1 | MODULE usrdef_hgr |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE usrdef_hgr *** |
---|
4 | !! |
---|
5 | !! === GYRE configuration === |
---|
6 | !! |
---|
7 | !! User defined : mesh and Coriolis parameter of a user configuration |
---|
8 | !!====================================================================== |
---|
9 | !! History : 4.0 ! 2016-03 (S. Flavoni) |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! usr_def_hgr : initialize the horizontal mesh |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | USE dom_oce , ONLY: nimpp, njmpp ! ocean space and time domain |
---|
16 | USE par_oce ! ocean space and time domain |
---|
17 | USE phycst ! physical constants |
---|
18 | USE usrdef_nam ! |
---|
19 | ! |
---|
20 | USE in_out_manager ! I/O manager |
---|
21 | USE lib_mpp ! MPP library |
---|
22 | |
---|
23 | IMPLICIT NONE |
---|
24 | PRIVATE |
---|
25 | |
---|
26 | PUBLIC usr_def_hgr ! called in domhgr.F90 |
---|
27 | |
---|
28 | !!---------------------------------------------------------------------- |
---|
29 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
30 | !! $Id$ |
---|
31 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
32 | !!---------------------------------------------------------------------- |
---|
33 | CONTAINS |
---|
34 | |
---|
35 | SUBROUTINE usr_def_hgr( plamt , plamu , plamv , plamf , & ! geographic position (required) |
---|
36 | & pphit , pphiu , pphiv , pphif , & ! |
---|
37 | & kff , pff_f , pff_t , & ! Coriolis parameter (if domain not on the sphere) |
---|
38 | & pe1t , pe1u , pe1v , pe1f , & ! scale factors (required) |
---|
39 | & pe2t , pe2u , pe2v , pe2f , & ! |
---|
40 | & ke1e2u_v , pe1e2u , pe1e2v ) ! u- & v-surfaces (if gridsize reduction is used in strait(s)) |
---|
41 | !!---------------------------------------------------------------------- |
---|
42 | !! *** ROUTINE usr_def_hgr *** |
---|
43 | !! |
---|
44 | !! ** Purpose : user defined mesh and Coriolis parameter |
---|
45 | !! |
---|
46 | !! ** Method : set all intent(out) argument to a proper value |
---|
47 | !! |
---|
48 | !! Here GYRE configuration : |
---|
49 | !! Rectangular mid-latitude domain |
---|
50 | !! - with axes rotated by 45 degrees |
---|
51 | !! - a constant horizontal resolution of 106 km |
---|
52 | !! - on a beta-plane |
---|
53 | !! |
---|
54 | !! ** Action : - define longitude & latitude of t-, u-, v- and f-points (in degrees) |
---|
55 | !! - define coriolis parameter at f-point if the domain in not on the sphere (on beta-plane) |
---|
56 | !! - define i- & j-scale factors at t-, u-, v- and f-points (in meters) |
---|
57 | !! - define u- & v-surfaces (if gridsize reduction is used in some straits) (in m2) |
---|
58 | !!---------------------------------------------------------------------- |
---|
59 | REAL(wp), DIMENSION(:,:), INTENT(out) :: plamt, plamu, plamv, plamf ! longitude outputs [degrees] |
---|
60 | REAL(wp), DIMENSION(:,:), INTENT(out) :: pphit, pphiu, pphiv, pphif ! latitude outputs [degrees] |
---|
61 | INTEGER , INTENT(out) :: kff ! =1 Coriolis parameter computed here, =0 otherwise |
---|
62 | REAL(wp), DIMENSION(:,:), INTENT(out) :: pff_f, pff_t ! Coriolis factor at f-point [1/s] |
---|
63 | REAL(wp), DIMENSION(:,:), INTENT(out) :: pe1t, pe1u, pe1v, pe1f ! i-scale factors [m] |
---|
64 | REAL(wp), DIMENSION(:,:), INTENT(out) :: pe2t, pe2u, pe2v, pe2f ! j-scale factors [m] |
---|
65 | INTEGER , INTENT(out) :: ke1e2u_v ! =1 u- & v-surfaces computed here, =0 otherwise |
---|
66 | REAL(wp), DIMENSION(:,:), INTENT(out) :: pe1e2u, pe1e2v ! u- & v-surfaces (if reduction in strait) [m2] |
---|
67 | ! |
---|
68 | INTEGER :: ji, jj ! dummy loop indices |
---|
69 | REAL(wp) :: zlam1, zlam0, zcos_alpha, zim1 , zjm1 , ze1 , ze1deg, zf0 ! local scalars |
---|
70 | REAL(wp) :: zphi1, zphi0, zsin_alpha, zim05, zjm05, zbeta, znorme ! - - |
---|
71 | !!------------------------------------------------------------------------------- |
---|
72 | ! |
---|
73 | ! !== beta-plane with regular grid-spacing and rotated domain ==! (GYRE configuration) |
---|
74 | ! |
---|
75 | IF(lwp) WRITE(numout,*) |
---|
76 | IF(lwp) WRITE(numout,*) 'usr_def_hgr : GYRE configuration (beta-plane with rotated regular grid-spacing)' |
---|
77 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' |
---|
78 | ! |
---|
79 | ! |
---|
80 | ! !== grid point position ==! |
---|
81 | ! |
---|
82 | zlam1 = -85._wp ! position of gridpoint (i,j) = (1,jpjglo) |
---|
83 | zphi1 = 29._wp |
---|
84 | ! |
---|
85 | ze1 = 106000._wp / REAL( nn_GYRE , wp ) ! gridspacing in meters |
---|
86 | ! |
---|
87 | zsin_alpha = - SQRT( 2._wp ) * 0.5_wp ! angle: 45 degrees |
---|
88 | zcos_alpha = SQRT( 2._wp ) * 0.5_wp |
---|
89 | ze1deg = ze1 / (ra * rad) |
---|
90 | zlam0 = zlam1 + zcos_alpha * ze1deg * REAL( jpjglo-2 , wp ) |
---|
91 | zphi0 = zphi1 + zsin_alpha * ze1deg * REAL( jpjglo-2 , wp ) |
---|
92 | |
---|
93 | #if defined key_agrif |
---|
94 | ! ! Upper left longitude and latitude from parent: |
---|
95 | IF (.NOT.Agrif_root()) THEN |
---|
96 | zlam0 = zlam1 + Agrif_irhox() * REAL(Agrif_Parent(jpjglo)-2 , wp) * ze1deg * zcos_alpha & |
---|
97 | & + ( Agrif_Ix()*Agrif_irhox()-(0.5_wp+nbghostcells)) * ze1deg * zcos_alpha & |
---|
98 | & + ( Agrif_Iy()*Agrif_irhoy()-(0.5_wp+nbghostcells)) * ze1deg * zsin_alpha |
---|
99 | zphi0 = zphi1 + Agrif_irhoy() * REAL(Agrif_Parent(jpjglo)-2 , wp) * ze1deg * zsin_alpha & |
---|
100 | & - ( Agrif_Ix()*Agrif_irhox()-nbghostcells ) * ze1deg * zsin_alpha & |
---|
101 | & + ( Agrif_Iy()*Agrif_irhoy()-nbghostcells ) * ze1deg * zcos_alpha |
---|
102 | ENDIF |
---|
103 | #endif |
---|
104 | ! |
---|
105 | IF( ln_bench ) THEN ! benchmark: forced the resolution to be 106 km |
---|
106 | ze1 = 106000._wp ! but keep (lat,lon) at the right nn_GYRE resolution |
---|
107 | CALL ctl_warn( ' GYRE used as Benchmark: e1=e2=106km, no need to adjust rdt, ahm,aht ' ) |
---|
108 | ENDIF |
---|
109 | IF( nprint==1 .AND. lwp ) THEN |
---|
110 | WRITE(numout,*) 'ze1', ze1, 'cosalpha', zcos_alpha, 'sinalpha', zsin_alpha |
---|
111 | WRITE(numout,*) 'ze1deg', ze1deg, 'zlam0', zlam0, 'zphi0', zphi0 |
---|
112 | ENDIF |
---|
113 | ! |
---|
114 | DO jj = 1, jpj |
---|
115 | DO ji = 1, jpi |
---|
116 | zim1 = REAL( ji + nimpp - 1 ) - 1. ; zim05 = REAL( ji + nimpp - 1 ) - 1.5 |
---|
117 | zjm1 = REAL( jj + njmpp - 1 ) - 1. ; zjm05 = REAL( jj + njmpp - 1 ) - 1.5 |
---|
118 | ! |
---|
119 | !glamt(i,j) longitude at T-point |
---|
120 | !gphit(i,j) latitude at T-point |
---|
121 | plamt(ji,jj) = zlam0 + zim05 * ze1deg * zcos_alpha + zjm05 * ze1deg * zsin_alpha |
---|
122 | pphit(ji,jj) = zphi0 - zim05 * ze1deg * zsin_alpha + zjm05 * ze1deg * zcos_alpha |
---|
123 | ! |
---|
124 | !glamu(i,j) longitude at U-point |
---|
125 | !gphiu(i,j) latitude at U-point |
---|
126 | plamu(ji,jj) = zlam0 + zim1 * ze1deg * zcos_alpha + zjm05 * ze1deg * zsin_alpha |
---|
127 | pphiu(ji,jj) = zphi0 - zim1 * ze1deg * zsin_alpha + zjm05 * ze1deg * zcos_alpha |
---|
128 | ! |
---|
129 | !glamv(i,j) longitude at V-point |
---|
130 | !gphiv(i,j) latitude at V-point |
---|
131 | plamv(ji,jj) = zlam0 + zim05 * ze1deg * zcos_alpha + zjm1 * ze1deg * zsin_alpha |
---|
132 | pphiv(ji,jj) = zphi0 - zim05 * ze1deg * zsin_alpha + zjm1 * ze1deg * zcos_alpha |
---|
133 | ! |
---|
134 | !glamf(i,j) longitude at F-point |
---|
135 | !gphif(i,j) latitude at F-point |
---|
136 | plamf(ji,jj) = zlam0 + zim1 * ze1deg * zcos_alpha + zjm1 * ze1deg * zsin_alpha |
---|
137 | pphif(ji,jj) = zphi0 - zim1 * ze1deg * zsin_alpha + zjm1 * ze1deg * zcos_alpha |
---|
138 | END DO |
---|
139 | END DO |
---|
140 | ! |
---|
141 | ! !== Horizontal scale factors ==! (in meters) |
---|
142 | ! |
---|
143 | ! ! constant grid spacing |
---|
144 | pe1t(:,:) = ze1 ; pe2t(:,:) = ze1 |
---|
145 | pe1u(:,:) = ze1 ; pe2u(:,:) = ze1 |
---|
146 | pe1v(:,:) = ze1 ; pe2v(:,:) = ze1 |
---|
147 | pe1f(:,:) = ze1 ; pe2f(:,:) = ze1 |
---|
148 | ! |
---|
149 | ! ! NO reduction of grid size in some straits |
---|
150 | ke1e2u_v = 0 ! ==>> u_ & v_surfaces will be computed in dom_ghr routine |
---|
151 | pe1e2u(:,:) = 0._wp ! CAUTION: set to zero to avoid error with some compilers that |
---|
152 | pe1e2v(:,:) = 0._wp ! require an initialization of INTENT(out) arguments |
---|
153 | ! |
---|
154 | ! |
---|
155 | ! !== Coriolis parameter ==! |
---|
156 | kff = 1 ! indicate not to compute ff afterward |
---|
157 | ! |
---|
158 | zbeta = 2. * omega * COS( rad * zphi1 ) / ra ! beta at latitude zphi1 |
---|
159 | !SF we overwrite zphi0 (south point in latitude) used just above to define pphif (value of zphi0=15.5190567531966) |
---|
160 | !SF for computation of Coriolis we keep the parameter of Hazeleger, W., and S. S. Drijfhout, JPO 1998. |
---|
161 | zphi0 = 15._wp ! latitude of the most southern grid point |
---|
162 | zf0 = 2. * omega * SIN( rad * zphi0 ) ! compute f0 1st point south |
---|
163 | ! |
---|
164 | pff_f(:,:) = ( zf0 + zbeta * ABS( pphif(:,:) - zphi0 ) * rad * ra ) ! f = f0 +beta* y ( y=0 at south) |
---|
165 | pff_t(:,:) = ( zf0 + zbeta * ABS( pphit(:,:) - zphi0 ) * rad * ra ) ! f = f0 +beta* y ( y=0 at south) |
---|
166 | ! |
---|
167 | IF(lwp) WRITE(numout,*) ' beta-plane used. beta = ', zbeta, ' 1/(s.m)' |
---|
168 | ! |
---|
169 | END SUBROUTINE usr_def_hgr |
---|
170 | |
---|
171 | !!====================================================================== |
---|
172 | END MODULE usrdef_hgr |
---|