1 | MODULE tide_mod |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE tide_mod *** |
---|
4 | !! Compute nodal modulations corrections and pulsations |
---|
5 | !!====================================================================== |
---|
6 | !! History : 1.0 ! 2007 (O. Le Galloudec) Original code |
---|
7 | !!---------------------------------------------------------------------- |
---|
8 | !JT USE oce ! ocean dynamics and tracers |
---|
9 | USE lib_mpp ! distributed memory computing library |
---|
10 | |
---|
11 | USE dom_oce ! ocean space and time domain |
---|
12 | USE phycst ! physical constant |
---|
13 | USE daymod ! calendar |
---|
14 | USE in_out_manager ! I/O units |
---|
15 | USE ioipsl , ONLY : ymds2ju ! for calendar |
---|
16 | |
---|
17 | |
---|
18 | IMPLICIT NONE |
---|
19 | PRIVATE |
---|
20 | |
---|
21 | PUBLIC tide_harmo ! called by tideini and diaharm modules |
---|
22 | PUBLIC tide_init_Wave ! called by tideini and diaharm modules |
---|
23 | |
---|
24 | ! davbyr: increase maximum number of harmonics from 19 to 34 |
---|
25 | INTEGER, PUBLIC, PARAMETER :: jpmax_harmo = 34 !: maximum number of harmonic |
---|
26 | |
---|
27 | TYPE, PUBLIC :: tide |
---|
28 | CHARACTER(LEN=4) :: cname_tide |
---|
29 | REAL(wp) :: equitide |
---|
30 | INTEGER :: nutide |
---|
31 | INTEGER :: nt, ns, nh, np, np1, shift |
---|
32 | INTEGER :: nksi, nnu0, nnu1, nnu2, R |
---|
33 | INTEGER :: nformula |
---|
34 | END TYPE tide |
---|
35 | |
---|
36 | TYPE(tide), PUBLIC, DIMENSION(jpmax_harmo) :: Wave !: |
---|
37 | |
---|
38 | REAL(wp) :: sh_T, sh_s, sh_h, sh_p, sh_p1 ! astronomic angles |
---|
39 | REAL(wp) :: sh_xi, sh_nu, sh_nuprim, sh_nusec, sh_R ! |
---|
40 | REAL(wp) :: sh_I, sh_x1ra, sh_N ! |
---|
41 | |
---|
42 | !!JT |
---|
43 | INTEGER(KIND=8) :: days_since_origin |
---|
44 | LOGICAL :: ln_astro_verbose |
---|
45 | !LOGICAL :: ln_tide_360_cal |
---|
46 | !LOGICAL :: ln_tide_drift_time_cont_manual |
---|
47 | LOGICAL :: ln_tide_drift ! Do we want to run with "drifting" tides? (Namelist) |
---|
48 | LOGICAL :: ln_tide_compress ! Do we want to run with "compressed" tides? (Namelist) |
---|
49 | INTEGER :: nn_tide_orig_yr,nn_tide_orig_mn,nn_tide_orig_dy !JT |
---|
50 | |
---|
51 | !!JT |
---|
52 | |
---|
53 | !!---------------------------------------------------------------------- |
---|
54 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
55 | !! $Id$ |
---|
56 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
57 | !!---------------------------------------------------------------------- |
---|
58 | CONTAINS |
---|
59 | |
---|
60 | SUBROUTINE tide_init_Wave |
---|
61 | # include "tide.h90" |
---|
62 | END SUBROUTINE tide_init_Wave |
---|
63 | |
---|
64 | |
---|
65 | SUBROUTINE tide_harmo( pomega, pvt, put , pcor, ktide ,kc) |
---|
66 | |
---|
67 | !! Externally called by sbctide.F90/sbc_tide |
---|
68 | !! Externally named: omega_tide, v0tide, utide, ftide, ntide, nb_harmo |
---|
69 | !!---------------------------------------------------------------------- |
---|
70 | !!---------------------------------------------------------------------- |
---|
71 | INTEGER , DIMENSION(kc), INTENT(in ) :: ktide ! Indice of tidal constituents |
---|
72 | INTEGER , INTENT(in ) :: kc ! Total number of tidal constituents |
---|
73 | REAL(wp), DIMENSION(kc), INTENT(out) :: pomega ! pulsation in radians/s |
---|
74 | REAL(wp), DIMENSION(kc), INTENT(out) :: pvt, put, pcor ! |
---|
75 | !!---------------------------------------------------------------------- |
---|
76 | ! |
---|
77 | |
---|
78 | INTEGER :: ios |
---|
79 | |
---|
80 | |
---|
81 | ln_tide_drift = .FALSE. |
---|
82 | ln_tide_compress = .FALSE. |
---|
83 | |
---|
84 | NAMELIST/nam_tides360/ ln_tide_drift,ln_tide_compress,ln_astro_verbose,& |
---|
85 | & nn_tide_orig_yr,nn_tide_orig_mn,nn_tide_orig_dy |
---|
86 | |
---|
87 | ! read in Namelist. |
---|
88 | !!---------------------------------------------------------------------- |
---|
89 | ! |
---|
90 | REWIND ( numnam_ref ) ! Read Namelist nam_diatmb in referdiatmbence namelist : TMB diagnostics |
---|
91 | READ ( numnam_ref, nam_tides360, IOSTAT=ios, ERR= 901 ) |
---|
92 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nam_tides360 in reference namelist' ) |
---|
93 | |
---|
94 | REWIND( numnam_cfg ) ! Namelist nam_diatmb in configuration namelist TMB diagnostics |
---|
95 | READ ( numnam_cfg, nam_tides360, IOSTAT = ios, ERR = 902 ) |
---|
96 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nam_tides360 in configuration namelist' ) |
---|
97 | IF(lwm) WRITE ( numond, nam_tides360 ) |
---|
98 | |
---|
99 | |
---|
100 | IF( lwp ) THEN |
---|
101 | WRITE(numout,*) " " |
---|
102 | WRITE(numout,*) "tide_harmo: nam_tides360 - 360 day tides " |
---|
103 | WRITE(numout,*) "~~~~~~~~~~~~~~~~~~~~~" |
---|
104 | WRITE(numout,*) " tides360: allow tides to drift through year: ln_tide_drift = ",ln_tide_drift |
---|
105 | WRITE(numout,*) " tides360: Compress tides, so around a 360 day year: ln_tide_compress = ",ln_tide_compress |
---|
106 | WRITE(numout,*) " tides360: USE ln_tide_compress WITH CARE. INCOMPLETE." |
---|
107 | WRITE(numout,*) " tides360: Increase output verbosity: ln_astro_verbose = ",ln_astro_verbose |
---|
108 | !WRITE(numout,*) " tides360: Calculate time between origin and gregorian and 360 manually: ln_tide_drift_time_cont_manual = ",ln_tide_drift_time_cont_manual |
---|
109 | WRITE(numout,*) " tides360: 360 day origin date year: nn_tide_orig_yr = ",nn_tide_orig_yr |
---|
110 | WRITE(numout,*) " tides360: 360 day origin date month: nn_tide_orig_mn = ",nn_tide_orig_mn |
---|
111 | WRITE(numout,*) " tides360: 360 day origin date day: nn_tide_orig_dy = ",nn_tide_orig_dy |
---|
112 | WRITE(numout,*) " " |
---|
113 | ENDIF |
---|
114 | |
---|
115 | |
---|
116 | IF( nleapy == 30 ) THEN |
---|
117 | IF ( ln_tide_drift .AND. ln_tide_compress ) THEN |
---|
118 | CALL ctl_stop( 'tide_harmo: nam_tides360: if 360 day calendar ln_tide_drift and ln_tide_compress cannot be true' ) |
---|
119 | ENDIF |
---|
120 | |
---|
121 | |
---|
122 | IF ( ln_tide_drift ) THEN |
---|
123 | WRITE(numout,*) " tides360: Tides continuous so equinoctal tides drift through the year," |
---|
124 | WRITE(numout,*) " as the S2-K2 beating occurs 5 days later every year." |
---|
125 | ENDIF |
---|
126 | |
---|
127 | IF ( ln_tide_compress ) THEN |
---|
128 | WRITE(numout,*) " tides360: The Tropical Year (and so some tidal periods) are compressed," |
---|
129 | WRITE(numout,*) " so the tides repeat with an annual cycle, so the " |
---|
130 | WRITE(numout,*) " the S2-K2 beating is fixed relative to the calendar, but the " |
---|
131 | WRITE(numout,*) " M2 period varies slightly." |
---|
132 | WRITE(numout,*) " Use with care, as this requires more work." |
---|
133 | ENDIF |
---|
134 | |
---|
135 | IF ( ( .NOT. ln_tide_drift ) .AND. ( .NOT. ln_tide_compress ) ) THEN |
---|
136 | WRITE(numout,*) " tides360: Use the default NEMO tide code, where the tides are reset " |
---|
137 | WRITE(numout,*) " at the beginning of each month, leading to a slight discontinuity" |
---|
138 | WRITE(numout,*) " in the tides, and making tidal analysis difficult." |
---|
139 | ENDIF |
---|
140 | |
---|
141 | ELSE |
---|
142 | WRITE(numout,*) " tides360: Gregorian calendar so using standard tides" |
---|
143 | ENDIF |
---|
144 | |
---|
145 | CALL astronomic_angle |
---|
146 | CALL tide_pulse( pomega, ktide ,kc ) |
---|
147 | CALL tide_vuf ( pvt, put, pcor, ktide ,kc ) |
---|
148 | ! |
---|
149 | END SUBROUTINE tide_harmo |
---|
150 | |
---|
151 | |
---|
152 | SUBROUTINE astronomic_angle |
---|
153 | !!---------------------------------------------------------------------- |
---|
154 | !! tj is time elapsed since 1st January 1900, 0 hour, counted in julian |
---|
155 | !! century (e.g. time in days divide by 36525) |
---|
156 | !!---------------------------------------------------------------------- |
---|
157 | REAL(wp) :: cosI, p, q, t2, t4, sin2I, s2, tgI2, P1, sh_tgn2, at1, at2 |
---|
158 | REAL(wp) :: zqy , zsy, zday, zdj, zhfrac |
---|
159 | |
---|
160 | |
---|
161 | ! JT |
---|
162 | ! Tides are added as boundary conditions, and as tidal potential. |
---|
163 | ! |
---|
164 | ! For the Boundaries, the complex tide amplitudes are give for each point. |
---|
165 | ! This gives the amplitude and the phase for each consititent. |
---|
166 | ! The tidal frequency is calculated from Wave in tide.h90 via tide_pulse below. |
---|
167 | ! A the start(ish) of everyday, astronomic_angle is called via tide_harmo |
---|
168 | ! from SBC/sbctide.F90. |
---|
169 | ! The astronomic_angle specifies the location of the moon and sun etc at the given |
---|
170 | ! model time. these are used to update the tidal phase. |
---|
171 | ! |
---|
172 | ! In the bdytides.F90 the function bdy_dta_tides calls |
---|
173 | ! tide_init_elevation and tide_init_velocities (also in bdytides.F90) |
---|
174 | ! every day. This uses the values from astro angles to update the phase of the |
---|
175 | ! tidal constiuents as read in from the boundary files. |
---|
176 | ! |
---|
177 | ! The tidal potential in (re)initialised every day in sbstide.F90 in the function |
---|
178 | ! tide_init_potential. This uses the values from astro angles: |
---|
179 | ! (v0tide + utide) and produces amp_pot and phi_pot. |
---|
180 | ! These are then used in SBC/updtide.F90 (every timestep?) to set pot_astro. |
---|
181 | ! |
---|
182 | ! Both SBC/sbctide.F90 and bdy_dta_tides calculate zoff+z_arg which is the number of seconds since the beginning of the day. |
---|
183 | ! the tidal phases are then corrected for this reset with the v0tide parameter, calucate by tide_vuf. |
---|
184 | ! nodal correction is much smaller, with ftide (which affects the amplitude), and utide (which affects the phase). |
---|
185 | ! |
---|
186 | ! |
---|
187 | ! As the phase of the tidal constituents for both the boundaries and the tidal potential |
---|
188 | ! are adjusted by the astronomic_angle, we can adapt this one module to adapt the tides |
---|
189 | ! for 360 day calendars. |
---|
190 | ! |
---|
191 | ! There are different approaches to tides in a 360 day calendar. |
---|
192 | ! 1) (current), the tides are effectively reset to the first of the month. |
---|
193 | ! therefore skip 31st's and repeat 29th and 30th of Feb |
---|
194 | ! its happy with extra days of the month (doesn't crash for 30th Feb) |
---|
195 | ! Tide is anchored to correct part of the year, but extra/missing days |
---|
196 | ! are unrealistic, add noise to the system, and make least square tidal analysis fail |
---|
197 | ! |
---|
198 | ! 2) Start the tides at the begining of the run and then let run continuously. |
---|
199 | ! The tides drift throughout the year, so the equinox's are not at the correct part of the year. |
---|
200 | ! |
---|
201 | ! This is the approach set up below |
---|
202 | ! |
---|
203 | ! 2b) Adapt the equations to use decimal years (they sort of do, as they use day of year) |
---|
204 | ! This would make the counting forward and backward from the origin easier |
---|
205 | ! (the final step (going from DOY to mon and yr) would be removed) |
---|
206 | ! |
---|
207 | ! 4) Adapt the equations that affect the location of the moon and tides. |
---|
208 | ! This very likely to be a hugely complex job, that would affect the amphidromic systems, |
---|
209 | ! As you're likely to need to change many/all of the tidal constants. this is then likely |
---|
210 | ! to change the tidal frequencies, and so the the tidal wave speed, and hence the amphidromes, |
---|
211 | ! co-tide and co-phase lines. |
---|
212 | ! |
---|
213 | ! This approach is not followed |
---|
214 | ! |
---|
215 | ! |
---|
216 | ! To make the tide continueous for 360 and 365.25 day calendars, |
---|
217 | ! firstly, I make temporary working yr/mn/day integers. |
---|
218 | ! for the gregorian calendar these are simply set to nyear, nmonth and nday. |
---|
219 | ! |
---|
220 | ! For a 360 day calendar, I count the days from 1900/1/1 to the current day |
---|
221 | ! according to the the 360 day calendar. |
---|
222 | ! I then count forward that many days according to the gregorian calendar. |
---|
223 | ! therefore every 30 day month of the 360d model run, the tides move forward 30 days. |
---|
224 | |
---|
225 | |
---|
226 | |
---|
227 | ! Questions: |
---|
228 | ! Are the better ways of adding offets to dates in Nemo/Fortran? i.e. python timedelta from datetime |
---|
229 | ! is there a leap year function in NEMO/Fortran? |
---|
230 | ! Not sure if the algorithm is very stable for different origins. |
---|
231 | ! nleap is corrected for 1900 not being a leap year. Needs updated for a different origin year |
---|
232 | ! Does it work if its not starting on a leap year? |
---|
233 | ! Does it work if its after the 28th Feb? |
---|
234 | ! Does it work if the origin is after the start date of the run? |
---|
235 | ! When adjusting the DOY and Y for the number of leap years, what happens if its more than 365 leap years? |
---|
236 | ! |
---|
237 | ! h mean solar Longitude and s mean lunar Longitude and are functions of zhfrac, zday and zsy, |
---|
238 | ! but the coeffiencents are not 1/86400:1:365 |
---|
239 | ! zday is the DOY corrected for the number of leap years since 1900. |
---|
240 | ! So can run from 20 to 385. this wouldn't matter if the coefficients were 1/86400:1:365 |
---|
241 | ! should zsy and zday be updated so zday is between e.g. 1 and 365?? |
---|
242 | ! |
---|
243 | ! What are the impacts on the NWS if the tide drifts? |
---|
244 | ! What is the impact on the NWS if the tide repeats/skips days? |
---|
245 | ! can this make the model go unstable? |
---|
246 | |
---|
247 | |
---|
248 | |
---|
249 | ! New variables defined for new code |
---|
250 | INTEGER :: yr_org,mn_org,dy_org !JT |
---|
251 | REAL(wp) :: sec_grg !JT |
---|
252 | INTEGER :: yr_grg,mn_grg,dy_grg !JT |
---|
253 | INTEGER :: yr_360,mn_360,dy_360 !JT |
---|
254 | INTEGER :: yr_wrk,mn_wrk,dy_wrk !JT |
---|
255 | |
---|
256 | |
---|
257 | |
---|
258 | LOGICAL :: ln_tide_drift_time_cont ! Do we correct for a continueous time |
---|
259 | |
---|
260 | |
---|
261 | ! INTEGER(KIND=8) :: days_since_origin ! added to module |
---|
262 | INTEGER :: init_yr, day_in_init_yr,nleap,init_doy |
---|
263 | INTEGER :: init_doy_inc_l,yg_is_leap_mod,doy_grg |
---|
264 | INTEGER,DIMENSION(12) :: idayt, idays |
---|
265 | INTEGER :: inc, ji |
---|
266 | INTEGER :: ios |
---|
267 | |
---|
268 | |
---|
269 | INTEGER :: yr_grg_2, mn_grg_2, dy_grg_2 |
---|
270 | REAL(wp) :: sec_grg_2 |
---|
271 | REAL(wp) :: fjulday_org !: current julian day |
---|
272 | ! REAL(wp) :: days_since_origin_ymds2ju |
---|
273 | INTEGER(KIND=8) :: days_since_origin_ymds2ju_int |
---|
274 | |
---|
275 | REAL(wp) :: current_one_year |
---|
276 | REAL(wp) :: tmpju |
---|
277 | |
---|
278 | |
---|
279 | REAL(wp) :: jul_org_greg,jul_org_360,jul_pres_360 |
---|
280 | |
---|
281 | DATA idayt/0.,31.,59.,90.,120.,151.,181.,212.,243.,273.,304.,334./ |
---|
282 | |
---|
283 | |
---|
284 | ! Currently hardcode the verbosity and the of the code |
---|
285 | ! how to I read the calendar type |
---|
286 | !ln_tide_360_cal = .TRUE. |
---|
287 | !IF ( nleapy == 30) ln_tide_360_cal = .TRUE. |
---|
288 | |
---|
289 | |
---|
290 | |
---|
291 | !! Nameslist values |
---|
292 | |
---|
293 | |
---|
294 | IF (ln_astro_verbose .AND. lwp) THEN |
---|
295 | WRITE(numout,*) 'astro ' |
---|
296 | WRITE(numout,*) 'astro -------------------------------------------------' |
---|
297 | ENDIF |
---|
298 | |
---|
299 | |
---|
300 | ln_tide_drift_time_cont = .FALSE. ! the same the original code |
---|
301 | |
---|
302 | IF( nleapy == 30 ) THEN |
---|
303 | IF ( ln_tide_drift ) THEN |
---|
304 | ln_tide_drift_time_cont = .TRUE. |
---|
305 | ENDIF |
---|
306 | IF ( ln_tide_compress ) THEN |
---|
307 | ! ################################################################## |
---|
308 | ! ################################################################## |
---|
309 | ! ################################################################## |
---|
310 | ! ##### |
---|
311 | ! ##### For the 360 day tide constituents, |
---|
312 | ! ##### We only use days_since_origin for v0tide in tide_vuf. |
---|
313 | ! ##### |
---|
314 | ! ##### To use the correct tide nodal correction (utide) |
---|
315 | ! ##### (which is a small ajustment) |
---|
316 | ! ##### use keep that linked to the gregorian dates. |
---|
317 | ! ##### |
---|
318 | ! ##### |
---|
319 | ! ##### |
---|
320 | ! ##### Therefore, we keep yr_wrk, mn_wrk, dy_wrk to equal |
---|
321 | ! ##### nyear, nmonth, nday |
---|
322 | ! ##### |
---|
323 | ! ################################################################## |
---|
324 | ! ################################################################## |
---|
325 | ! ################################################################## |
---|
326 | |
---|
327 | ln_tide_drift_time_cont = .FALSE. |
---|
328 | |
---|
329 | ! ################################################################## |
---|
330 | ! ################################################################## |
---|
331 | ! ################################################################## |
---|
332 | ! ##### |
---|
333 | ! ##### NEMO4.0.4 |
---|
334 | ! ##### BUT!!! need to calc days_since_origin, so need to |
---|
335 | ! ##### set ln_tide_drift_time_cont too true, then reset |
---|
336 | ! ##### yr_wrk, mn_wrk, dy_wrk to equal nyear, nmonth, nday |
---|
337 | ! ##### |
---|
338 | ! ##### |
---|
339 | ! ################################################################## |
---|
340 | ! ################################################################## |
---|
341 | ! ################################################################## |
---|
342 | ln_tide_drift_time_cont = .TRUE. |
---|
343 | ENDIF |
---|
344 | |
---|
345 | ELSE |
---|
346 | ln_tide_drift_time_cont = .FALSE. |
---|
347 | ENDIF |
---|
348 | |
---|
349 | |
---|
350 | IF (ln_astro_verbose .AND. lwp) THEN |
---|
351 | WRITE(numout,*) 'astro ln_tide_drift_time_cont = ',ln_tide_drift_time_cont |
---|
352 | ENDIF |
---|
353 | |
---|
354 | !IF( ln_tide_360_cal ) THEN |
---|
355 | !IF( nleapy == 30 ) THEN |
---|
356 | IF( ln_tide_drift_time_cont ) THEN |
---|
357 | |
---|
358 | |
---|
359 | ! clear and set current dates. |
---|
360 | yr_360 = nyear |
---|
361 | mn_360 = nmonth |
---|
362 | dy_360 = nday |
---|
363 | |
---|
364 | |
---|
365 | yr_grg = 0 |
---|
366 | mn_grg = 0 |
---|
367 | dy_grg = 0 |
---|
368 | |
---|
369 | yr_wrk = 0 |
---|
370 | mn_wrk = 0 |
---|
371 | dy_wrk = 0 |
---|
372 | |
---|
373 | ! Set the origin in the name list |
---|
374 | |
---|
375 | yr_org = nn_tide_orig_yr |
---|
376 | mn_org = nn_tide_orig_mn |
---|
377 | dy_org = nn_tide_orig_dy |
---|
378 | |
---|
379 | |
---|
380 | !IF (ln_tide_drift_time_cont_manual) THEN |
---|
381 | |
---|
382 | |
---|
383 | |
---|
384 | ! IF (ln_astro_verbose .AND. lwp) THEN |
---|
385 | ! WRITE(numout,*) 'astro: yr_360,yr_org,((yr_360-yr_org)*360)', yr_360,yr_org,((yr_360-yr_org)*360) |
---|
386 | ! WRITE(numout,*) 'astro: mn_360,mn_org,((mn_360-mn_org)*30)', mn_360,mn_org,((mn_360-mn_org)*30) |
---|
387 | ! WRITE(numout,*) 'astro: dy_360,dy_org,(dy_360-dy_org)', dy_360,dy_org,(dy_360-dy_org) |
---|
388 | ! ENDIF |
---|
389 | ! |
---|
390 | ! ! how many days from 1900 in the 360 day calendar |
---|
391 | ! days_since_origin = ((yr_360-yr_org)*360) + ((mn_360-mn_org)*30) + (dy_360-dy_org) |
---|
392 | ! |
---|
393 | ! ! first guess of what year this would be for the same numbers of days from 1/1/1900 in a gregorian calendar |
---|
394 | ! init_yr = yr_org + days_since_origin/365 |
---|
395 | ! |
---|
396 | ! ! was the initial estimated year a leap year? how many days in this year? |
---|
397 | ! day_in_init_yr = 365 |
---|
398 | ! if (MOD(init_yr,4) == 0) day_in_init_yr = 366 |
---|
399 | ! |
---|
400 | ! |
---|
401 | ! |
---|
402 | ! !CALL ymds2ju_JT (yr_org, mn_org, dy_org, 0.0, fjulday_org,360.) |
---|
403 | ! |
---|
404 | ! !IF (ln_astro_verbose) THEN |
---|
405 | ! ! IF(lwp) THEN |
---|
406 | ! ! WRITE(numout,*) 'astro: ymds2ju_JT yr_org, mn_org, dy_org,fjulday_org', yr_org, mn_org, dy_org,fjulday_org |
---|
407 | ! ! ENDIF |
---|
408 | ! !ENDIF |
---|
409 | ! |
---|
410 | ! |
---|
411 | ! !CALL ymds2ju( yr_org, mn_org, dy_org, 0.0, fjulday_org ) ! we assume that we start run at 00:00 |
---|
412 | ! !IF( ABS(fjulday_org - REAL(NINT(fjulday_org),wp)) < 0.1 / rday ) fjulday_org = REAL(NINT(fjulday_org),wp) ! avoid truncation error |
---|
413 | ! !fjulday_org = fjulday_org + 1. ! move back to the day at nit000 (and not at nit000 - 1) |
---|
414 | ! |
---|
415 | ! !days_since_origin_ymds2ju_int = AINT(fjulday - fjulday_org) |
---|
416 | ! |
---|
417 | ! IF (ln_astro_verbose .AND. lwp) THEN |
---|
418 | ! WRITE(numout,*) 'astro: days_since_origin,init_yr,day_in_init_yr', days_since_origin,init_yr,day_in_init_yr |
---|
419 | ! !WRITE(numout,*) 'astro: fjulday_org', fjulday_org |
---|
420 | ! !WRITE(numout,*) 'astro: fjulday', fjulday |
---|
421 | ! !WRITE(numout,*) 'astro: fjulday - fjulday_org', fjulday - fjulday_org |
---|
422 | ! !WRITE(numout,*) 'astro: days_since_origin_ymds2ju_int', days_since_origin_ymds2ju_int |
---|
423 | ! ENDIF |
---|
424 | ! |
---|
425 | ! |
---|
426 | ! ! how many leap years since the origin. |
---|
427 | ! nleap = (yr_360-yr_org)/4 - 1 !1900 is not a leap year |
---|
428 | ! |
---|
429 | ! ! initial estimate of the day of year |
---|
430 | ! init_doy = MOD(days_since_origin,365) |
---|
431 | ! |
---|
432 | ! ! correct the initial estimate for the DOY for the number of leap days since the origin |
---|
433 | ! init_doy_inc_l = init_doy - nleap |
---|
434 | ! |
---|
435 | ! |
---|
436 | ! IF (ln_astro_verbose .AND. lwp) THEN |
---|
437 | ! WRITE(numout,*) 'astro: nleap,init_doy,init_doy_inc_l',nleap,init_doy,init_doy_inc_l |
---|
438 | ! ENDIF |
---|
439 | ! |
---|
440 | ! |
---|
441 | ! ! The number of leap days could pull the DOY before 0. |
---|
442 | ! ! in which case decrement the year, and reset the DOY. |
---|
443 | ! ! of the origin is 365 leap years ago, and initial DOY could be adjusted by more than one year.. |
---|
444 | ! ! Unlikely to be a prob, but need to remember if planning very long control runs. Need to think about this. |
---|
445 | ! |
---|
446 | ! IF (init_doy_inc_l .LT. 0) THEN |
---|
447 | ! init_doy_inc_l = init_doy_inc_l+365 |
---|
448 | ! init_yr = init_yr - 1 |
---|
449 | ! IF (MOD(init_yr, 4) == 0 ) THEN |
---|
450 | ! init_doy_inc_l = init_doy_inc_l + 1 |
---|
451 | ! ENDIF |
---|
452 | ! ENDIF |
---|
453 | ! |
---|
454 | ! |
---|
455 | ! ! This gives the year and the day of year in the gregorian calendar |
---|
456 | ! yr_grg = init_yr |
---|
457 | ! doy_grg = init_doy_inc_l |
---|
458 | ! yg_is_leap_mod = MOD(yr_grg, 4) |
---|
459 | ! |
---|
460 | ! IF (ln_astro_verbose .AND. lwp) THEN |
---|
461 | ! WRITE(numout,*) 'astro: yr_grg,doy_grg,yg_is_leap_mod',yr_grg,doy_grg,yg_is_leap_mod |
---|
462 | ! ENDIF |
---|
463 | ! |
---|
464 | ! |
---|
465 | ! ! Convert from day of year to month and day in the gregorian calendar. |
---|
466 | ! ! dayjul code adapted |
---|
467 | ! ! this perhaps should be a function, but not sure how to write one |
---|
468 | ! ! there may be this code functionality elsewhere in NEMO |
---|
469 | ! !!---------------------------------------------------------------------- |
---|
470 | ! |
---|
471 | ! |
---|
472 | ! ! what is the DOY of the first day of the month for each month. |
---|
473 | ! ! correct for leap years. |
---|
474 | ! |
---|
475 | ! idays(1) = 0. |
---|
476 | ! idays(2) = 31. |
---|
477 | ! inc = 0. |
---|
478 | ! IF( yg_is_leap_mod == 0.) inc = 1. |
---|
479 | ! |
---|
480 | ! DO ji = 3, 12 |
---|
481 | ! idays(ji)=idayt(ji)+inc |
---|
482 | ! END DO |
---|
483 | ! |
---|
484 | ! ! cycle through the months. |
---|
485 | ! ! if the DOY is greater than the DOY of the first Day of Month |
---|
486 | ! ! Note the month. Calculate day of month by subtraction. |
---|
487 | ! ! Once beyond the correct month, the if statement won't be true, so wont calculate. |
---|
488 | ! |
---|
489 | ! DO ji = 1, 12 |
---|
490 | ! IF ( doy_grg .GE. idays(ji) ) THEN |
---|
491 | ! mn_grg = ji |
---|
492 | ! dy_grg = doy_grg-idays(ji) +1 |
---|
493 | ! ENDIF |
---|
494 | ! END DO |
---|
495 | ! |
---|
496 | ! |
---|
497 | ! |
---|
498 | ! |
---|
499 | ! |
---|
500 | ! IF(ln_astro_verbose .AND. lwp) THEN |
---|
501 | ! WRITE(numout,*) 'astro: mn_grg,dy_grg',mn_grg,dy_grg |
---|
502 | ! WRITE(numout,*) ' ' |
---|
503 | ! WRITE(numout,*) 'tide_mod_astro_ang 360_corr : yr_360,mn_360,dy_360,yr_grg,mn_grg,dy_grg,doy_grg =',yr_360,mn_360,dy_360,yr_grg,mn_grg,dy_grg,doy_grg |
---|
504 | ! |
---|
505 | ! WRITE(numout,*) ' ' |
---|
506 | ! ENDIF |
---|
507 | ! |
---|
508 | ! |
---|
509 | ! |
---|
510 | ! IF (ln_astro_verbose .AND. lwp) WRITE(numout,*) 'tide_mod_astro_ang_meth_1,',yr_grg, mn_grg, dy_grg |
---|
511 | |
---|
512 | |
---|
513 | !ELSE ! ln_tide_drift_time_cont_manual |
---|
514 | |
---|
515 | |
---|
516 | ! number of days since 15th October 1582, for namelist origin, in both calendars, and for current model day. |
---|
517 | |
---|
518 | CALL ymds2ju_JT( yr_org,mn_org,dy_org, 0. ,jul_org_greg,365.24 ) |
---|
519 | CALL ymds2ju_JT( yr_org,mn_org,dy_org, 0. ,jul_org_360,360. ) |
---|
520 | CALL ymds2ju_JT( yr_360,mn_360,dy_360, 0. ,jul_pres_360,360. ) |
---|
521 | |
---|
522 | ! Calculate the days since the origin: days_since_origin_ymds2ju_int |
---|
523 | ! How many days between the current day, and the origin, in the 360 day calendar. |
---|
524 | days_since_origin_ymds2ju_int = jul_pres_360 - jul_org_360 |
---|
525 | |
---|
526 | IF (ln_astro_verbose .AND. lwp) THEN |
---|
527 | WRITE(numout,*) 'tide_mod_astro_ang 360_corr : jul_org_360,jul_pres_360,jul_pres_360 - jul_org_360 =',jul_org_360,jul_pres_360,jul_pres_360 - jul_org_360 |
---|
528 | WRITE(numout,*) 'tide_mod_astro_ang 360_corr : days_since_origin_ymds2ju_int, days_since_origin_ymds2ju_int mod 360 =',days_since_origin_ymds2ju_int,MOD( days_since_origin_ymds2ju_int ,360 ) |
---|
529 | WRITE(numout,*) 'tide_mod_astro_ang 360_corr : yr_org,mn_org,dy_org, jul_org_greg =',yr_org,mn_org,dy_org, jul_org_greg |
---|
530 | ENDIF |
---|
531 | |
---|
532 | !add days_since_origin_ymds2ju_int days to the origin in the gregorian calendar. |
---|
533 | CALL ju2ymds_JT( days_since_origin_ymds2ju_int + jul_org_greg, yr_grg, mn_grg, dy_grg, sec_grg,365.24 ) |
---|
534 | |
---|
535 | IF (ln_astro_verbose .AND. lwp) THEN |
---|
536 | WRITE(numout,*) 'tide_mod_astro_ang 360_corr : yr_grg, mn_grg, dy_grg =',yr_grg, mn_grg, dy_grg |
---|
537 | WRITE(numout,*) 'tide_mod_astro_ang 360_corr : yr_360, mn_360, dy_360 =',yr_360, mn_360, dy_360 |
---|
538 | WRITE(numout,*) 'tide_mod_astro_ang 360_corr : yr_org, mn_org, dy_org =',yr_org, mn_org, dy_org |
---|
539 | ENDIF |
---|
540 | |
---|
541 | |
---|
542 | |
---|
543 | |
---|
544 | IF (ln_astro_verbose .AND. lwp) WRITE(numout,*) 'tide_mod_astro_ang_meth_2,',yr_grg, mn_grg, dy_grg |
---|
545 | |
---|
546 | !ENDIF !ln_tide_drift_time_cont_manual |
---|
547 | |
---|
548 | ! for 360 calendars, work with the pseudo gregorian dates |
---|
549 | yr_wrk = yr_grg |
---|
550 | mn_wrk = mn_grg |
---|
551 | dy_wrk = dy_grg |
---|
552 | |
---|
553 | days_since_origin = days_since_origin_ymds2ju_int |
---|
554 | |
---|
555 | |
---|
556 | IF (ln_tide_compress) THEN |
---|
557 | yr_wrk = nyear |
---|
558 | mn_wrk = nmonth |
---|
559 | dy_wrk = nday |
---|
560 | ENDIF |
---|
561 | |
---|
562 | ELSE |
---|
563 | |
---|
564 | ! for gregorian calendars, work with the model gregorian dates |
---|
565 | yr_wrk = nyear |
---|
566 | mn_wrk = nmonth |
---|
567 | dy_wrk = nday |
---|
568 | |
---|
569 | ENDIF |
---|
570 | |
---|
571 | ! continue with original code, using working year, month and day. |
---|
572 | |
---|
573 | ! |
---|
574 | zqy = AINT( (yr_wrk-1901.)/4. ) ! leap years since 1901 |
---|
575 | zsy = yr_wrk - 1900. ! years since 1900 |
---|
576 | ! |
---|
577 | zdj = dayjul( yr_wrk, mn_wrk, dy_wrk ) ! day number of year |
---|
578 | zday = zdj + zqy - 1. ! day number of year + No of leap yrs |
---|
579 | ! i.e. what would doy if every year = 365 day?? |
---|
580 | ! |
---|
581 | zhfrac = nsec_day / 3600. ! The seconds of the day/3600 |
---|
582 | |
---|
583 | |
---|
584 | ! |
---|
585 | !---------------------------------------------------------------------- |
---|
586 | ! Sh_n Longitude of ascending lunar node |
---|
587 | !---------------------------------------------------------------------- |
---|
588 | sh_N=(259.1560564-19.328185764*zsy-.0529539336*zday-.0022064139*zhfrac)*rad |
---|
589 | !---------------------------------------------------------------------- |
---|
590 | ! T mean solar angle (Greenwhich time) |
---|
591 | !---------------------------------------------------------------------- |
---|
592 | sh_T=(180.+zhfrac*(360./24.))*rad |
---|
593 | !---------------------------------------------------------------------- |
---|
594 | ! h mean solar Longitude |
---|
595 | !---------------------------------------------------------------------- |
---|
596 | sh_h=(280.1895014-.238724988*zsy+.9856473288*zday+.0410686387*zhfrac)*rad |
---|
597 | !---------------------------------------------------------------------- |
---|
598 | ! s mean lunar Longitude |
---|
599 | !---------------------------------------------------------------------- |
---|
600 | sh_s=(277.0256206+129.38482032*zsy+13.176396768*zday+.549016532*zhfrac)*rad |
---|
601 | !---------------------------------------------------------------------- |
---|
602 | ! p1 Longitude of solar perigee |
---|
603 | !---------------------------------------------------------------------- |
---|
604 | sh_p1=(281.2208569+.01717836*zsy+.000047064*zday+.000001961*zhfrac)*rad |
---|
605 | !---------------------------------------------------------------------- |
---|
606 | ! p Longitude of lunar perigee |
---|
607 | !---------------------------------------------------------------------- |
---|
608 | sh_p=(334.3837214+40.66246584*zsy+.111404016*zday+.004641834*zhfrac)*rad |
---|
609 | |
---|
610 | |
---|
611 | |
---|
612 | IF(ln_astro_verbose .AND. lwp) THEN |
---|
613 | WRITE(numout,*) |
---|
614 | WRITE(numout,*) 'tide_mod_astro_ang : yr_wrk,mn_wrk,dy_wrk=',yr_wrk,mn_wrk,dy_wrk |
---|
615 | WRITE(numout,*) 'tide_mod_astro_ang : nyear, nmonth, nday,nsec_day=',nyear, nmonth, nday,nsec_day |
---|
616 | WRITE(numout,*) 'tide_mod_astro_ang : sh_N,sh_T,sh_h,sh_s,sh_p1,sh_p=', sh_N,sh_T,sh_h,sh_s,sh_p1,sh_p |
---|
617 | WRITE(numout,*) 'tide_mod_astro_ang : zsy,zday,zhfrac,rad=', zsy,zday,zhfrac,rad |
---|
618 | WRITE(numout,*) 'tide_mod_astro_ang : zqy ,zdj,yr_wrk, mn_wrk, dy_wrk =', zqy ,zdj,yr_wrk, mn_wrk, dy_wrk |
---|
619 | WRITE(numout,*) '~~~~~~~~~~~~~~ ' |
---|
620 | ENDIF |
---|
621 | |
---|
622 | |
---|
623 | |
---|
624 | sh_N = MOD( sh_N ,2*rpi ) |
---|
625 | sh_s = MOD( sh_s ,2*rpi ) |
---|
626 | sh_h = MOD( sh_h, 2*rpi ) |
---|
627 | sh_p = MOD( sh_p, 2*rpi ) |
---|
628 | sh_p1= MOD( sh_p1,2*rpi ) |
---|
629 | |
---|
630 | cosI = 0.913694997 -0.035692561 *cos(sh_N) |
---|
631 | |
---|
632 | sh_I = ACOS( cosI ) |
---|
633 | |
---|
634 | sin2I = sin(sh_I) |
---|
635 | sh_tgn2 = tan(sh_N/2.0) |
---|
636 | |
---|
637 | at1=atan(1.01883*sh_tgn2) |
---|
638 | at2=atan(0.64412*sh_tgn2) |
---|
639 | |
---|
640 | sh_xi=-at1-at2+sh_N |
---|
641 | |
---|
642 | IF( sh_N > rpi ) sh_xi=sh_xi-2.0*rpi |
---|
643 | |
---|
644 | sh_nu = at1 - at2 |
---|
645 | |
---|
646 | !---------------------------------------------------------------------- |
---|
647 | ! For constituents l2 k1 k2 |
---|
648 | !---------------------------------------------------------------------- |
---|
649 | |
---|
650 | tgI2 = tan(sh_I/2.0) |
---|
651 | P1 = sh_p-sh_xi |
---|
652 | |
---|
653 | t2 = tgI2*tgI2 |
---|
654 | t4 = t2*t2 |
---|
655 | sh_x1ra = sqrt( 1.0-12.0*t2*cos(2.0*P1)+36.0*t4 ) |
---|
656 | |
---|
657 | p = sin(2.0*P1) |
---|
658 | q = 1.0/(6.0*t2)-cos(2.0*P1) |
---|
659 | sh_R = atan(p/q) |
---|
660 | |
---|
661 | p = sin(2.0*sh_I)*sin(sh_nu) |
---|
662 | q = sin(2.0*sh_I)*cos(sh_nu)+0.3347 |
---|
663 | sh_nuprim = atan(p/q) |
---|
664 | |
---|
665 | s2 = sin(sh_I)*sin(sh_I) |
---|
666 | p = s2*sin(2.0*sh_nu) |
---|
667 | q = s2*cos(2.0*sh_nu)+0.0727 |
---|
668 | sh_nusec = 0.5*atan(p/q) |
---|
669 | ! |
---|
670 | END SUBROUTINE astronomic_angle |
---|
671 | |
---|
672 | |
---|
673 | SUBROUTINE tide_pulse( pomega, ktide ,kc ) |
---|
674 | !!---------------------------------------------------------------------- |
---|
675 | !! *** ROUTINE tide_pulse *** |
---|
676 | !! |
---|
677 | !! ** Purpose : Compute tidal frequencies |
---|
678 | !!---------------------------------------------------------------------- |
---|
679 | INTEGER , INTENT(in ) :: kc ! Total number of tidal constituents |
---|
680 | INTEGER , DIMENSION(kc), INTENT(in ) :: ktide ! Indice of tidal constituents |
---|
681 | REAL(wp), DIMENSION(kc), INTENT(out) :: pomega ! pulsation in radians/s |
---|
682 | ! |
---|
683 | INTEGER :: jh |
---|
684 | REAL(wp) :: zscale |
---|
685 | REAL(wp) :: zomega_T = 13149000.0_wp ! Mean Solar Day ! degrees/century |
---|
686 | REAL(wp) :: zomega_s = 481267.892_wp ! Sidereal Month ! degrees/century |
---|
687 | REAL(wp) :: zomega_h != 36000.76892_wp ! Tropical Year ! degrees/century |
---|
688 | REAL(wp) :: zomega_p = 4069.0322056_wp ! Moons Perigee ! degrees/century |
---|
689 | REAL(wp) :: zomega_n = 1934.1423972_wp ! Regression of Lunar Nodes ! degrees/century |
---|
690 | REAL(wp) :: zomega_p1= 1.719175_wp ! Perihelion ! degrees/century |
---|
691 | !!---------------------------------------------------------------------- |
---|
692 | |
---|
693 | zomega_h = 36000.76892_wp ! Tropical Year ! degrees/century |
---|
694 | IF (( nleapy == 30 ) .AND. ln_tide_compress) zomega_h = 36525.0_wp ! 360 day Tropical Year ! degrees/century (360 deg/360 days= 1deg/day. cent = 36525 |
---|
695 | |
---|
696 | ! |
---|
697 | zscale = rad / ( 36525._wp * 86400._wp ) ! Convert to radians per second. |
---|
698 | ! |
---|
699 | DO jh = 1, kc |
---|
700 | pomega(jh) = ( zomega_T * Wave( ktide(jh) )%nT & |
---|
701 | & + zomega_s * Wave( ktide(jh) )%ns & |
---|
702 | & + zomega_h * Wave( ktide(jh) )%nh & |
---|
703 | & + zomega_p * Wave( ktide(jh) )%np & |
---|
704 | & + zomega_p1* Wave( ktide(jh) )%np1 ) * zscale |
---|
705 | END DO |
---|
706 | |
---|
707 | IF (ln_astro_verbose .AND. lwp) THEN |
---|
708 | |
---|
709 | WRITE(numout,*) 'astro tide_pulse nleapy:',nleapy |
---|
710 | WRITE(numout,*) 'astro tide_pulse zomega_h:',zomega_h |
---|
711 | WRITE(numout,*) 'astro tide_pulse if zomega_h = 36000.76892 for 365.24 day year' |
---|
712 | WRITE(numout,*) 'astro tide_pulse if zomega_h = 36525.00000 for 360.00 day year' |
---|
713 | |
---|
714 | |
---|
715 | DO jh = 1, kc |
---|
716 | WRITE(numout,*) 'astro tide_pulse const, pomega, period(hr):',Wave(ktide(jh))%cname_tide, pomega(jh),2*rpi/(3600.0_wp*pomega(jh)) |
---|
717 | END DO |
---|
718 | |
---|
719 | ENDIF |
---|
720 | ! |
---|
721 | END SUBROUTINE tide_pulse |
---|
722 | |
---|
723 | |
---|
724 | SUBROUTINE tide_vuf( pvt, put, pcor, ktide ,kc ) |
---|
725 | !!---------------------------------------------------------------------- |
---|
726 | !! *** ROUTINE tide_vuf *** |
---|
727 | !! |
---|
728 | !! ** Purpose : Compute nodal modulation corrections |
---|
729 | !! |
---|
730 | !! ** Outputs : vt: Phase of tidal potential relative to Greenwich (radians) |
---|
731 | !! ut: Phase correction u due to nodal motion (radians) |
---|
732 | !! ft: Nodal correction factor |
---|
733 | !!---------------------------------------------------------------------- |
---|
734 | INTEGER , INTENT(in ) :: kc ! Total number of tidal constituents |
---|
735 | INTEGER , DIMENSION(kc), INTENT(in ) :: ktide ! Indice of tidal constituents |
---|
736 | REAL(wp), DIMENSION(kc), INTENT(out) :: pvt, put, pcor ! |
---|
737 | |
---|
738 | ! |
---|
739 | INTEGER :: jh ! dummy loop index |
---|
740 | !!---------------------------------------------------------------------- |
---|
741 | |
---|
742 | !! JT for compress |
---|
743 | REAL(wp) :: hours_since_origin |
---|
744 | REAL(wp), DIMENSION(kc) :: pomega ! pulsation in radians/s |
---|
745 | REAL(wp), DIMENSION(kc) :: freq_per_day, v0linearslope,v0linearintercept ! pulsation in radians/s !offset,cycle_reset,freq,per_hr |
---|
746 | !! JT for compress |
---|
747 | |
---|
748 | |
---|
749 | |
---|
750 | IF ( ln_tide_compress) THEN |
---|
751 | |
---|
752 | CALL tide_pulse( pomega, ktide ,kc ) |
---|
753 | |
---|
754 | DO jh = 1, kc |
---|
755 | !per_hr(jh) = (2*rpi/pomega(jh))/3600. |
---|
756 | !freq(jh) = (2*rpi/per_hr(jh)) |
---|
757 | !freq_per_day(jh) = freq(jh)*24 |
---|
758 | freq_per_day(jh) = pomega(jh) * 86400.0_wp |
---|
759 | !cycle_reset(jh) = mod(hours_since_origin*freq(jh),2.*rpi) |
---|
760 | v0linearslope(jh) = - mod ( (-freq_per_day(jh)), (2*rpi) ) |
---|
761 | IF(ln_astro_verbose .AND. lwp) WRITE(numout,*) 'astro tide_vuf 1:',jh,kc,ktide(jh),v0linearslope(jh),freq_per_day(jh), pomega(jh),(2*rpi/pomega(jh))/3600.! * 86400.0_wp,freq(jh)*24,per_hr(jh),freq(jh) |
---|
762 | ENDDO |
---|
763 | |
---|
764 | |
---|
765 | !offset(1) = 0.10789890_wp |
---|
766 | !offset(2) = 1.10897897_wp |
---|
767 | !offset(3) = 2.11005903_wp |
---|
768 | !offset(4) = 0.00000000_wp |
---|
769 | !offset(5) = 3.47632710_wp |
---|
770 | !offset(6) = 0.16751976_wp |
---|
771 | !offset(7) = -0.05503165_wp |
---|
772 | !offset(8) = 0.94604842_wp |
---|
773 | !offset(9) = 6.10534877_wp |
---|
774 | !offset(10) = 0.21579780_wp |
---|
775 | !offset(11) = 0.00000000_wp |
---|
776 | !offset(12) = 0.00000000_wp |
---|
777 | !offset(13) = 0.00000000_wp |
---|
778 | !offset(14) = 0.00000000_wp |
---|
779 | !offset(15) = 3.14159265_wp |
---|
780 | !offset(16) = 0.21833313_wp |
---|
781 | !offset(17) = 5.50043837_wp |
---|
782 | !offset(18) = 2.24841149_wp |
---|
783 | !offset(19) = 0.01800173_wp |
---|
784 | |
---|
785 | !v0linearintercept(1) = 0.11044027_wp |
---|
786 | !v0linearintercept(2) = 1.11152799_wp |
---|
787 | !v0linearintercept(3) = 2.11261570_wp |
---|
788 | !v0linearintercept(4) = 0.00000000_wp |
---|
789 | !v0linearintercept(5) = 3.49727335_wp |
---|
790 | !v0linearintercept(6) = 0.17784035_wp |
---|
791 | !v0linearintercept(7) = 6.21578523_wp |
---|
792 | !v0linearintercept(8) = 0.93368764_wp |
---|
793 | !v0linearintercept(9) = 6.10534496_wp |
---|
794 | !v0linearintercept(10) = 0.22088055_wp |
---|
795 | !v0linearintercept(11) = 0.00000000_wp |
---|
796 | !v0linearintercept(12) = 0.00000000_wp |
---|
797 | !v0linearintercept(13) = 0.00000000_wp |
---|
798 | !v0linearintercept(14) = 0.00000000_wp |
---|
799 | !v0linearintercept(15) = 3.14159265_wp |
---|
800 | |
---|
801 | !v0linearintercept(1) = v0linearintercept(1) - 0.000000_wp |
---|
802 | !v0linearintercept(2) = v0linearintercept(2) - 0.000000_wp |
---|
803 | !v0linearintercept(3) = v0linearintercept(3) - 0_wp |
---|
804 | !v0linearintercept(4) = v0linearintercept(4) - 0.165795_wp |
---|
805 | !v0linearintercept(5) = v0linearintercept(5) + 2.821252_wp |
---|
806 | !v0linearintercept(6) = v0linearintercept(6) + 0.479504_wp |
---|
807 | !v0linearintercept(7) = v0linearintercept(7) - 2.175621_wp |
---|
808 | !v0linearintercept(8) = v0linearintercept(8) + 1.900267_wp |
---|
809 | !v0linearintercept(9) = v0linearintercept(9) + 0.107633_wp |
---|
810 | !v0linearintercept(10) = v0linearintercept(10) - 0.000000_wp |
---|
811 | !v0linearintercept(11) = v0linearintercept(11) - 0.000000_wp |
---|
812 | !v0linearintercept(12) = v0linearintercept(12) - 0.225730_wp |
---|
813 | !v0linearintercept(13) = v0linearintercept(13) - 0.238641_wp |
---|
814 | !v0linearintercept(14) = v0linearintercept(14) - 3.005851_wp |
---|
815 | !v0linearintercept(15) = v0linearintercept(15) - 0.000000_wp |
---|
816 | |
---|
817 | !v0linearintercept(1) = 0.11044026999999999_wp |
---|
818 | !v0linearintercept(2) = 1.11152798999999990_wp |
---|
819 | !v0linearintercept(3) = 2.11261570000000010_wp |
---|
820 | !v0linearintercept(4) = -0.16579500000000000_wp |
---|
821 | !v0linearintercept(5) = 6.31852534999999980_wp |
---|
822 | !v0linearintercept(6) = 0.65734435000000002_wp |
---|
823 | !v0linearintercept(7) = 4.04016423000000020_wp |
---|
824 | !v0linearintercept(8) = 2.83395464000000000_wp |
---|
825 | !v0linearintercept(9) = 6.21297795999999990_wp |
---|
826 | !v0linearintercept(10) = 0.22088055000000001_wp |
---|
827 | !v0linearintercept(11) = 0.00000000000000000_wp |
---|
828 | !v0linearintercept(12) = -0.22572999999999999_wp |
---|
829 | !v0linearintercept(13) = -0.23864099999999999_wp |
---|
830 | !v0linearintercept(14) = -3.00585099999999980_wp |
---|
831 | !v0linearintercept(15) = 3.14159265000000020_wp |
---|
832 | |
---|
833 | v0linearintercept( 1) = 0.2208805500_wp - (rpi* 68.0_wp/180.0_wp) ! M2 1 |
---|
834 | v0linearintercept( 2) = 3.1186126191_wp ! N2 2 |
---|
835 | v0linearintercept( 3) = 0.9305155436_wp ! 2N2 3 |
---|
836 | v0linearintercept( 4) = 0.0194858941_wp ! S2 4 |
---|
837 | v0linearintercept( 5) = -2.5213114949_wp ! K2 5 |
---|
838 | v0linearintercept( 6) = 6.5970532125_wp ! K1 6 |
---|
839 | v0linearintercept( 7) = 1.1115279900_wp ! O1 7 |
---|
840 | v0linearintercept( 8) = 0.1104402700_wp ! Q1 8 |
---|
841 | ! v0linearintercept( 9) = 4.2269096542_wp ! P1 9 |
---|
842 | !v0linearintercept( 9) = -2.0351042402_wp ! P1 9 compress3 |
---|
843 | !v0linearintercept( 9) = -2.0351042402_wp - 2.6179938779914944 ! P1 9 compress4 |
---|
844 | |
---|
845 | v0linearintercept( 9) = rpi* 345.0_wp/180.0_wp - (rpi* 140.0_wp/180.0_wp) ! P1 9 compress4 |
---|
846 | |
---|
847 | v0linearintercept(10) = 3.1415926500_wp ! M4 10 |
---|
848 | v0linearintercept(11) = 0.0000000000_wp ! Mf 11 |
---|
849 | v0linearintercept(12) = 0.0000000000_wp ! Mm 12 |
---|
850 | v0linearintercept(13) = 0.0000000000_wp ! Msqm 13 |
---|
851 | v0linearintercept(14) = 0.0000000000_wp ! Mtm 14 |
---|
852 | v0linearintercept(15) = -0.0230244122_wp ! S1 15 |
---|
853 | v0linearintercept(16) = 4.2565208698_wp ! MU2 16 |
---|
854 | v0linearintercept(17) = 6.5001767059_wp ! NU2 17 |
---|
855 | v0linearintercept(18) = 0.0000000000_wp - (rpi* 113.0_wp/180.0_wp) ! L2 18 |
---|
856 | v0linearintercept(19) = 0.0092971808_wp ! T2 19 + rpi/2. |
---|
857 | |
---|
858 | !v0linearintercept(1) = v0linearintercept(1) - 0.034975_wp ! M2 |
---|
859 | !v0linearintercept(2) = v0linearintercept(2) - 0.030244_wp ! N2 |
---|
860 | !v0linearintercept(3) = v0linearintercept(3) - 0.036046_wp ! 2N2 |
---|
861 | !v0linearintercept(4) = v0linearintercept(4) + 0.002092_wp ! S2 |
---|
862 | !v0linearintercept(5) = v0linearintercept(5) - 0.273826_wp ! K2 |
---|
863 | !v0linearintercept(6) = v0linearintercept(6) - 0.144677_wp ! K1 |
---|
864 | !v0linearintercept(7) = v0linearintercept(7) + 0.031938_wp ! O1 |
---|
865 | !v0linearintercept(8) = v0linearintercept(8) - 0.812030_wp ! Q1 |
---|
866 | !v0linearintercept(9) = v0linearintercept(9) + 2.109118_wp ! P1 |
---|
867 | !v0linearintercept(10) = v0linearintercept(10) + 0.070021_wp ! M4 |
---|
868 | !v0linearintercept(11) = v0linearintercept(11) - 0.000000_wp ! Mf |
---|
869 | !v0linearintercept(12) = v0linearintercept(12) - 0.000000_wp ! Mm |
---|
870 | !v0linearintercept(13) = v0linearintercept(13) - 0.000000_wp ! Msqm |
---|
871 | !v0linearintercept(14) = v0linearintercept(14) - 0.000000_wp ! Mtm |
---|
872 | !v0linearintercept(15) = v0linearintercept(15) - 0.035676_wp ! S1 |
---|
873 | !v0linearintercept(16) = v0linearintercept(16) + 0.007598_wp ! MU2 |
---|
874 | !v0linearintercept(17) = v0linearintercept(17) - 0.043060_wp ! NU2 |
---|
875 | !v0linearintercept(18) = v0linearintercept(18) + 0.023561_wp ! L2 |
---|
876 | !v0linearintercept(19) = v0linearintercept(19) + 0.025624_wp ! T2 |
---|
877 | |
---|
878 | v0linearintercept(1) = v0linearintercept(1) - (rpi*2.003909_wp/180.0_wp) ! M2 |
---|
879 | v0linearintercept(2) = v0linearintercept(2) - (rpi*1.732874_wp/180.0_wp) ! N2 |
---|
880 | v0linearintercept(3) = v0linearintercept(3) - (rpi*2.065265_wp/180.0_wp) ! 2N2 |
---|
881 | v0linearintercept(4) = v0linearintercept(4) + (rpi*0.119842_wp/180.0_wp) ! S2 |
---|
882 | v0linearintercept(5) = v0linearintercept(5) - (rpi*15.689068_wp/180.0_wp) ! K2 |
---|
883 | v0linearintercept(6) = v0linearintercept(6) - (rpi*8.289390_wp/180.0_wp) ! K1 |
---|
884 | v0linearintercept(7) = v0linearintercept(7) + (rpi*1.829931_wp/180.0_wp) ! O1 |
---|
885 | v0linearintercept(8) = v0linearintercept(8) - (rpi*46.525902_wp/180.0_wp) ! Q1 |
---|
886 | v0linearintercept(9) = v0linearintercept(9) + (rpi*120.843575_wp/180.0_wp) ! P1 |
---|
887 | v0linearintercept(10) = v0linearintercept(10) + (rpi*4.011896_wp/180.0_wp) ! M4 |
---|
888 | v0linearintercept(11) = v0linearintercept(11) - (rpi*0.000000_wp/180.0_wp) ! Mf |
---|
889 | v0linearintercept(12) = v0linearintercept(12) - (rpi*0.000000_wp/180.0_wp) ! Mm |
---|
890 | v0linearintercept(13) = v0linearintercept(13) - (rpi*0.000000_wp/180.0_wp) ! Msqm |
---|
891 | v0linearintercept(14) = v0linearintercept(14) - (rpi*0.000000_wp/180.0_wp) ! Mtm |
---|
892 | v0linearintercept(15) = v0linearintercept(15) - (rpi*2.044069_wp/180.0_wp) ! S1 |
---|
893 | v0linearintercept(16) = v0linearintercept(16) + (rpi*0.435315_wp/180.0_wp) ! MU2 |
---|
894 | v0linearintercept(17) = v0linearintercept(17) - (rpi*2.467160_wp/180.0_wp) ! NU2 |
---|
895 | v0linearintercept(18) = v0linearintercept(18) + (rpi*1.349939_wp/180.0_wp) ! L2 |
---|
896 | v0linearintercept(19) = v0linearintercept(19) + (rpi*1.468170_wp/180.0_wp) ! T2 |
---|
897 | |
---|
898 | |
---|
899 | ! wave data. |
---|
900 | |
---|
901 | !Wave( 1) = tide( 'M2' , 0.242297 , 2 , 2 , -2 , 2 , 0 , 0 , 0 , 2 , -2 , 0 , 0 , 0 , 78 ) |
---|
902 | !Wave( 2) = tide( 'N2' , 0.046313 , 2 , 2 , -3 , 2 , 1 , 0 , 0 , 2 , -2 , 0 , 0 , 0 , 78 ) |
---|
903 | !Wave( 3) = tide( '2N2' , 0.006184 , 2 , 2 , -4 , 2 , 2 , 0 , 0 , 2 , -2 , 0 , 0 , 0 , 78 ) |
---|
904 | !Wave( 4) = tide( 'S2' , 0.113572 , 2 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) |
---|
905 | !Wave( 5) = tide( 'K2' , 0.030875 , 2 , 2 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , -2 , 0 , 235 ) |
---|
906 | !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! |
---|
907 | !Wave( 6) = tide( 'K1' , 0.142408 , 1 , 1 , 0 , 1 , 0 , 0 , -90 , 0 , 0 , -1 , 0 , 0 , 227 ) |
---|
908 | !Wave( 7) = tide( 'O1' , 0.101266 , 1 , 1 , -2 , 1 , 0 , 0 , +90 , 2 , -1 , 0 , 0 , 0 , 75 ) |
---|
909 | !Wave( 8) = tide( 'Q1' , 0.019387 , 1 , 1 , -3 , 1 , 1 , 0 , +90 , 2 , -1 , 0 , 0 , 0 , 75 ) |
---|
910 | !Wave( 9) = tide( 'P1' , 0.047129 , 1 , 1 , 0 , -1 , 0 , 0 , +90 , 0 , 0 , 0 , 0 , 0 , 0 ) |
---|
911 | !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! |
---|
912 | !Wave(10) = tide( 'M4' , 0.000000 , 4 , 4 , -4 , 4 , 0 , 0 , 0 , 4 , -4 , 0 , 0 , 0 , 1 ) |
---|
913 | !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! |
---|
914 | !Wave(11) = tide( 'Mf' , 0.042017 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , -2 , 0 , 0 , 0 , 0 , 74 ) |
---|
915 | !Wave(12) = tide( 'Mm' , 0.022191 , 0 , 0 , 1 , 0 , -1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 73 ) |
---|
916 | !Wave(13) = tide( 'Msqm' , 0.000667 , 0 , 0 , 4 , -2 , 0 , 0 , 0 , -2 , 0 , 0 , 0 , 0 , 74 ) |
---|
917 | !Wave(14) = tide( 'Mtm' , 0.008049 , 0 , 0 , 3 , 0 , -1 , 0 , 0 , -2 , 0 , 0 , 0 , 0 , 74 ) |
---|
918 | !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! |
---|
919 | !Wave(15) = tide( 'S1' , 0.000000 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) |
---|
920 | !Wave(16) = tide( 'MU2' , 0.005841 , 2 , 2 , -4 , 4 , 0 , 0 , 0 , 2 , -2 , 0 , 0 , 0 , 78 ) |
---|
921 | !Wave(17) = tide( 'NU2' , 0.009094 , 2 , 2 , -3 , 4 , -1 , 0 , 0 , 2 , -2 , 0 , 0 , 0 , 78 ) |
---|
922 | !Wave(18) = tide( 'L2' , 0.006694 , 2 , 2 , -1 , 2 , -1 , 0 , +180 , 2 , -2 , 0 , 0 , 0 , 215 ) |
---|
923 | !Wave(19) = tide( 'T2' , 0.006614 , 2 , 2 , 0 , -1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) |
---|
924 | |
---|
925 | !name list |
---|
926 | ! clname(1)='Q1' |
---|
927 | ! clname(2)='O1' |
---|
928 | ! clname(3)='P1' |
---|
929 | ! clname(4)='S1' |
---|
930 | ! clname(5)='K1' |
---|
931 | ! clname(6)='2N2' |
---|
932 | ! clname(7)='MU2' |
---|
933 | ! clname(8)='N2' |
---|
934 | ! clname(9)='NU2' |
---|
935 | ! clname(10)='M2' |
---|
936 | ! clname(11)='L2' |
---|
937 | ! clname(12)='T2' |
---|
938 | ! clname(13)='S2' |
---|
939 | ! clname(14)='K2' |
---|
940 | ! clname(15)='M4' |
---|
941 | |
---|
942 | ! ktide 8,7,9,15 |
---|
943 | |
---|
944 | !ktide = |
---|
945 | !8 |
---|
946 | !7 |
---|
947 | !9 |
---|
948 | !15 |
---|
949 | !6 |
---|
950 | !3 |
---|
951 | !16 |
---|
952 | !2 |
---|
953 | !17 |
---|
954 | !1 |
---|
955 | !18 |
---|
956 | !19 |
---|
957 | !4 |
---|
958 | !5 |
---|
959 | !10 |
---|
960 | |
---|
961 | |
---|
962 | |
---|
963 | |
---|
964 | |
---|
965 | |
---|
966 | |
---|
967 | |
---|
968 | |
---|
969 | |
---|
970 | |
---|
971 | |
---|
972 | !NEMO4 |
---|
973 | |
---|
974 | ! clname(1)='Q1' |
---|
975 | ! clname(2)='O1' |
---|
976 | ! clname(3)='P1' |
---|
977 | ! clname(4)='S1' |
---|
978 | ! clname(5)='K1' |
---|
979 | ! clname(6)='2N2' |
---|
980 | ! clname(7)='MU2' |
---|
981 | ! clname(8)='N2' |
---|
982 | ! clname(9)='NU2' |
---|
983 | ! clname(10)='M2' |
---|
984 | ! clname(11)='L2' |
---|
985 | ! clname(12)='T2' |
---|
986 | ! clname(13)='S2' |
---|
987 | ! clname(14)='K2' |
---|
988 | ! clname(15)='M4' |
---|
989 | ! ktide = [10,9,11,12,8,23,21,15,22,14,18,19,16,17,28] |
---|
990 | |
---|
991 | |
---|
992 | v0linearintercept( 1) = 0.1104402700_wp ! Q1 8 |
---|
993 | v0linearintercept( 2) = 1.1115279900_wp ! O1 7 |
---|
994 | v0linearintercept( 3) = rpi* 345.0_wp/180.0_wp - (rpi* 140.0_wp/180.0_wp) ! P1 9 compress4 |
---|
995 | v0linearintercept( 4) = -0.0230244122_wp ! S1 15 |
---|
996 | v0linearintercept( 5) = 6.5970532125_wp ! K1 6 |
---|
997 | v0linearintercept( 6) = 0.9305155436_wp ! 2N2 3 |
---|
998 | v0linearintercept( 7) = 4.2565208698_wp ! MU2 16 |
---|
999 | v0linearintercept( 8) = 3.1186126191_wp ! N2 2 |
---|
1000 | v0linearintercept( 9) = 6.5001767059_wp ! NU2 17 |
---|
1001 | v0linearintercept(10) = 0.2208805500_wp - (rpi* 68.0_wp/180.0_wp) ! M2 1 |
---|
1002 | v0linearintercept(11) = 0.0000000000_wp - (rpi* 113.0_wp/180.0_wp) ! L2 18 |
---|
1003 | v0linearintercept(12) = 0.0092971808_wp ! T2 19 + rpi/2. |
---|
1004 | v0linearintercept(13) = 0.0194858941_wp ! S2 4 |
---|
1005 | v0linearintercept(14) = -2.5213114949_wp ! K2 5 |
---|
1006 | v0linearintercept(15) = 3.1415926500_wp ! M4 10 |
---|
1007 | |
---|
1008 | |
---|
1009 | |
---|
1010 | v0linearintercept( 1) = v0linearintercept( 1) - (rpi*46.525902_wp/180.0_wp) ! Q1 |
---|
1011 | v0linearintercept( 2) = v0linearintercept( 2) + (rpi*1.829931_wp/180.0_wp) ! O1 |
---|
1012 | v0linearintercept( 3) = v0linearintercept( 3) + (rpi*120.843575_wp/180.0_wp) ! P1 |
---|
1013 | v0linearintercept( 4) = v0linearintercept( 4) - (rpi*2.044069_wp/180.0_wp) ! S1 |
---|
1014 | v0linearintercept( 5) = v0linearintercept( 5) - (rpi*8.289390_wp/180.0_wp) ! K1 |
---|
1015 | v0linearintercept( 6) = v0linearintercept( 6) - (rpi*2.065265_wp/180.0_wp) ! 2N2 |
---|
1016 | v0linearintercept( 7) = v0linearintercept( 7) + (rpi*0.435315_wp/180.0_wp) ! MU2 |
---|
1017 | v0linearintercept( 8) = v0linearintercept( 8) - (rpi*1.732874_wp/180.0_wp) ! N2 |
---|
1018 | v0linearintercept( 9) = v0linearintercept( 9) - (rpi*2.467160_wp/180.0_wp) ! NU2 |
---|
1019 | v0linearintercept(10) = v0linearintercept(10) - (rpi*2.003909_wp/180.0_wp) ! M2 |
---|
1020 | v0linearintercept(11) = v0linearintercept(11) + (rpi*1.349939_wp/180.0_wp) ! L2 |
---|
1021 | v0linearintercept(12) = v0linearintercept(12) + (rpi*1.468170_wp/180.0_wp) ! T2 |
---|
1022 | v0linearintercept(13) = v0linearintercept(13) + (rpi*0.119842_wp/180.0_wp) ! S2 |
---|
1023 | v0linearintercept(14) = v0linearintercept(14) - (rpi*15.689068_wp/180.0_wp) ! K2 |
---|
1024 | v0linearintercept(14) = v0linearintercept(15) + (rpi*4.011896_wp/180.0_wp) ! M4 |
---|
1025 | |
---|
1026 | |
---|
1027 | |
---|
1028 | |
---|
1029 | |
---|
1030 | |
---|
1031 | DO jh = 1, kc |
---|
1032 | IF(ln_astro_verbose .AND. lwp) WRITE(numout,*) 'astro tide_vuf 2:',jh,days_since_origin,v0linearslope(jh),v0linearintercept(ktide(jh))!,cycle_reset(jh)! ,offset(jh) |
---|
1033 | ENDDO |
---|
1034 | ENDIF |
---|
1035 | |
---|
1036 | |
---|
1037 | |
---|
1038 | !!---------------------------------------------------------------------- |
---|
1039 | !!---------------------------------------------------------------------- |
---|
1040 | !! JT |
---|
1041 | !!! phi_tide(ib)=phi_tide(ib)+v0tide(itide)+utide(itide) |
---|
1042 | !!---------------------------------------------------------------------- |
---|
1043 | !!---------------------------------------------------------------------- |
---|
1044 | |
---|
1045 | DO jh = 1, kc |
---|
1046 | ! Phase of the tidal potential relative to the Greenwhich |
---|
1047 | ! meridian (e.g. the position of the fictuous celestial body). Units are radian: |
---|
1048 | ! Linear with time |
---|
1049 | |
---|
1050 | IF ( ln_tide_compress ) THEN |
---|
1051 | |
---|
1052 | pvt(jh) = mod( ( (v0linearslope(jh)*days_since_origin) + v0linearintercept( ktide(jh) ) ), 2*rpi)-(2*rpi) |
---|
1053 | ELSE |
---|
1054 | pvt(jh) = sh_T * Wave( ktide(jh) )%nT & |
---|
1055 | & + sh_s * Wave( ktide(jh) )%ns & |
---|
1056 | & + sh_h * Wave( ktide(jh) )%nh & |
---|
1057 | & + sh_p * Wave( ktide(jh) )%np & |
---|
1058 | & + sh_p1* Wave( ktide(jh) )%np1 & |
---|
1059 | & + Wave( ktide(jh) )%shift * rad |
---|
1060 | ENDIF |
---|
1061 | ! |
---|
1062 | ! Phase correction u due to nodal motion. Units are radian: |
---|
1063 | ! Cyclical with time. Much smaller terms than pvt. |
---|
1064 | put(jh) = sh_xi * Wave( ktide(jh) )%nksi & |
---|
1065 | & + sh_nu * Wave( ktide(jh) )%nnu0 & |
---|
1066 | & + sh_nuprim * Wave( ktide(jh) )%nnu1 & |
---|
1067 | & + sh_nusec * Wave( ktide(jh) )%nnu2 & |
---|
1068 | & + sh_R * Wave( ktide(jh) )%R |
---|
1069 | |
---|
1070 | ! Nodal correction factor: |
---|
1071 | pcor(jh) = nodal_factort( Wave( ktide(jh) )%nformula ) |
---|
1072 | |
---|
1073 | |
---|
1074 | END DO |
---|
1075 | |
---|
1076 | |
---|
1077 | IF(ln_astro_verbose .AND. lwp) THEN |
---|
1078 | DO jh = 1, kc |
---|
1079 | WRITE(numout,*) 'astro tide_vuf 3:',jh,pvt(jh), put(jh), pcor(jh) |
---|
1080 | END DO |
---|
1081 | ENDIF |
---|
1082 | |
---|
1083 | |
---|
1084 | |
---|
1085 | ! |
---|
1086 | END SUBROUTINE tide_vuf |
---|
1087 | |
---|
1088 | |
---|
1089 | RECURSIVE FUNCTION nodal_factort( kformula ) RESULT( zf ) |
---|
1090 | !!---------------------------------------------------------------------- |
---|
1091 | !!---------------------------------------------------------------------- |
---|
1092 | INTEGER, INTENT(in) :: kformula |
---|
1093 | ! |
---|
1094 | REAL(wp) :: zf |
---|
1095 | REAL(wp) :: zs, zf1, zf2 |
---|
1096 | !!---------------------------------------------------------------------- |
---|
1097 | ! |
---|
1098 | SELECT CASE( kformula ) |
---|
1099 | ! |
---|
1100 | CASE( 0 ) !== formule 0, solar waves |
---|
1101 | zf = 1.0 |
---|
1102 | ! |
---|
1103 | CASE( 1 ) !== formule 1, compound waves (78 x 78) |
---|
1104 | zf=nodal_factort(78) |
---|
1105 | zf = zf * zf |
---|
1106 | ! |
---|
1107 | CASE ( 2 ) !== formule 2, compound waves (78 x 0) === (78) |
---|
1108 | zf1= nodal_factort(78) |
---|
1109 | zf = nodal_factort( 0) |
---|
1110 | zf = zf1 * zf |
---|
1111 | ! |
---|
1112 | CASE ( 4 ) !== formule 4, compound waves (78 x 235) |
---|
1113 | zf1 = nodal_factort( 78) |
---|
1114 | zf = nodal_factort(235) |
---|
1115 | zf = zf1 * zf |
---|
1116 | ! |
---|
1117 | CASE ( 5 ) !== formule 5, compound waves (78 *78 x 235) |
---|
1118 | zf1 = nodal_factort( 78) |
---|
1119 | zf = nodal_factort(235) |
---|
1120 | zf = zf * zf1 * zf1 |
---|
1121 | ! |
---|
1122 | CASE ( 6 ) !== formule 6, compound waves (78 *78 x 0) |
---|
1123 | zf1 = nodal_factort(78) |
---|
1124 | zf = nodal_factort( 0) |
---|
1125 | zf = zf * zf1 * zf1 |
---|
1126 | ! |
---|
1127 | CASE( 7 ) !== formule 7, compound waves (75 x 75) |
---|
1128 | zf = nodal_factort(75) |
---|
1129 | zf = zf * zf |
---|
1130 | ! |
---|
1131 | CASE( 8 ) !== formule 8, compound waves (78 x 0 x 235) |
---|
1132 | zf = nodal_factort( 78) |
---|
1133 | zf1 = nodal_factort( 0) |
---|
1134 | zf2 = nodal_factort(235) |
---|
1135 | zf = zf * zf1 * zf2 |
---|
1136 | ! |
---|
1137 | CASE( 9 ) !== formule 9, compound waves (78 x 0 x 227) |
---|
1138 | zf = nodal_factort( 78) |
---|
1139 | zf1 = nodal_factort( 0) |
---|
1140 | zf2 = nodal_factort(227) |
---|
1141 | zf = zf * zf1 * zf2 |
---|
1142 | ! |
---|
1143 | CASE( 10 ) !== formule 10, compound waves (78 x 227) |
---|
1144 | zf = nodal_factort( 78) |
---|
1145 | zf1 = nodal_factort(227) |
---|
1146 | zf = zf * zf1 |
---|
1147 | ! |
---|
1148 | CASE( 11 ) !== formule 11, compound waves (75 x 0) |
---|
1149 | !!gm bug???? zf 2 fois ! |
---|
1150 | zf = nodal_factort(75) |
---|
1151 | zf1 = nodal_factort( 0) |
---|
1152 | zf = zf * zf1 |
---|
1153 | ! |
---|
1154 | CASE( 12 ) !== formule 12, compound waves (78 x 78 x 78 x 0) |
---|
1155 | zf1 = nodal_factort(78) |
---|
1156 | zf = nodal_factort( 0) |
---|
1157 | zf = zf * zf1 * zf1 * zf1 |
---|
1158 | ! |
---|
1159 | CASE( 13 ) !== formule 13, compound waves (78 x 75) |
---|
1160 | zf1 = nodal_factort(78) |
---|
1161 | zf = nodal_factort(75) |
---|
1162 | zf = zf * zf1 |
---|
1163 | ! |
---|
1164 | CASE( 14 ) !== formule 14, compound waves (235 x 0) === (235) |
---|
1165 | zf = nodal_factort(235) |
---|
1166 | zf1 = nodal_factort( 0) |
---|
1167 | zf = zf * zf1 |
---|
1168 | ! |
---|
1169 | CASE( 15 ) !== formule 15, compound waves (235 x 75) |
---|
1170 | zf = nodal_factort(235) |
---|
1171 | zf1 = nodal_factort( 75) |
---|
1172 | zf = zf * zf1 |
---|
1173 | ! |
---|
1174 | CASE( 16 ) !== formule 16, compound waves (78 x 0 x 0) === (78) |
---|
1175 | zf = nodal_factort(78) |
---|
1176 | zf1 = nodal_factort( 0) |
---|
1177 | zf = zf * zf1 * zf1 |
---|
1178 | ! |
---|
1179 | CASE( 17 ) !== formule 17, compound waves (227 x 0) |
---|
1180 | zf1 = nodal_factort(227) |
---|
1181 | zf = nodal_factort( 0) |
---|
1182 | zf = zf * zf1 |
---|
1183 | ! |
---|
1184 | CASE( 18 ) !== formule 18, compound waves (78 x 78 x 78 ) |
---|
1185 | zf1 = nodal_factort(78) |
---|
1186 | zf = zf1 * zf1 * zf1 |
---|
1187 | ! |
---|
1188 | CASE( 19 ) !== formule 19, compound waves (78 x 0 x 0 x 0) === (78) |
---|
1189 | !!gm bug2 ==>>> here identical to formule 16, a third multiplication by zf1 is missing |
---|
1190 | zf = nodal_factort(78) |
---|
1191 | zf1 = nodal_factort( 0) |
---|
1192 | zf = zf * zf1 * zf1 |
---|
1193 | ! |
---|
1194 | |
---|
1195 | !--- davbyr 11/2017 |
---|
1196 | CASE( 20 ) !== formule 20, compound waves ( 78 x 78 x 78 x 78 ) |
---|
1197 | zf1 = nodal_factort(78) |
---|
1198 | zf = zf1 * zf1 * zf1 * zf1 |
---|
1199 | !--- END davbyr |
---|
1200 | CASE( 73 ) !== formule 73 |
---|
1201 | zs = sin(sh_I) |
---|
1202 | zf = (2./3.-zs*zs)/0.5021 |
---|
1203 | ! |
---|
1204 | CASE( 74 ) !== formule 74 |
---|
1205 | zs = sin(sh_I) |
---|
1206 | zf = zs * zs / 0.1578 |
---|
1207 | ! |
---|
1208 | CASE( 75 ) !== formule 75 |
---|
1209 | zs = cos(sh_I/2) |
---|
1210 | zf = sin(sh_I) * zs * zs / 0.3800 |
---|
1211 | ! |
---|
1212 | CASE( 76 ) !== formule 76 |
---|
1213 | zf = sin(2*sh_I) / 0.7214 |
---|
1214 | ! |
---|
1215 | CASE( 77 ) !== formule 77 |
---|
1216 | zs = sin(sh_I/2) |
---|
1217 | zf = sin(sh_I) * zs * zs / 0.0164 |
---|
1218 | ! |
---|
1219 | CASE( 78 ) !== formule 78 |
---|
1220 | zs = cos(sh_I/2) |
---|
1221 | zf = zs * zs * zs * zs / 0.9154 |
---|
1222 | ! |
---|
1223 | CASE( 79 ) !== formule 79 |
---|
1224 | zs = sin(sh_I) |
---|
1225 | zf = zs * zs / 0.1565 |
---|
1226 | ! |
---|
1227 | CASE( 144 ) !== formule 144 |
---|
1228 | zs = sin(sh_I/2) |
---|
1229 | zf = ( 1-10*zs*zs+15*zs*zs*zs*zs ) * cos(sh_I/2) / 0.5873 |
---|
1230 | ! |
---|
1231 | CASE( 149 ) !== formule 149 |
---|
1232 | zs = cos(sh_I/2) |
---|
1233 | zf = zs*zs*zs*zs*zs*zs / 0.8758 |
---|
1234 | ! |
---|
1235 | CASE( 215 ) !== formule 215 |
---|
1236 | zs = cos(sh_I/2) |
---|
1237 | zf = zs*zs*zs*zs / 0.9154 * sh_x1ra |
---|
1238 | ! |
---|
1239 | CASE( 227 ) !== formule 227 |
---|
1240 | zs = sin(2*sh_I) |
---|
1241 | zf = sqrt( 0.8965*zs*zs+0.6001*zs*cos (sh_nu)+0.1006 ) |
---|
1242 | ! |
---|
1243 | CASE ( 235 ) !== formule 235 |
---|
1244 | zs = sin(sh_I) |
---|
1245 | zf = sqrt( 19.0444*zs*zs*zs*zs + 2.7702*zs*zs*cos(2*sh_nu) + .0981 ) |
---|
1246 | ! |
---|
1247 | END SELECT |
---|
1248 | ! |
---|
1249 | END FUNCTION nodal_factort |
---|
1250 | |
---|
1251 | |
---|
1252 | FUNCTION dayjul( kyr, kmonth, kday ) |
---|
1253 | !!---------------------------------------------------------------------- |
---|
1254 | !! *** THIS ROUTINE COMPUTES THE JULIAN DAY (AS A REAL VARIABLE) |
---|
1255 | !!---------------------------------------------------------------------- |
---|
1256 | INTEGER,INTENT(in) :: kyr, kmonth, kday |
---|
1257 | ! |
---|
1258 | INTEGER,DIMENSION(12) :: idayt, idays |
---|
1259 | INTEGER :: inc, ji |
---|
1260 | REAL(wp) :: dayjul, zyq |
---|
1261 | ! |
---|
1262 | DATA idayt/0.,31.,59.,90.,120.,151.,181.,212.,243.,273.,304.,334./ |
---|
1263 | !!---------------------------------------------------------------------- |
---|
1264 | ! |
---|
1265 | idays(1) = 0. |
---|
1266 | idays(2) = 31. |
---|
1267 | inc = 0. |
---|
1268 | zyq = MOD( kyr-1900. , 4. ) |
---|
1269 | IF( zyq == 0.) inc = 1. |
---|
1270 | DO ji = 3, 12 |
---|
1271 | idays(ji)=idayt(ji)+inc |
---|
1272 | END DO |
---|
1273 | dayjul = idays(kmonth) + kday |
---|
1274 | ! |
---|
1275 | END FUNCTION dayjul |
---|
1276 | |
---|
1277 | |
---|
1278 | |
---|
1279 | |
---|
1280 | |
---|
1281 | |
---|
1282 | SUBROUTINE ju2ymds_JT (julian,year,month,day,sec,one_year) |
---|
1283 | !--------------------------------------------------------------------- |
---|
1284 | ! IMPLICIT NONE |
---|
1285 | !- |
---|
1286 | ! REAL,INTENT(IN) :: julian |
---|
1287 | !- |
---|
1288 | ! INTEGER,INTENT(OUT) :: year,month,day |
---|
1289 | ! REAL,INTENT(OUT) :: sec |
---|
1290 | !- |
---|
1291 | ! INTEGER :: julian_day |
---|
1292 | ! REAL :: julian_sec |
---|
1293 | !--------------------------------------------------------------------- |
---|
1294 | ! julian_day = INT(julian) |
---|
1295 | ! julian_sec = (julian-julian_day)*one_day |
---|
1296 | !- |
---|
1297 | ! CALL ju2ymds_internal(julian_day,julian_sec,year,month,day,sec) |
---|
1298 | !--------------------- |
---|
1299 | !END SUBROUTINE ju2ymds |
---|
1300 | !- |
---|
1301 | !=== |
---|
1302 | !- |
---|
1303 | !SUBROUTINE ju2ymds_internal (julian_day,julian_sec,year,month,day,sec) |
---|
1304 | !--------------------------------------------------------------------- |
---|
1305 | !- This subroutine computes from the julian day the year, |
---|
1306 | !- month, day and seconds |
---|
1307 | !- |
---|
1308 | !- In 1968 in a letter to the editor of Communications of the ACM |
---|
1309 | !- (CACM, volume 11, number 10, October 1968, p.657) Henry F. Fliegel |
---|
1310 | !- and Thomas C. Van Flandern presented such an algorithm. |
---|
1311 | !- |
---|
1312 | !- See also : http://www.magnet.ch/serendipity/hermetic/cal_stud/jdn.htm |
---|
1313 | !- |
---|
1314 | !- In the case of the Gregorian calendar we have chosen to use |
---|
1315 | !- the Lilian day numbers. This is the day counter which starts |
---|
1316 | !- on the 15th October 1582. This is the day at which Pope |
---|
1317 | !- Gregory XIII introduced the Gregorian calendar. |
---|
1318 | !- Compared to the true Julian calendar, which starts some 7980 |
---|
1319 | !- years ago, the Lilian days are smaler and are dealt with easily |
---|
1320 | !- on 32 bit machines. With the true Julian days you can only the |
---|
1321 | !- fraction of the day in the real part to a precision of a 1/4 of |
---|
1322 | !- a day with 32 bits. |
---|
1323 | !--------------------------------------------------------------------- |
---|
1324 | IMPLICIT NONE |
---|
1325 | |
---|
1326 | |
---|
1327 | !- |
---|
1328 | |
---|
1329 | REAL,INTENT(IN) :: julian,one_year |
---|
1330 | !- |
---|
1331 | INTEGER,INTENT(OUT) :: year,month,day |
---|
1332 | REAL,INTENT(OUT) :: sec |
---|
1333 | !- |
---|
1334 | INTEGER :: l,n,i,jd,j,d,m,y,ml |
---|
1335 | INTEGER :: add_day |
---|
1336 | REAL :: eps_day |
---|
1337 | |
---|
1338 | REAL,PARAMETER :: one_day = 86400.0 |
---|
1339 | !--------------------------------------------------------------------- |
---|
1340 | |
---|
1341 | INTEGER :: julian_day |
---|
1342 | REAL :: julian_sec |
---|
1343 | INTEGER :: mon_len(12) |
---|
1344 | !--------------------------------------------------------------------- |
---|
1345 | |
---|
1346 | IF ( (one_year > 365.0).AND.(one_year < 366.0) ) THEN |
---|
1347 | mon_len(:)=(/31,28,31,30,31,30,31,31,30,31,30,31/) |
---|
1348 | ELSE IF ( ABS(one_year-365.0) <= EPSILON(one_year) ) THEN |
---|
1349 | mon_len(:)=(/31,28,31,30,31,30,31,31,30,31,30,31/) |
---|
1350 | ELSE IF ( ABS(one_year-366.0) <= EPSILON(one_year) ) THEN |
---|
1351 | mon_len(:)=(/31,29,31,30,31,30,31,31,30,31,30,31/) |
---|
1352 | ELSE IF ( ABS(one_year-360.0) <= EPSILON(one_year) ) THEN |
---|
1353 | mon_len(:)=(/30,30,30,30,30,30,30,30,30,30,30,30/) |
---|
1354 | ENDIF |
---|
1355 | |
---|
1356 | |
---|
1357 | |
---|
1358 | julian_day = INT(julian) |
---|
1359 | julian_sec = (julian-julian_day)*one_day |
---|
1360 | |
---|
1361 | eps_day = SPACING(one_day) |
---|
1362 | ! lock_one_year = .TRUE. |
---|
1363 | !- |
---|
1364 | jd = julian_day |
---|
1365 | sec = julian_sec |
---|
1366 | IF (sec > (one_day-eps_day)) THEN |
---|
1367 | add_day = INT(sec/one_day) |
---|
1368 | sec = sec-add_day*one_day |
---|
1369 | jd = jd+add_day |
---|
1370 | ENDIF |
---|
1371 | IF (sec < -eps_day) THEN |
---|
1372 | sec = sec+one_day |
---|
1373 | jd = jd-1 |
---|
1374 | ENDIF |
---|
1375 | !- |
---|
1376 | IF ( (one_year > 365.0).AND.(one_year < 366.0) ) THEN |
---|
1377 | !-- Gregorian |
---|
1378 | jd = jd+2299160 |
---|
1379 | !- |
---|
1380 | l = jd+68569 |
---|
1381 | n = (4*l)/146097 |
---|
1382 | l = l-(146097*n+3)/4 |
---|
1383 | i = (4000*(l+1))/1461001 |
---|
1384 | l = l-(1461*i)/4+31 |
---|
1385 | j = (80*l)/2447 |
---|
1386 | d = l-(2447*j)/80 |
---|
1387 | l = j/11 |
---|
1388 | m = j+2-(12*l) |
---|
1389 | y = 100*(n-49)+i+l |
---|
1390 | ELSE IF ( (ABS(one_year-365.0) <= EPSILON(one_year)) & |
---|
1391 | & .OR.(ABS(one_year-366.0) <= EPSILON(one_year)) ) THEN |
---|
1392 | !-- No leap or All leap |
---|
1393 | !if ( ABS(one_year-365.0) <= EPSILON(one_year) ) mon_len(:)=(/31,28,31,30,31,30,31,31,30,31,30,31/) |
---|
1394 | !if ( ABS(one_year-366.0) <= EPSILON(one_year) ) mon_len(:)=(/31,29,31,30,31,30,31,31,30,31,30,31/) |
---|
1395 | y = jd/NINT(one_year) |
---|
1396 | l = jd-y*NINT(one_year) |
---|
1397 | m = 1 |
---|
1398 | ml = 0 |
---|
1399 | DO WHILE (ml+mon_len(m) <= l) |
---|
1400 | ml = ml+mon_len(m) |
---|
1401 | m = m+1 |
---|
1402 | ENDDO |
---|
1403 | d = l-ml+1 |
---|
1404 | ELSE |
---|
1405 | !-- others |
---|
1406 | ml = NINT(one_year/12.) |
---|
1407 | y = jd/NINT(one_year) |
---|
1408 | l = jd-y*NINT(one_year) |
---|
1409 | m = (l/ml)+1 |
---|
1410 | d = l-(m-1)*ml+1 |
---|
1411 | ENDIF |
---|
1412 | !- |
---|
1413 | day = d |
---|
1414 | month = m |
---|
1415 | year = y |
---|
1416 | !------------------------------ |
---|
1417 | |
---|
1418 | |
---|
1419 | END SUBROUTINE ju2ymds_JT |
---|
1420 | |
---|
1421 | |
---|
1422 | |
---|
1423 | |
---|
1424 | |
---|
1425 | |
---|
1426 | |
---|
1427 | |
---|
1428 | !- |
---|
1429 | SUBROUTINE ymds2ju_JT (year,month,day,sec,julian,one_year) |
---|
1430 | !--------------------------------------------------------------------- |
---|
1431 | ! IMPLICIT NONE |
---|
1432 | !- |
---|
1433 | ! INTEGER,INTENT(IN) :: year,month,day |
---|
1434 | ! REAL,INTENT(IN) :: sec |
---|
1435 | !- |
---|
1436 | ! REAL,INTENT(OUT) :: julian |
---|
1437 | !- |
---|
1438 | ! INTEGER :: julian_day |
---|
1439 | ! REAL :: julian_sec |
---|
1440 | !--------------------------------------------------------------------- |
---|
1441 | ! CALL ymds2ju_internal (year,month,day,sec,julian_day,julian_sec) |
---|
1442 | !- |
---|
1443 | !--------------------- |
---|
1444 | !END SUBROUTINE ymds2ju |
---|
1445 | !- |
---|
1446 | !=== |
---|
1447 | !- |
---|
1448 | !SUBROUTINE ymds2ju_internal (year,month,day,sec,julian_day,julian_sec) |
---|
1449 | !--------------------------------------------------------------------- |
---|
1450 | !- Converts year, month, day and seconds into a julian day |
---|
1451 | !- |
---|
1452 | !- In 1968 in a letter to the editor of Communications of the ACM |
---|
1453 | !- (CACM, volume 11, number 10, October 1968, p.657) Henry F. Fliegel |
---|
1454 | !- and Thomas C. Van Flandern presented such an algorithm. |
---|
1455 | !- |
---|
1456 | !- See also : http://www.magnet.ch/serendipity/hermetic/cal_stud/jdn.htm |
---|
1457 | !- |
---|
1458 | !- In the case of the Gregorian calendar we have chosen to use |
---|
1459 | !- the Lilian day numbers. This is the day counter which starts |
---|
1460 | !- on the 15th October 1582. |
---|
1461 | !- This is the day at which Pope Gregory XIII introduced the |
---|
1462 | !- Gregorian calendar. |
---|
1463 | !- Compared to the true Julian calendar, which starts some |
---|
1464 | !- 7980 years ago, the Lilian days are smaler and are dealt with |
---|
1465 | !- easily on 32 bit machines. With the true Julian days you can only |
---|
1466 | !- the fraction of the day in the real part to a precision of |
---|
1467 | !- a 1/4 of a day with 32 bits. |
---|
1468 | !--------------------------------------------------------------------- |
---|
1469 | IMPLICIT NONE |
---|
1470 | !- |
---|
1471 | INTEGER,INTENT(IN) :: year,month,day |
---|
1472 | REAL,INTENT(IN) :: sec |
---|
1473 | REAL,INTENT(IN) :: one_year |
---|
1474 | !- |
---|
1475 | ! INTEGER,INTENT(OUT) :: julian_day |
---|
1476 | ! REAL,INTENT(OUT) :: julian_sec |
---|
1477 | REAL,INTENT(OUT) :: julian |
---|
1478 | INTEGER :: julian_day |
---|
1479 | REAL :: julian_sec |
---|
1480 | !- |
---|
1481 | INTEGER :: jd,m,y,d,ml |
---|
1482 | REAL,PARAMETER :: one_day = 86400.0 |
---|
1483 | |
---|
1484 | |
---|
1485 | INTEGER :: mon_len(12) |
---|
1486 | |
---|
1487 | IF ( (one_year > 365.0).AND.(one_year < 366.0) ) THEN |
---|
1488 | mon_len(:)=(/31,28,31,30,31,30,31,31,30,31,30,31/) |
---|
1489 | ELSE IF ( ABS(one_year-365.0) <= EPSILON(one_year) ) THEN |
---|
1490 | mon_len(:)=(/31,28,31,30,31,30,31,31,30,31,30,31/) |
---|
1491 | ELSE IF ( ABS(one_year-366.0) <= EPSILON(one_year) ) THEN |
---|
1492 | mon_len(:)=(/31,29,31,30,31,30,31,31,30,31,30,31/) |
---|
1493 | ELSE IF ( ABS(one_year-360.0) <= EPSILON(one_year) ) THEN |
---|
1494 | mon_len(:)=(/30,30,30,30,30,30,30,30,30,30,30,30/) |
---|
1495 | ENDIF |
---|
1496 | |
---|
1497 | |
---|
1498 | !--------------------------------------------------------------------- |
---|
1499 | ! lock_one_year = .TRUE. |
---|
1500 | !- |
---|
1501 | |
---|
1502 | |
---|
1503 | m = month |
---|
1504 | y = year |
---|
1505 | d = day |
---|
1506 | |
---|
1507 | |
---|
1508 | !--------------------------------------------------------------------- |
---|
1509 | |
---|
1510 | |
---|
1511 | !- |
---|
1512 | !- We deduce the calendar from the length of the year as it |
---|
1513 | !- is faster than an INDEX on the calendar variable. |
---|
1514 | !- |
---|
1515 | IF ( (one_year > 365.0).AND.(one_year < 366.0) ) THEN |
---|
1516 | !-- "Gregorian" |
---|
1517 | jd = (1461*(y+4800+INT((m-14)/12)))/4 & |
---|
1518 | & +(367*(m-2-12*(INT((m-14)/12))))/12 & |
---|
1519 | & -(3*((y+4900+INT((m-14)/12))/100))/4 & |
---|
1520 | & +d-32075 |
---|
1521 | jd = jd-2299160 |
---|
1522 | ELSE IF ( (ABS(one_year-365.0) <= EPSILON(one_year)) & |
---|
1523 | & .OR.(ABS(one_year-366.0) <= EPSILON(one_year)) ) THEN |
---|
1524 | !-- "No leap" or "All leap" |
---|
1525 | ml = SUM(mon_len(1:m-1)) |
---|
1526 | jd = y*NINT(one_year)+ml+(d-1) |
---|
1527 | ELSE |
---|
1528 | !-- Calendar with regular month |
---|
1529 | ml = NINT(one_year/12.) |
---|
1530 | jd = y*NINT(one_year)+(m-1)*ml+(d-1) |
---|
1531 | ENDIF |
---|
1532 | !- |
---|
1533 | julian_day = jd |
---|
1534 | julian_sec = sec |
---|
1535 | |
---|
1536 | julian = julian_day+julian_sec/one_day |
---|
1537 | |
---|
1538 | !------------------------------ |
---|
1539 | END SUBROUTINE ymds2ju_JT |
---|
1540 | |
---|
1541 | |
---|
1542 | |
---|
1543 | |
---|
1544 | |
---|
1545 | |
---|
1546 | |
---|
1547 | |
---|
1548 | !!====================================================================== |
---|
1549 | END MODULE tide_mod |
---|