1 | MODULE zdfmxl |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE zdfmxl *** |
---|
4 | !! Ocean physics: mixed layer depth |
---|
5 | !!====================================================================== |
---|
6 | !! History : 1.0 ! 2003-08 (G. Madec) original code |
---|
7 | !! 3.2 ! 2009-07 (S. Masson, G. Madec) IOM + merge of DO-loop |
---|
8 | !! 3.7 ! 2012-03 (G. Madec) make public the density criteria for trdmxl |
---|
9 | !! - ! 2014-02 (F. Roquet) mixed layer depth calculated using N2 instead of rhop |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | !! zdf_mxl : Compute the turbocline and mixed layer depths. |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | USE oce ! ocean dynamics and tracers variables |
---|
14 | USE dom_oce ! ocean space and time domain variables |
---|
15 | USE trc_oce , ONLY: l_offline ! ocean space and time domain variables |
---|
16 | USE zdf_oce ! ocean vertical physics |
---|
17 | USE eosbn2 ! for zdf_mxl_zint |
---|
18 | ! |
---|
19 | USE in_out_manager ! I/O manager |
---|
20 | USE prtctl ! Print control |
---|
21 | USE phycst ! physical constants |
---|
22 | USE iom ! I/O library |
---|
23 | USE lib_mpp ! MPP library |
---|
24 | |
---|
25 | IMPLICIT NONE |
---|
26 | PRIVATE |
---|
27 | |
---|
28 | PUBLIC zdf_mxl ! called by zdfphy.F90 |
---|
29 | |
---|
30 | INTEGER , PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: nmln !: number of level in the mixed layer (used by LDF, ZDF, TRD, TOP) |
---|
31 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hmld !: mixing layer depth (turbocline) [m] (used by TOP) |
---|
32 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hmlp !: mixed layer depth (rho=rho0+zdcrit) [m] (used by LDF) |
---|
33 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hmlpt !: depth of the last T-point inside the mixed layer [m] (used by LDF) |
---|
34 | REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: hmld_zint !: vertically-interpolated mixed layer depth [m] |
---|
35 | REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: htc_mld ! Heat content of hmld_zint |
---|
36 | LOGICAL, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ll_found ! Is T_b to be found by interpolation ? |
---|
37 | LOGICAL, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ll_belowml ! Flag points below mixed layer when ll_found=F |
---|
38 | |
---|
39 | REAL(wp), PUBLIC :: rho_c = 0.01_wp !: density criterion for mixed layer depth |
---|
40 | REAL(wp), PUBLIC :: avt_c = 5.e-4_wp ! Kz criterion for the turbocline depth |
---|
41 | |
---|
42 | TYPE, PUBLIC :: MXL_ZINT !: Structure for MLD defs |
---|
43 | INTEGER :: mld_type ! mixed layer type |
---|
44 | REAL(wp) :: zref ! depth of initial T_ref |
---|
45 | REAL(wp) :: dT_crit ! Critical temp diff |
---|
46 | REAL(wp) :: iso_frac ! Fraction of rn_dT_crit |
---|
47 | END TYPE MXL_ZINT |
---|
48 | |
---|
49 | !!---------------------------------------------------------------------- |
---|
50 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
51 | !! $Id$ |
---|
52 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
53 | !!---------------------------------------------------------------------- |
---|
54 | CONTAINS |
---|
55 | |
---|
56 | INTEGER FUNCTION zdf_mxl_alloc() |
---|
57 | !!---------------------------------------------------------------------- |
---|
58 | !! *** FUNCTION zdf_mxl_alloc *** |
---|
59 | !!---------------------------------------------------------------------- |
---|
60 | zdf_mxl_alloc = 0 ! set to zero if no array to be allocated |
---|
61 | IF( .NOT. ALLOCATED( nmln ) ) THEN |
---|
62 | ALLOCATE( nmln(jpi,jpj), hmld(jpi,jpj), hmlp(jpi,jpj), hmlpt(jpi,jpj), hmld_zint(jpi,jpj), & |
---|
63 | & htc_mld(jpi,jpj), ll_found(jpi,jpj), ll_belowml(jpi,jpj,jpk), STAT= zdf_mxl_alloc ) |
---|
64 | ! |
---|
65 | CALL mpp_sum ( 'zdfmxl', zdf_mxl_alloc ) |
---|
66 | IF( zdf_mxl_alloc /= 0 ) CALL ctl_stop( 'STOP', 'zdf_mxl_alloc: failed to allocate arrays.' ) |
---|
67 | ! |
---|
68 | ENDIF |
---|
69 | END FUNCTION zdf_mxl_alloc |
---|
70 | |
---|
71 | |
---|
72 | SUBROUTINE zdf_mxl( kt ) |
---|
73 | !!---------------------------------------------------------------------- |
---|
74 | !! *** ROUTINE zdfmxl *** |
---|
75 | !! |
---|
76 | !! ** Purpose : Compute the turbocline depth and the mixed layer depth |
---|
77 | !! with density criteria. |
---|
78 | !! |
---|
79 | !! ** Method : The mixed layer depth is the shallowest W depth with |
---|
80 | !! the density of the corresponding T point (just bellow) bellow a |
---|
81 | !! given value defined locally as rho(10m) + rho_c |
---|
82 | !! The turbocline depth is the depth at which the vertical |
---|
83 | !! eddy diffusivity coefficient (resulting from the vertical physics |
---|
84 | !! alone, not the isopycnal part, see trazdf.F) fall below a given |
---|
85 | !! value defined locally (avt_c here taken equal to 5 cm/s2 by default) |
---|
86 | !! |
---|
87 | !! ** Action : nmln, hmld, hmlp, hmlpt |
---|
88 | !!---------------------------------------------------------------------- |
---|
89 | INTEGER, INTENT(in) :: kt ! ocean time-step index |
---|
90 | ! |
---|
91 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
92 | INTEGER :: iikn, iiki, ikt ! local integer |
---|
93 | REAL(wp) :: zN2_c ! local scalar |
---|
94 | INTEGER, DIMENSION(jpi,jpj) :: imld ! 2D workspace |
---|
95 | !!---------------------------------------------------------------------- |
---|
96 | ! |
---|
97 | IF( kt == nit000 ) THEN |
---|
98 | IF(lwp) WRITE(numout,*) |
---|
99 | IF(lwp) WRITE(numout,*) 'zdf_mxl : mixed layer depth' |
---|
100 | IF(lwp) WRITE(numout,*) '~~~~~~~ ' |
---|
101 | ! ! allocate zdfmxl arrays |
---|
102 | IF( zdf_mxl_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'zdf_mxl : unable to allocate arrays' ) |
---|
103 | ENDIF |
---|
104 | ! |
---|
105 | ! w-level of the mixing and mixed layers |
---|
106 | nmln(:,:) = nlb10 ! Initialization to the number of w ocean point |
---|
107 | hmlp(:,:) = 0._wp ! here hmlp used as a dummy variable, integrating vertically N^2 |
---|
108 | zN2_c = grav * rho_c * r1_rau0 ! convert density criteria into N^2 criteria |
---|
109 | DO jk = nlb10, jpkm1 |
---|
110 | DO jj = 1, jpj ! Mixed layer level: w-level |
---|
111 | DO ji = 1, jpi |
---|
112 | ikt = mbkt(ji,jj) |
---|
113 | hmlp(ji,jj) = hmlp(ji,jj) + MAX( rn2b(ji,jj,jk) , 0._wp ) * e3w_n(ji,jj,jk) |
---|
114 | IF( hmlp(ji,jj) < zN2_c ) nmln(ji,jj) = MIN( jk , ikt ) + 1 ! Mixed layer level |
---|
115 | END DO |
---|
116 | END DO |
---|
117 | END DO |
---|
118 | ! |
---|
119 | ! w-level of the turbocline and mixing layer (iom_use) |
---|
120 | imld(:,:) = mbkt(:,:) + 1 ! Initialization to the number of w ocean point |
---|
121 | DO jk = jpkm1, nlb10, -1 ! from the bottom to nlb10 |
---|
122 | DO jj = 1, jpj |
---|
123 | DO ji = 1, jpi |
---|
124 | IF( avt (ji,jj,jk) < avt_c * wmask(ji,jj,jk) ) imld(ji,jj) = jk ! Turbocline |
---|
125 | END DO |
---|
126 | END DO |
---|
127 | END DO |
---|
128 | ! depth of the mixing and mixed layers |
---|
129 | DO jj = 1, jpj |
---|
130 | DO ji = 1, jpi |
---|
131 | iiki = imld(ji,jj) |
---|
132 | iikn = nmln(ji,jj) |
---|
133 | hmld (ji,jj) = gdepw_n(ji,jj,iiki ) * ssmask(ji,jj) ! Turbocline depth |
---|
134 | hmlp (ji,jj) = gdepw_n(ji,jj,iikn ) * ssmask(ji,jj) ! Mixed layer depth |
---|
135 | hmlpt(ji,jj) = gdept_n(ji,jj,iikn-1) * ssmask(ji,jj) ! depth of the last T-point inside the mixed layer |
---|
136 | END DO |
---|
137 | END DO |
---|
138 | ! |
---|
139 | IF( .NOT.l_offline ) THEN |
---|
140 | IF( iom_use("mldr10_1") ) THEN |
---|
141 | IF( ln_isfcav ) THEN ; CALL iom_put( "mldr10_1", hmlp - risfdep) ! mixed layer thickness |
---|
142 | ELSE ; CALL iom_put( "mldr10_1", hmlp ) ! mixed layer depth |
---|
143 | END IF |
---|
144 | END IF |
---|
145 | IF( iom_use("mldkz5") ) THEN |
---|
146 | IF( ln_isfcav ) THEN ; CALL iom_put( "mldkz5" , hmld - risfdep ) ! turbocline thickness |
---|
147 | ELSE ; CALL iom_put( "mldkz5" , hmld ) ! turbocline depth |
---|
148 | END IF |
---|
149 | ENDIF |
---|
150 | ENDIF |
---|
151 | ! |
---|
152 | ! Vertically-interpolated mixed-layer depth diagnostic |
---|
153 | CALL zdf_mxl_zint( kt ) |
---|
154 | ! |
---|
155 | IF(ln_ctl) CALL prt_ctl( tab2d_1=REAL(nmln,wp), clinfo1=' nmln : ', tab2d_2=hmlp, clinfo2=' hmlp : ' ) |
---|
156 | ! |
---|
157 | END SUBROUTINE zdf_mxl |
---|
158 | |
---|
159 | SUBROUTINE zdf_mxl_zint_mld( sf ) |
---|
160 | !!---------------------------------------------------------------------------------- |
---|
161 | !! *** ROUTINE zdf_mxl_zint_mld *** |
---|
162 | ! |
---|
163 | ! Calculate vertically-interpolated mixed layer depth diagnostic. |
---|
164 | ! |
---|
165 | ! This routine can calculate the mixed layer depth diagnostic suggested by |
---|
166 | ! Kara et al, 2000, JGR, 105, 16803, but is more general and can calculate |
---|
167 | ! vertically-interpolated mixed-layer depth diagnostics with other parameter |
---|
168 | ! settings set in the namzdf_mldzint namelist. |
---|
169 | ! |
---|
170 | ! If mld_type=1 the mixed layer depth is calculated as the depth at which the |
---|
171 | ! density has increased by an amount equivalent to a temperature difference of |
---|
172 | ! 0.8C at the surface. |
---|
173 | ! |
---|
174 | ! For other values of mld_type the mixed layer is calculated as the depth at |
---|
175 | ! which the temperature differs by 0.8C from the surface temperature. |
---|
176 | ! |
---|
177 | ! David Acreman, Daley Calvert |
---|
178 | ! |
---|
179 | !!----------------------------------------------------------------------------------- |
---|
180 | |
---|
181 | TYPE(MXL_ZINT), INTENT(in) :: sf |
---|
182 | |
---|
183 | ! Diagnostic criteria |
---|
184 | INTEGER :: nn_mld_type ! mixed layer type |
---|
185 | REAL(wp) :: rn_zref ! depth of initial T_ref |
---|
186 | REAL(wp) :: rn_dT_crit ! Critical temp diff |
---|
187 | REAL(wp) :: rn_iso_frac ! Fraction of rn_dT_crit used |
---|
188 | |
---|
189 | ! Local variables |
---|
190 | REAL(wp), PARAMETER :: zepsilon = 1.e-30 ! local small value |
---|
191 | INTEGER, DIMENSION(jpi,jpj) :: ikmt ! number of active tracer levels |
---|
192 | INTEGER, DIMENSION(jpi,jpj) :: ik_ref ! index of reference level |
---|
193 | INTEGER, DIMENSION(jpi,jpj) :: ik_iso ! index of last uniform temp level |
---|
194 | REAL, DIMENSION(jpi,jpj,jpk) :: zT ! Temperature or density |
---|
195 | REAL, DIMENSION(jpi,jpj) :: ppzdep ! depth for use in calculating d(rho) |
---|
196 | REAL, DIMENSION(jpi,jpj) :: zT_ref ! reference temperature |
---|
197 | REAL :: zT_b ! base temperature |
---|
198 | REAL, DIMENSION(jpi,jpj,jpk) :: zdTdz ! gradient of zT |
---|
199 | REAL, DIMENSION(jpi,jpj,jpk) :: zmoddT ! Absolute temperature difference |
---|
200 | REAL :: zdz ! depth difference |
---|
201 | REAL :: zdT ! temperature difference |
---|
202 | REAL, DIMENSION(jpi,jpj) :: zdelta_T ! difference critereon |
---|
203 | REAL, DIMENSION(jpi,jpj) :: zRHO1, zRHO2 ! Densities |
---|
204 | INTEGER :: ji, jj, jk ! loop counter |
---|
205 | |
---|
206 | !!------------------------------------------------------------------------------------- |
---|
207 | ! |
---|
208 | ! Unpack structure |
---|
209 | nn_mld_type = sf%mld_type |
---|
210 | rn_zref = sf%zref |
---|
211 | rn_dT_crit = sf%dT_crit |
---|
212 | rn_iso_frac = sf%iso_frac |
---|
213 | |
---|
214 | ! Set the mixed layer depth criterion at each grid point |
---|
215 | IF( nn_mld_type == 0 ) THEN |
---|
216 | zdelta_T(:,:) = rn_dT_crit |
---|
217 | zT(:,:,:) = rhop(:,:,:) |
---|
218 | ELSE IF( nn_mld_type == 1 ) THEN |
---|
219 | ppzdep(:,:)=0.0 |
---|
220 | call eos ( tsn(:,:,1,:), ppzdep(:,:), zRHO1(:,:) ) |
---|
221 | ! Use zT temporarily as a copy of tsn with rn_dT_crit added to SST |
---|
222 | ! [assumes number of tracers less than number of vertical levels] |
---|
223 | zT(:,:,1:jpts)=tsn(:,:,1,1:jpts) |
---|
224 | zT(:,:,jp_tem)=zT(:,:,1)+rn_dT_crit |
---|
225 | CALL eos( zT(:,:,1:jpts), ppzdep(:,:), zRHO2(:,:) ) |
---|
226 | zdelta_T(:,:) = abs( zRHO1(:,:) - zRHO2(:,:) ) * rau0 |
---|
227 | ! RHO from eos (2d version) doesn't calculate north or east halo: |
---|
228 | CALL lbc_lnk( 'zdfmxl', zdelta_T, 'T', 1. ) |
---|
229 | zT(:,:,:) = rhop(:,:,:) |
---|
230 | ELSE |
---|
231 | zdelta_T(:,:) = rn_dT_crit |
---|
232 | zT(:,:,:) = tsn(:,:,:,jp_tem) |
---|
233 | END IF |
---|
234 | |
---|
235 | ! Calculate the gradient of zT and absolute difference for use later |
---|
236 | DO jk = 1 ,jpk-2 |
---|
237 | zdTdz(:,:,jk) = ( zT(:,:,jk+1) - zT(:,:,jk) ) / e3w_n(:,:,jk+1) |
---|
238 | zmoddT(:,:,jk) = abs( zT(:,:,jk+1) - zT(:,:,jk) ) |
---|
239 | END DO |
---|
240 | |
---|
241 | ! Find density/temperature at the reference level (Kara et al use 10m). |
---|
242 | ! ik_ref is the index of the box centre immediately above or at the reference level |
---|
243 | ! Find rn_zref in the array of model level depths and find the ref |
---|
244 | ! density/temperature by linear interpolation. |
---|
245 | DO jk = jpkm1, 2, -1 |
---|
246 | WHERE ( gdept_n(:,:,jk) > rn_zref ) |
---|
247 | ik_ref(:,:) = jk - 1 |
---|
248 | zT_ref(:,:) = zT(:,:,jk-1) + zdTdz(:,:,jk-1) * ( rn_zref - gdept_n(:,:,jk-1) ) |
---|
249 | END WHERE |
---|
250 | END DO |
---|
251 | |
---|
252 | ! If the first grid box centre is below the reference level then use the |
---|
253 | ! top model level to get zT_ref |
---|
254 | WHERE ( gdept_n(:,:,1) > rn_zref ) |
---|
255 | zT_ref = zT(:,:,1) |
---|
256 | ik_ref = 1 |
---|
257 | END WHERE |
---|
258 | |
---|
259 | ! The number of active tracer levels is 1 less than the number of active w levels |
---|
260 | ikmt(:,:) = mbkt(:,:) - 1 |
---|
261 | |
---|
262 | ! Initialize / reset |
---|
263 | ll_found(:,:) = .false. |
---|
264 | |
---|
265 | IF ( rn_iso_frac - zepsilon > 0. ) THEN |
---|
266 | ! Search for a uniform density/temperature region where adjacent levels |
---|
267 | ! differ by less than rn_iso_frac * deltaT. |
---|
268 | ! ik_iso is the index of the last level in the uniform layer |
---|
269 | ! ll_found indicates whether the mixed layer depth can be found by interpolation |
---|
270 | ik_iso(:,:) = ik_ref(:,:) |
---|
271 | DO jj = 1, nlcj |
---|
272 | DO ji = 1, nlci |
---|
273 | !CDIR NOVECTOR |
---|
274 | DO jk = ik_ref(ji,jj), ikmt(ji,jj)-1 |
---|
275 | IF ( zmoddT(ji,jj,jk) > ( rn_iso_frac * zdelta_T(ji,jj) ) ) THEN |
---|
276 | ik_iso(ji,jj) = jk |
---|
277 | ll_found(ji,jj) = ( zmoddT(ji,jj,jk) > zdelta_T(ji,jj) ) |
---|
278 | EXIT |
---|
279 | END IF |
---|
280 | END DO |
---|
281 | END DO |
---|
282 | END DO |
---|
283 | |
---|
284 | ! Use linear interpolation to find depth of mixed layer base where possible |
---|
285 | hmld_zint(:,:) = rn_zref |
---|
286 | DO jj = 1, jpj |
---|
287 | DO ji = 1, jpi |
---|
288 | IF (ll_found(ji,jj) .and. tmask(ji,jj,1) == 1.0) THEN |
---|
289 | zdz = abs( zdelta_T(ji,jj) / zdTdz(ji,jj,ik_iso(ji,jj)) ) |
---|
290 | hmld_zint(ji,jj) = gdept_n(ji,jj,ik_iso(ji,jj)) + zdz |
---|
291 | END IF |
---|
292 | END DO |
---|
293 | END DO |
---|
294 | END IF |
---|
295 | |
---|
296 | ! If ll_found = .false. then calculate MLD using difference of zdelta_T |
---|
297 | ! from the reference density/temperature |
---|
298 | |
---|
299 | ! Prevent this section from working on land points |
---|
300 | WHERE ( tmask(:,:,1) /= 1.0 ) |
---|
301 | ll_found = .true. |
---|
302 | END WHERE |
---|
303 | |
---|
304 | DO jk=1, jpk |
---|
305 | ll_belowml(:,:,jk) = abs( zT(:,:,jk) - zT_ref(:,:) ) >= zdelta_T(:,:) |
---|
306 | END DO |
---|
307 | |
---|
308 | ! Set default value where interpolation cannot be used (ll_found=false) |
---|
309 | DO jj = 1, jpj |
---|
310 | DO ji = 1, jpi |
---|
311 | IF ( .not. ll_found(ji,jj) ) hmld_zint(ji,jj) = gdept_n(ji,jj,ikmt(ji,jj)) |
---|
312 | END DO |
---|
313 | END DO |
---|
314 | |
---|
315 | DO jj = 1, jpj |
---|
316 | DO ji = 1, jpi |
---|
317 | !CDIR NOVECTOR |
---|
318 | DO jk = ik_ref(ji,jj)+1, ikmt(ji,jj) |
---|
319 | IF ( ll_found(ji,jj) ) EXIT |
---|
320 | IF ( ll_belowml(ji,jj,jk) ) THEN |
---|
321 | zT_b = zT_ref(ji,jj) + zdelta_T(ji,jj) * SIGN(1.0, zdTdz(ji,jj,jk-1) ) |
---|
322 | zdT = zT_b - zT(ji,jj,jk-1) |
---|
323 | zdz = zdT / zdTdz(ji,jj,jk-1) |
---|
324 | hmld_zint(ji,jj) = gdept_n(ji,jj,jk-1) + zdz |
---|
325 | EXIT |
---|
326 | END IF |
---|
327 | END DO |
---|
328 | END DO |
---|
329 | END DO |
---|
330 | |
---|
331 | hmld_zint(:,:) = hmld_zint(:,:)*tmask(:,:,1) |
---|
332 | ! |
---|
333 | END SUBROUTINE zdf_mxl_zint_mld |
---|
334 | |
---|
335 | SUBROUTINE zdf_mxl_zint_htc( kt ) |
---|
336 | !!---------------------------------------------------------------------- |
---|
337 | !! *** ROUTINE zdf_mxl_zint_htc *** |
---|
338 | !! |
---|
339 | !! ** Purpose : |
---|
340 | !! |
---|
341 | !! ** Method : |
---|
342 | !!---------------------------------------------------------------------- |
---|
343 | |
---|
344 | INTEGER, INTENT(in) :: kt ! ocean time-step index |
---|
345 | |
---|
346 | INTEGER :: ji, jj, jk |
---|
347 | INTEGER :: ikmax |
---|
348 | REAL(wp) :: zc, zcoef |
---|
349 | ! |
---|
350 | INTEGER, ALLOCATABLE, DIMENSION(:,:) :: ilevel |
---|
351 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zthick_0, zthick |
---|
352 | |
---|
353 | !!---------------------------------------------------------------------- |
---|
354 | |
---|
355 | IF( .NOT. ALLOCATED(ilevel) ) THEN |
---|
356 | ALLOCATE( ilevel(jpi,jpj), zthick_0(jpi,jpj), & |
---|
357 | & zthick(jpi,jpj), STAT=ji ) |
---|
358 | IF( lk_mpp ) CALL mpp_sum( 'zdfmxl', ji ) |
---|
359 | IF( ji /= 0 ) CALL ctl_stop( 'STOP', 'zdf_mxl_zint_htc : unable to allocate arrays' ) |
---|
360 | ENDIF |
---|
361 | |
---|
362 | ! Find last whole model T level above the MLD |
---|
363 | ilevel(:,:) = 0 |
---|
364 | zthick_0(:,:) = 0._wp |
---|
365 | |
---|
366 | DO jk = 1, jpkm1 |
---|
367 | DO jj = 1, jpj |
---|
368 | DO ji = 1, jpi |
---|
369 | zthick_0(ji,jj) = zthick_0(ji,jj) + e3t_n(ji,jj,jk) |
---|
370 | IF( zthick_0(ji,jj) < hmld_zint(ji,jj) ) ilevel(ji,jj) = jk |
---|
371 | END DO |
---|
372 | END DO |
---|
373 | WRITE(numout,*) 'zthick_0(jk =',jk,') =',zthick_0(2,2) |
---|
374 | WRITE(numout,*) 'gdepw_n(jk+1 =',jk+1,') =',gdepw_n(2,2,jk+1) |
---|
375 | END DO |
---|
376 | |
---|
377 | ! Surface boundary condition |
---|
378 | IF( ln_linssh ) THEN ; zthick(:,:) = sshn(:,:) ; htc_mld(:,:) = tsn(:,:,1,jp_tem) * sshn(:,:) * tmask(:,:,1) |
---|
379 | ELSE ; zthick(:,:) = 0._wp ; htc_mld(:,:) = 0._wp |
---|
380 | ENDIF |
---|
381 | |
---|
382 | ! Deepest whole T level above the MLD |
---|
383 | ikmax = MIN( MAXVAL( ilevel(:,:) ), jpkm1 ) |
---|
384 | |
---|
385 | ! Integration down to last whole model T level |
---|
386 | DO jk = 1, ikmax |
---|
387 | DO jj = 1, jpj |
---|
388 | DO ji = 1, jpi |
---|
389 | zc = e3t_n(ji,jj,jk) * REAL( MIN( MAX( 0, ilevel(ji,jj) - jk + 1 ) , 1 ) ) ! 0 below ilevel |
---|
390 | zthick(ji,jj) = zthick(ji,jj) + zc |
---|
391 | htc_mld(ji,jj) = htc_mld(ji,jj) + zc * tsn(ji,jj,jk,jp_tem) * tmask(ji,jj,jk) |
---|
392 | END DO |
---|
393 | END DO |
---|
394 | END DO |
---|
395 | |
---|
396 | ! Subsequent partial T level |
---|
397 | zthick(:,:) = hmld_zint(:,:) - zthick(:,:) ! remaining thickness to reach MLD |
---|
398 | |
---|
399 | DO jj = 1, jpj |
---|
400 | DO ji = 1, jpi |
---|
401 | htc_mld(ji,jj) = htc_mld(ji,jj) + tsn(ji,jj,ilevel(ji,jj)+1,jp_tem) & |
---|
402 | & * MIN( e3t_n(ji,jj,ilevel(ji,jj)+1), zthick(ji,jj) ) * tmask(ji,jj,ilevel(ji,jj)+1) |
---|
403 | END DO |
---|
404 | END DO |
---|
405 | |
---|
406 | WRITE(numout,*) 'htc_mld(after) =',htc_mld(2,2) |
---|
407 | |
---|
408 | ! Convert to heat content |
---|
409 | zcoef = rau0 * rcp |
---|
410 | htc_mld(:,:) = zcoef * htc_mld(:,:) |
---|
411 | |
---|
412 | END SUBROUTINE zdf_mxl_zint_htc |
---|
413 | |
---|
414 | SUBROUTINE zdf_mxl_zint( kt ) |
---|
415 | !!---------------------------------------------------------------------- |
---|
416 | !! *** ROUTINE zdf_mxl_zint *** |
---|
417 | !! |
---|
418 | !! ** Purpose : |
---|
419 | !! |
---|
420 | !! ** Method : |
---|
421 | !!---------------------------------------------------------------------- |
---|
422 | |
---|
423 | INTEGER, INTENT(in) :: kt ! ocean time-step index |
---|
424 | |
---|
425 | INTEGER :: ios |
---|
426 | INTEGER :: jn |
---|
427 | |
---|
428 | INTEGER :: nn_mld_diag = 0 ! number of diagnostics |
---|
429 | |
---|
430 | CHARACTER(len=1) :: cmld |
---|
431 | |
---|
432 | TYPE(MXL_ZINT) :: sn_mld1, sn_mld2, sn_mld3, sn_mld4, sn_mld5 |
---|
433 | TYPE(MXL_ZINT), SAVE, DIMENSION(5) :: mld_diags |
---|
434 | |
---|
435 | NAMELIST/namzdf_mldzint/ nn_mld_diag, sn_mld1, sn_mld2, sn_mld3, sn_mld4, sn_mld5 |
---|
436 | |
---|
437 | !!---------------------------------------------------------------------- |
---|
438 | |
---|
439 | IF( kt == nit000 ) THEN |
---|
440 | REWIND( numnam_ref ) ! Namelist namzdf_mldzint in reference namelist |
---|
441 | READ ( numnam_ref, namzdf_mldzint, IOSTAT = ios, ERR = 901) |
---|
442 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_mldzint in reference namelist', lwp ) |
---|
443 | |
---|
444 | REWIND( numnam_cfg ) ! Namelist namzdf_mldzint in configuration namelist |
---|
445 | READ ( numnam_cfg, namzdf_mldzint, IOSTAT = ios, ERR = 902 ) |
---|
446 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_mldzint in configuration namelist', lwp ) |
---|
447 | IF(lwm) WRITE ( numond, namzdf_mldzint ) |
---|
448 | |
---|
449 | IF( nn_mld_diag > 5 ) CALL ctl_stop( 'STOP', 'zdf_mxl_ini: Specify no more than 5 MLD definitions' ) |
---|
450 | |
---|
451 | mld_diags(1) = sn_mld1 |
---|
452 | mld_diags(2) = sn_mld2 |
---|
453 | mld_diags(3) = sn_mld3 |
---|
454 | mld_diags(4) = sn_mld4 |
---|
455 | mld_diags(5) = sn_mld5 |
---|
456 | |
---|
457 | IF( lwp .AND. (nn_mld_diag > 0) ) THEN |
---|
458 | WRITE(numout,*) '=============== Vertically-interpolated mixed layer ================' |
---|
459 | WRITE(numout,*) '(Diagnostic number, nn_mld_type, rn_zref, rn_dT_crit, rn_iso_frac)' |
---|
460 | DO jn = 1, nn_mld_diag |
---|
461 | WRITE(numout,*) 'MLD criterion',jn,':' |
---|
462 | WRITE(numout,*) ' nn_mld_type =', mld_diags(jn)%mld_type |
---|
463 | WRITE(numout,*) ' rn_zref =' , mld_diags(jn)%zref |
---|
464 | WRITE(numout,*) ' rn_dT_crit =' , mld_diags(jn)%dT_crit |
---|
465 | WRITE(numout,*) ' rn_iso_frac =', mld_diags(jn)%iso_frac |
---|
466 | END DO |
---|
467 | WRITE(numout,*) '====================================================================' |
---|
468 | ENDIF |
---|
469 | ENDIF |
---|
470 | |
---|
471 | IF( nn_mld_diag > 0 ) THEN |
---|
472 | DO jn = 1, nn_mld_diag |
---|
473 | WRITE(cmld,'(I1)') jn |
---|
474 | IF( iom_use( "mldzint_"//cmld ) .OR. iom_use( "mldhtc_"//cmld ) ) THEN |
---|
475 | CALL zdf_mxl_zint_mld( mld_diags(jn) ) |
---|
476 | |
---|
477 | IF( iom_use( "mldzint_"//cmld ) ) THEN |
---|
478 | CALL iom_put( "mldzint_"//cmld, hmld_zint(:,:) ) |
---|
479 | ENDIF |
---|
480 | |
---|
481 | IF( iom_use( "mldhtc_"//cmld ) ) THEN |
---|
482 | CALL zdf_mxl_zint_htc( kt ) |
---|
483 | CALL iom_put( "mldhtc_"//cmld , htc_mld(:,:) ) |
---|
484 | ENDIF |
---|
485 | ENDIF |
---|
486 | END DO |
---|
487 | ENDIF |
---|
488 | |
---|
489 | END SUBROUTINE zdf_mxl_zint |
---|
490 | |
---|
491 | !!====================================================================== |
---|
492 | END MODULE zdfmxl |
---|