pgs ! gammat and gammas |
---|
169 | !!-------------------------- IN ------------------------------------- |
---|
170 | INTEGER :: Kmm ! ocean time level index |
---|
171 | ! tipaccs (2d tidal velocity) |
---|
172 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: pke2 ! background velocity squared |
---|
173 | ! end tipaccs (2d tidal velocity) |
---|
174 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: pqoce, pqfwf ! surface heat flux and fwf flux |
---|
175 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: pCd ! drag coeficient |
---|
176 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: putbl, pvtbl ! velocity in the losch top boundary layer |
---|
177 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: pttbl, pstbl ! tracer in the losch top boundary layer |
---|
178 | !!--------------------------------------------------------------------- |
---|
179 | INTEGER :: ji, jj ! loop index |
---|
180 | INTEGER :: ikt ! local integer |
---|
181 | REAL(wp) :: zdku, zdkv ! U, V shear |
---|
182 | REAL(wp) :: zPr, zSc, zRc ! Prandtl, Scmidth and Richardson number |
---|
183 | REAL(wp) :: zmob, zmols ! Monin Obukov length, coriolis factor at T point |
---|
184 | REAL(wp) :: zbuofdep, zhnu ! Bouyancy length scale, sublayer tickness |
---|
185 | REAL(wp) :: zhmax ! limitation of mol |
---|
186 | REAL(wp) :: zetastar ! stability parameter |
---|
187 | REAL(wp) :: zgmolet, zgmoles, zgturb ! contribution of modelecular sublayer and turbulence |
---|
188 | REAL(wp) :: zcoef ! temporary coef |
---|
189 | REAL(wp) :: zdep |
---|
190 | REAL(wp) :: zeps = 1.0e-20_wp |
---|
191 | REAL(wp), PARAMETER :: zxsiN = 0.052_wp ! dimensionless constant |
---|
192 | REAL(wp), PARAMETER :: znu = 1.95e-6_wp ! kinamatic viscosity of sea water (m2.s-1) |
---|
193 | REAL(wp), DIMENSION(2) :: zts, zab |
---|
194 | REAL(wp), DIMENSION(jpi,jpj) :: zustar ! friction velocity |
---|
195 | !!--------------------------------------------------------------------- |
---|
196 | ! |
---|
197 | ! compute ustar |
---|
198 | ! tipaccs (2d tidal velocity) |
---|
199 | zustar(:,:) = SQRT( pCd * ( putbl(:,:) * putbl(:,:) + pvtbl(:,:) * pvtbl(:,:) + pke2(:,:) ) ) |
---|
200 | ! end tipaccs (2d tidal velocity) |
---|
201 | ! |
---|
202 | ! output ustar |
---|
203 | CALL iom_put('isfustar',zustar(:,:)) |
---|
204 | ! |
---|
205 | ! compute Pr and Sc number (eq ??) |
---|
206 | zPr = 13.8_wp |
---|
207 | zSc = 2432.0_wp |
---|
208 | ! |
---|
209 | ! compute gamma mole (eq ??) |
---|
210 | zgmolet = 12.5_wp * zPr ** (2.0/3.0) - 6.0_wp |
---|
211 | zgmoles = 12.5_wp * zSc ** (2.0/3.0) - 6.0_wp |
---|
212 | ! |
---|
213 | ! compute gamma |
---|
214 | DO ji = 2, jpi |
---|
215 | DO jj = 2, jpj |
---|
216 | ikt = mikt(ji,jj) |
---|
217 | |
---|
218 | IF( zustar(ji,jj) == 0._wp ) THEN ! only for kt = 1 I think |
---|
219 | pgt = rn_gammat0 |
---|
220 | pgs = rn_gammas0 |
---|
221 | ELSE |
---|
222 | ! compute Rc number (as done in zdfric.F90) |
---|
223 | !!gm better to do it like in the new zdfric.F90 i.e. avm weighted Ri computation |
---|
224 | zcoef = 0.5_wp / e3w(ji,jj,ikt+1,Kmm) |
---|
225 | ! ! shear of horizontal velocity |
---|
226 | zdku = zcoef * ( uu(ji-1,jj ,ikt ,Kmm) + uu(ji,jj,ikt ,Kmm) & |
---|
227 | & -uu(ji-1,jj ,ikt+1,Kmm) - uu(ji,jj,ikt+1,Kmm) ) |
---|
228 | zdkv = zcoef * ( vv(ji ,jj-1,ikt ,Kmm) + vv(ji,jj,ikt ,Kmm) & |
---|
229 | & -vv(ji ,jj-1,ikt+1,Kmm) - vv(ji,jj,ikt+1,Kmm) ) |
---|
230 | ! ! richardson number (minimum value set to zero) |
---|
231 | zRc = MAX(rn2(ji,jj,ikt+1), 0._wp) / MAX( zdku*zdku + zdkv*zdkv, zeps ) |
---|
232 | |
---|
233 | ! compute bouyancy |
---|
234 | zts(jp_tem) = pttbl(ji,jj) |
---|
235 | zts(jp_sal) = pstbl(ji,jj) |
---|
236 | zdep = gdepw(ji,jj,ikt,Kmm) |
---|
237 | ! |
---|
238 | CALL eos_rab( zts, zdep, zab, Kmm ) |
---|
239 | ! |
---|
240 | ! compute length scale (Eq ??) |
---|
241 | zbuofdep = grav * ( zab(jp_tem) * pqoce(ji,jj) - zab(jp_sal) * pqfwf(ji,jj) ) |
---|
242 | ! |
---|
243 | ! compute Monin Obukov Length |
---|
244 | ! Maximum boundary layer depth (Eq ??) |
---|
245 | zhmax = gdept(ji,jj,mbkt(ji,jj),Kmm) - gdepw(ji,jj,mikt(ji,jj),Kmm) -0.001_wp |
---|
246 | ! |
---|
247 | ! Compute Monin obukhov length scale at the surface and Ekman depth: (Eq ??) |
---|
248 | zmob = zustar(ji,jj) ** 3 / (vkarmn * (zbuofdep + zeps)) |
---|
249 | zmols = SIGN(1._wp, zmob) * MIN(ABS(zmob), zhmax) * tmask(ji,jj,ikt) |
---|
250 | ! |
---|
251 | ! compute eta* (stability parameter) (Eq ??) |
---|
252 | zetastar = 1._wp / ( SQRT(1._wp + MAX(zxsiN * zustar(ji,jj) / ( ABS(ff_f(ji,jj)) * zmols * zRc ), 0._wp))) |
---|
253 | ! |
---|
254 | ! compute the sublayer thickness (Eq ??) |
---|
255 | zhnu = 5 * znu / zustar(ji,jj) |
---|
256 | ! |
---|
257 | ! compute gamma turb (Eq ??) |
---|
258 | zgturb = 1._wp / vkarmn * LOG(zustar(ji,jj) * zxsiN * zetastar * zetastar / ( ABS(ff_f(ji,jj)) * zhnu )) & |
---|
259 | & + 1._wp / ( 2 * zxsiN * zetastar ) - 1._wp / vkarmn |
---|
260 | ! |
---|
261 | ! compute gammats |
---|
262 | pgt(ji,jj) = zustar(ji,jj) / (zgturb + zgmolet) |
---|
263 | pgs(ji,jj) = zustar(ji,jj) / (zgturb + zgmoles) |
---|
264 | END IF |
---|
265 | END DO |
---|
266 | END DO |
---|
267 | |
---|
268 | END SUBROUTINE gammats_vel_stab |
---|
269 | |
---|
270 | END MODULE isfcavgam |
---|