1 | MODULE dynvor |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE dynvor *** |
---|
4 | !! Ocean dynamics: Update the momentum trend with the relative and |
---|
5 | !! planetary vorticity trends |
---|
6 | !!====================================================================== |
---|
7 | !! History : OPA ! 1989-12 (P. Andrich) vor_ens: Original code |
---|
8 | !! 5.0 ! 1991-11 (G. Madec) vor_ene, vor_mix: Original code |
---|
9 | !! 6.0 ! 1996-01 (G. Madec) s-coord, suppress work arrays |
---|
10 | !! NEMO 0.5 ! 2002-08 (G. Madec) F90: Free form and module |
---|
11 | !! 1.0 ! 2004-02 (G. Madec) vor_een: Original code |
---|
12 | !! - ! 2003-08 (G. Madec) add vor_ctl |
---|
13 | !! - ! 2005-11 (G. Madec) add dyn_vor (new step architecture) |
---|
14 | !! 2.0 ! 2006-11 (G. Madec) flux form advection: add metric term |
---|
15 | !! 3.2 ! 2009-04 (R. Benshila) vvl: correction of een scheme |
---|
16 | !! 3.3 ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase |
---|
17 | !! 3.7 ! 2014-04 (G. Madec) trend simplification: suppress jpdyn_trd_dat vorticity |
---|
18 | !! - ! 2014-06 (G. Madec) suppression of velocity curl from in-core memory |
---|
19 | !! - ! 2016-12 (G. Madec, E. Clementi) add Stokes-Coriolis trends (ln_stcor=T) |
---|
20 | !! 4.0 ! 2017-07 (G. Madec) linear dynamics + trends diag. with Stokes-Coriolis |
---|
21 | !! - ! 2018-03 (G. Madec) add two new schemes (ln_dynvor_enT and ln_dynvor_eet) |
---|
22 | !! - ! 2018-04 (G. Madec) add pre-computed gradient for metric term calculation |
---|
23 | !!---------------------------------------------------------------------- |
---|
24 | |
---|
25 | !!---------------------------------------------------------------------- |
---|
26 | !! dyn_vor : Update the momentum trend with the vorticity trend |
---|
27 | !! vor_ens : enstrophy conserving scheme (ln_dynvor_ens=T) |
---|
28 | !! vor_ene : energy conserving scheme (ln_dynvor_ene=T) |
---|
29 | !! vor_een : energy and enstrophy conserving (ln_dynvor_een=T) |
---|
30 | !! dyn_vor_init : set and control of the different vorticity option |
---|
31 | !!---------------------------------------------------------------------- |
---|
32 | USE oce ! ocean dynamics and tracers |
---|
33 | USE dom_oce ! ocean space and time domain |
---|
34 | USE dommsk ! ocean mask |
---|
35 | USE dynadv ! momentum advection |
---|
36 | USE trd_oce ! trends: ocean variables |
---|
37 | USE trddyn ! trend manager: dynamics |
---|
38 | USE sbcwave ! Surface Waves (add Stokes-Coriolis force) |
---|
39 | USE sbc_oce , ONLY : ln_stcor ! use Stoke-Coriolis force |
---|
40 | ! |
---|
41 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
42 | USE prtctl ! Print control |
---|
43 | USE in_out_manager ! I/O manager |
---|
44 | USE lib_mpp ! MPP library |
---|
45 | USE timing ! Timing |
---|
46 | |
---|
47 | IMPLICIT NONE |
---|
48 | PRIVATE |
---|
49 | |
---|
50 | PUBLIC dyn_vor ! routine called by step.F90 |
---|
51 | PUBLIC dyn_vor_init ! routine called by nemogcm.F90 |
---|
52 | |
---|
53 | ! !!* Namelist namdyn_vor: vorticity term |
---|
54 | LOGICAL, PUBLIC :: ln_dynvor_ens !: enstrophy conserving scheme (ENS) |
---|
55 | LOGICAL, PUBLIC :: ln_dynvor_ene !: f-point energy conserving scheme (ENE) |
---|
56 | LOGICAL, PUBLIC :: ln_dynvor_enT !: t-point energy conserving scheme (ENT) |
---|
57 | LOGICAL, PUBLIC :: ln_dynvor_eeT !: t-point energy conserving scheme (EET) |
---|
58 | LOGICAL, PUBLIC :: ln_dynvor_eeUV !: uv-point energy conserving scheme (EEUV) |
---|
59 | LOGICAL, PUBLIC :: ln_dynvor_een !: energy & enstrophy conserving scheme (EEN) |
---|
60 | INTEGER, PUBLIC :: nn_een_e3f !: e3f=masked averaging of e3t divided by 4 (=0) or by the sum of mask (=1) |
---|
61 | LOGICAL, PUBLIC :: ln_dynvor_mix !: mixed scheme (MIX) |
---|
62 | LOGICAL, PUBLIC :: ln_dynvor_msk !: vorticity multiplied by fmask (=T) or not (=F) (all vorticity schemes) |
---|
63 | |
---|
64 | INTEGER, PUBLIC :: nvor_scheme !: choice of the type of advection scheme |
---|
65 | ! ! associated indices: |
---|
66 | INTEGER, PUBLIC, PARAMETER :: np_ENS = 0 ! ENS scheme |
---|
67 | INTEGER, PUBLIC, PARAMETER :: np_ENE = 1 ! ENE scheme |
---|
68 | INTEGER, PUBLIC, PARAMETER :: np_ENT = 2 ! ENT scheme (t-point vorticity) |
---|
69 | INTEGER, PUBLIC, PARAMETER :: np_EET = 3 ! EET scheme (EEN using e3t) |
---|
70 | INTEGER, PUBLIC, PARAMETER :: np_EEUV = 4 ! EET scheme (EEN using e3u and e3v) |
---|
71 | INTEGER, PUBLIC, PARAMETER :: np_EEN = 5 ! EEN scheme |
---|
72 | INTEGER, PUBLIC, PARAMETER :: np_MIX = 6 ! MIX scheme |
---|
73 | |
---|
74 | INTEGER :: ncor, nrvm, ntot ! choice of calculated vorticity |
---|
75 | ! ! associated indices: |
---|
76 | INTEGER, PUBLIC, PARAMETER :: np_COR = 1 ! Coriolis (planetary) |
---|
77 | INTEGER, PUBLIC, PARAMETER :: np_RVO = 2 ! relative vorticity |
---|
78 | INTEGER, PUBLIC, PARAMETER :: np_MET = 3 ! metric term |
---|
79 | INTEGER, PUBLIC, PARAMETER :: np_CRV = 4 ! relative + planetary (total vorticity) |
---|
80 | INTEGER, PUBLIC, PARAMETER :: np_CME = 5 ! Coriolis + metric term |
---|
81 | |
---|
82 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: di_e2u_2 ! = di(e2u)/2 used in T-point metric term calculation |
---|
83 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: dj_e1v_2 ! = dj(e1v)/2 - - - - |
---|
84 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: di_e2v_2e1e2f ! = di(e2u)/(2*e1e2f) used in F-point metric term calculation |
---|
85 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: dj_e1u_2e1e2f ! = dj(e1v)/(2*e1e2f) - - - - |
---|
86 | |
---|
87 | REAL(wp) :: r1_4 = 0.250_wp ! =1/4 |
---|
88 | REAL(wp) :: r1_6 = 1._wp / 6._wp ! =1/6 |
---|
89 | REAL(wp) :: r1_8 = 0.125_wp ! =1/8 |
---|
90 | REAL(wp) :: r1_12 = 1._wp / 12._wp ! 1/12 |
---|
91 | |
---|
92 | !! * Substitutions |
---|
93 | # include "vectopt_loop_substitute.h90" |
---|
94 | !!---------------------------------------------------------------------- |
---|
95 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
96 | !! $Id$ |
---|
97 | !! Software governed by the CeCILL licence (./LICENSE) |
---|
98 | !!---------------------------------------------------------------------- |
---|
99 | CONTAINS |
---|
100 | |
---|
101 | SUBROUTINE dyn_vor( kt ) |
---|
102 | !!---------------------------------------------------------------------- |
---|
103 | !! |
---|
104 | !! ** Purpose : compute the lateral ocean tracer physics. |
---|
105 | !! |
---|
106 | !! ** Action : - Update (ua,va) with the now vorticity term trend |
---|
107 | !! - save the trends in (ztrdu,ztrdv) in 2 parts (relative |
---|
108 | !! and planetary vorticity trends) and send them to trd_dyn |
---|
109 | !! for futher diagnostics (l_trddyn=T) |
---|
110 | !!---------------------------------------------------------------------- |
---|
111 | INTEGER, INTENT( in ) :: kt ! ocean time-step index |
---|
112 | ! |
---|
113 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: ztrdu, ztrdv |
---|
114 | !!---------------------------------------------------------------------- |
---|
115 | ! |
---|
116 | IF( ln_timing ) CALL timing_start('dyn_vor') |
---|
117 | ! |
---|
118 | IF( l_trddyn ) THEN !== trend diagnostics case : split the added trend in two parts ==! |
---|
119 | ! |
---|
120 | ALLOCATE( ztrdu(jpi,jpj,jpk), ztrdv(jpi,jpj,jpk) ) |
---|
121 | ! |
---|
122 | ztrdu(:,:,:) = ua(:,:,:) !* planetary vorticity trend (including Stokes-Coriolis force) |
---|
123 | ztrdv(:,:,:) = va(:,:,:) |
---|
124 | SELECT CASE( nvor_scheme ) |
---|
125 | CASE( np_ENS ) ; CALL vor_ens( kt, ncor, un , vn , ua, va ) ! enstrophy conserving scheme |
---|
126 | IF( ln_stcor ) CALL vor_ens( kt, ncor, usd, vsd, ua, va ) ! add the Stokes-Coriolis trend |
---|
127 | CASE( np_ENE, np_MIX ) ; CALL vor_ene( kt, ncor, un , vn , ua, va ) ! energy conserving scheme |
---|
128 | IF( ln_stcor ) CALL vor_ene( kt, ncor, usd, vsd, ua, va ) ! add the Stokes-Coriolis trend |
---|
129 | CASE( np_ENT ) ; CALL vor_enT( kt, ncor, un , vn , ua, va ) ! energy conserving scheme (T-pts) |
---|
130 | IF( ln_stcor ) CALL vor_enT( kt, ncor, usd, vsd, ua, va ) ! add the Stokes-Coriolis trend |
---|
131 | CASE( np_EET ) ; CALL vor_eeT( kt, ncor, un , vn , ua, va ) ! energy conserving scheme (een with e3t) |
---|
132 | IF( ln_stcor ) CALL vor_eeT( kt, ncor, usd, vsd, ua, va ) ! add the Stokes-Coriolis trend |
---|
133 | CASE( np_EEUV ) ; CALL vor_eeUV( kt, ncor, un , vn , ua, va ) ! energy conserving scheme (een with e3u and e3v) |
---|
134 | IF( ln_stcor ) CALL vor_eeUV( kt, ncor, usd, vsd, ua, va ) ! add the Stokes-Coriolis trend |
---|
135 | CASE( np_EEN ) ; CALL vor_een( kt, ncor, un , vn , ua, va ) ! energy & enstrophy scheme |
---|
136 | IF( ln_stcor ) CALL vor_een( kt, ncor, usd, vsd, ua, va ) ! add the Stokes-Coriolis trend |
---|
137 | END SELECT |
---|
138 | ztrdu(:,:,:) = ua(:,:,:) - ztrdu(:,:,:) |
---|
139 | ztrdv(:,:,:) = va(:,:,:) - ztrdv(:,:,:) |
---|
140 | CALL trd_dyn( ztrdu, ztrdv, jpdyn_pvo, kt ) |
---|
141 | ! |
---|
142 | IF( n_dynadv /= np_LIN_dyn ) THEN !* relative vorticity or metric trend (only in non-linear case) |
---|
143 | ztrdu(:,:,:) = ua(:,:,:) |
---|
144 | ztrdv(:,:,:) = va(:,:,:) |
---|
145 | SELECT CASE( nvor_scheme ) |
---|
146 | CASE( np_ENT ) ; CALL vor_enT( kt, nrvm, un , vn , ua, va ) ! energy conserving scheme (T-pts) |
---|
147 | CASE( np_EET ) ; CALL vor_eeT( kt, nrvm, un , vn , ua, va ) ! energy conserving scheme (een with e3t) |
---|
148 | CASE( np_EEUV ) ; CALL vor_eeUV( kt, nrvm, un , vn , ua, va ) ! energy conserving scheme (een with e3u and e3v) |
---|
149 | CASE( np_ENE ) ; CALL vor_ene( kt, nrvm, un , vn , ua, va ) ! energy conserving scheme |
---|
150 | CASE( np_ENS, np_MIX ) ; CALL vor_ens( kt, nrvm, un , vn , ua, va ) ! enstrophy conserving scheme |
---|
151 | CASE( np_EEN ) ; CALL vor_een( kt, nrvm, un , vn , ua, va ) ! energy & enstrophy scheme |
---|
152 | END SELECT |
---|
153 | ztrdu(:,:,:) = ua(:,:,:) - ztrdu(:,:,:) |
---|
154 | ztrdv(:,:,:) = va(:,:,:) - ztrdv(:,:,:) |
---|
155 | CALL trd_dyn( ztrdu, ztrdv, jpdyn_rvo, kt ) |
---|
156 | ENDIF |
---|
157 | ! |
---|
158 | DEALLOCATE( ztrdu, ztrdv ) |
---|
159 | ! |
---|
160 | ELSE !== total vorticity trend added to the general trend ==! |
---|
161 | ! |
---|
162 | SELECT CASE ( nvor_scheme ) !== vorticity trend added to the general trend ==! |
---|
163 | CASE( np_ENT ) !* energy conserving scheme (T-pts) |
---|
164 | CALL vor_enT( kt, ntot, un , vn , ua, va ) ! total vorticity trend |
---|
165 | IF( ln_stcor ) CALL vor_enT( kt, ncor, usd, vsd, ua, va ) ! add the Stokes-Coriolis trend |
---|
166 | CASE( np_EET ) !* energy conserving scheme (een scheme using e3t) |
---|
167 | CALL vor_eeT( kt, ntot, un , vn , ua, va ) ! total vorticity trend |
---|
168 | IF( ln_stcor ) CALL vor_eeT( kt, ncor, usd, vsd, ua, va ) ! add the Stokes-Coriolis trend |
---|
169 | CASE( np_EEUV ) !* energy conserving scheme (een scheme using e3u and e3v) |
---|
170 | CALL vor_eeUV( kt, ntot, un , vn , ua, va ) ! total vorticity trend |
---|
171 | IF( ln_stcor ) CALL vor_eeUV( kt, ncor, usd, vsd, ua, va ) ! add the Stokes-Coriolis trend |
---|
172 | CASE( np_ENE ) !* energy conserving scheme |
---|
173 | CALL vor_ene( kt, ntot, un , vn , ua, va ) ! total vorticity trend |
---|
174 | IF( ln_stcor ) CALL vor_ene( kt, ncor, usd, vsd, ua, va ) ! add the Stokes-Coriolis trend |
---|
175 | CASE( np_ENS ) !* enstrophy conserving scheme |
---|
176 | CALL vor_ens( kt, ntot, un , vn , ua, va ) ! total vorticity trend |
---|
177 | IF( ln_stcor ) CALL vor_ens( kt, ncor, usd, vsd, ua, va ) ! add the Stokes-Coriolis trend |
---|
178 | CASE( np_MIX ) !* mixed ene-ens scheme |
---|
179 | CALL vor_ens( kt, nrvm, un , vn , ua, va ) ! relative vorticity or metric trend (ens) |
---|
180 | CALL vor_ene( kt, ncor, un , vn , ua, va ) ! planetary vorticity trend (ene) |
---|
181 | IF( ln_stcor ) CALL vor_ene( kt, ncor, usd, vsd, ua, va ) ! add the Stokes-Coriolis trend |
---|
182 | CASE( np_EEN ) !* energy and enstrophy conserving scheme |
---|
183 | CALL vor_een( kt, ntot, un , vn , ua, va ) ! total vorticity trend |
---|
184 | IF( ln_stcor ) CALL vor_een( kt, ncor, usd, vsd, ua, va ) ! add the Stokes-Coriolis trend |
---|
185 | END SELECT |
---|
186 | ! |
---|
187 | ENDIF |
---|
188 | ! |
---|
189 | ! ! print sum trends (used for debugging) |
---|
190 | IF(ln_ctl) CALL prt_ctl( tab3d_1=ua, clinfo1=' vor - Ua: ', mask1=umask, & |
---|
191 | & tab3d_2=va, clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' ) |
---|
192 | ! |
---|
193 | IF( ln_timing ) CALL timing_stop('dyn_vor') |
---|
194 | ! |
---|
195 | END SUBROUTINE dyn_vor |
---|
196 | |
---|
197 | |
---|
198 | SUBROUTINE vor_enT( kt, kvor, pu, pv, pu_rhs, pv_rhs ) |
---|
199 | !!---------------------------------------------------------------------- |
---|
200 | !! *** ROUTINE vor_enT *** |
---|
201 | !! |
---|
202 | !! ** Purpose : Compute the now total vorticity trend and add it to |
---|
203 | !! the general trend of the momentum equation. |
---|
204 | !! |
---|
205 | !! ** Method : Trend evaluated using now fields (centered in time) |
---|
206 | !! and t-point evaluation of vorticity (planetary and relative). |
---|
207 | !! conserves the horizontal kinetic energy. |
---|
208 | !! The general trend of momentum is increased due to the vorticity |
---|
209 | !! term which is given by: |
---|
210 | !! voru = 1/bu mj[ ( mi(mj(bf*rvor))+bt*f_t)/e3t mj[vn] ] |
---|
211 | !! vorv = 1/bv mi[ ( mi(mj(bf*rvor))+bt*f_t)/e3f mj[un] ] |
---|
212 | !! where rvor is the relative vorticity at f-point |
---|
213 | !! |
---|
214 | !! ** Action : - Update (ua,va) with the now vorticity term trend |
---|
215 | !!---------------------------------------------------------------------- |
---|
216 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
217 | INTEGER , INTENT(in ) :: kvor ! total, planetary, relative, or metric |
---|
218 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu, pv ! now velocities |
---|
219 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu_rhs, pv_rhs ! total v-trend |
---|
220 | ! |
---|
221 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
222 | REAL(wp) :: zx1, zy1, zx2, zy2 ! local scalars |
---|
223 | REAL(wp), DIMENSION(jpi,jpj) :: zwx, zwy, zwz, zwt ! 2D workspace |
---|
224 | !!---------------------------------------------------------------------- |
---|
225 | ! |
---|
226 | IF( kt == nit000 ) THEN |
---|
227 | IF(lwp) WRITE(numout,*) |
---|
228 | IF(lwp) WRITE(numout,*) 'dyn:vor_enT : vorticity term: t-point energy conserving scheme' |
---|
229 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' |
---|
230 | ENDIF |
---|
231 | ! |
---|
232 | ! ! =============== |
---|
233 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
234 | ! ! =============== |
---|
235 | ! |
---|
236 | SELECT CASE( kvor ) !== volume weighted vorticity considered ==! |
---|
237 | CASE ( np_COR ) !* Coriolis (planetary vorticity) |
---|
238 | zwt(:,:) = ff_t(:,:) * e1e2t(:,:)*e3t_n(:,:,jk) |
---|
239 | CASE ( np_RVO ) !* relative vorticity |
---|
240 | DO jj = 1, jpjm1 |
---|
241 | DO ji = 1, jpim1 |
---|
242 | zwz(ji,jj) = ( e2v(ji+1,jj) * pv(ji+1,jj,jk) - e2v(ji,jj) * pv(ji,jj,jk) & |
---|
243 | & - e1u(ji,jj+1) * pu(ji,jj+1,jk) + e1u(ji,jj) * pu(ji,jj,jk) ) * r1_e1e2f(ji,jj) |
---|
244 | END DO |
---|
245 | END DO |
---|
246 | IF( ln_dynvor_msk ) THEN ! mask/unmask relative vorticity |
---|
247 | DO jj = 1, jpjm1 |
---|
248 | DO ji = 1, jpim1 |
---|
249 | zwz(ji,jj) = zwz(ji,jj) * fmask(ji,jj,jk) |
---|
250 | END DO |
---|
251 | END DO |
---|
252 | ENDIF |
---|
253 | CALL lbc_lnk( zwz, 'F', 1. ) |
---|
254 | DO jj = 2, jpj |
---|
255 | DO ji = 2, jpi ! vector opt. |
---|
256 | zwt(ji,jj) = r1_4 * ( zwz(ji-1,jj ) + zwz(ji,jj ) & |
---|
257 | & + zwz(ji-1,jj-1) + zwz(ji,jj-1) ) * e1e2t(ji,jj)*e3t_n(ji,jj,jk) |
---|
258 | END DO |
---|
259 | END DO |
---|
260 | CASE ( np_MET ) !* metric term |
---|
261 | DO jj = 2, jpj |
---|
262 | DO ji = 2, jpi |
---|
263 | zwt(ji,jj) = ( ( pv(ji,jj,jk) + pv(ji,jj-1,jk) ) * di_e2u_2(ji,jj) & |
---|
264 | & - ( pu(ji,jj,jk) + pu(ji-1,jj,jk) ) * dj_e1v_2(ji,jj) ) * e3t_n(ji,jj,jk) |
---|
265 | END DO |
---|
266 | END DO |
---|
267 | CASE ( np_CRV ) !* Coriolis + relative vorticity |
---|
268 | DO jj = 1, jpjm1 |
---|
269 | DO ji = 1, jpim1 ! relative vorticity |
---|
270 | zwz(ji,jj) = ( e2v(ji+1,jj) * pv(ji+1,jj,jk) - e2v(ji,jj) * pv(ji,jj,jk) & |
---|
271 | & - e1u(ji,jj+1) * pu(ji,jj+1,jk) + e1u(ji,jj) * pu(ji,jj,jk) ) * r1_e1e2f(ji,jj) |
---|
272 | END DO |
---|
273 | END DO |
---|
274 | IF( ln_dynvor_msk ) THEN ! mask/unmask relative vorticity |
---|
275 | DO jj = 1, jpjm1 |
---|
276 | DO ji = 1, jpim1 |
---|
277 | zwz(ji,jj) = zwz(ji,jj) * fmask(ji,jj,jk) |
---|
278 | END DO |
---|
279 | END DO |
---|
280 | ENDIF |
---|
281 | CALL lbc_lnk( zwz, 'F', 1. ) |
---|
282 | DO jj = 2, jpj |
---|
283 | DO ji = 2, jpi ! vector opt. |
---|
284 | zwt(ji,jj) = ( ff_t(ji,jj) + r1_4 * ( zwz(ji-1,jj ) + zwz(ji,jj ) & |
---|
285 | & + zwz(ji-1,jj-1) + zwz(ji,jj-1) ) ) * e1e2t(ji,jj)*e3t_n(ji,jj,jk) |
---|
286 | END DO |
---|
287 | END DO |
---|
288 | CASE ( np_CME ) !* Coriolis + metric |
---|
289 | DO jj = 2, jpj |
---|
290 | DO ji = 2, jpi ! vector opt. |
---|
291 | zwt(ji,jj) = ( ff_t(ji,jj) * e1e2t(ji,jj) & |
---|
292 | & + ( pv(ji,jj,jk) + pv(ji,jj-1,jk) ) * di_e2u_2(ji,jj) & |
---|
293 | & - ( pu(ji,jj,jk) + pu(ji-1,jj,jk) ) * dj_e1v_2(ji,jj) ) * e3t_n(ji,jj,jk) |
---|
294 | END DO |
---|
295 | END DO |
---|
296 | CASE DEFAULT ! error |
---|
297 | CALL ctl_stop('STOP','dyn_vor: wrong value for kvor' ) |
---|
298 | END SELECT |
---|
299 | ! |
---|
300 | ! !== compute and add the vorticity term trend =! |
---|
301 | DO jj = 2, jpjm1 |
---|
302 | DO ji = 2, jpim1 ! vector opt. |
---|
303 | pu_rhs(ji,jj,jk) = pu_rhs(ji,jj,jk) + r1_4 * r1_e1e2u(ji,jj) / e3u_n(ji,jj,jk) & |
---|
304 | & * ( zwt(ji+1,jj) * ( pv(ji+1,jj,jk) + pv(ji+1,jj-1,jk) ) & |
---|
305 | & + zwt(ji ,jj) * ( pv(ji ,jj,jk) + pv(ji ,jj-1,jk) ) ) |
---|
306 | ! |
---|
307 | pv_rhs(ji,jj,jk) = pv_rhs(ji,jj,jk) - r1_4 * r1_e1e2v(ji,jj) / e3v_n(ji,jj,jk) & |
---|
308 | & * ( zwt(ji,jj+1) * ( pu(ji,jj+1,jk) + pu(ji-1,jj+1,jk) ) & |
---|
309 | & + zwt(ji,jj ) * ( pu(ji,jj ,jk) + pu(ji-1,jj ,jk) ) ) |
---|
310 | END DO |
---|
311 | END DO |
---|
312 | ! ! =============== |
---|
313 | END DO ! End of slab |
---|
314 | ! ! =============== |
---|
315 | END SUBROUTINE vor_enT |
---|
316 | |
---|
317 | |
---|
318 | SUBROUTINE vor_ene( kt, kvor, pun, pvn, pua, pva ) |
---|
319 | !!---------------------------------------------------------------------- |
---|
320 | !! *** ROUTINE vor_ene *** |
---|
321 | !! |
---|
322 | !! ** Purpose : Compute the now total vorticity trend and add it to |
---|
323 | !! the general trend of the momentum equation. |
---|
324 | !! |
---|
325 | !! ** Method : Trend evaluated using now fields (centered in time) |
---|
326 | !! and the Sadourny (1975) flux form formulation : conserves the |
---|
327 | !! horizontal kinetic energy. |
---|
328 | !! The general trend of momentum is increased due to the vorticity |
---|
329 | !! term which is given by: |
---|
330 | !! voru = 1/e1u mj-1[ (rvor+f)/e3f mi(e1v*e3v vn) ] |
---|
331 | !! vorv = 1/e2v mi-1[ (rvor+f)/e3f mj(e2u*e3u un) ] |
---|
332 | !! where rvor is the relative vorticity |
---|
333 | !! |
---|
334 | !! ** Action : - Update (ua,va) with the now vorticity term trend |
---|
335 | !! |
---|
336 | !! References : Sadourny, r., 1975, j. atmos. sciences, 32, 680-689. |
---|
337 | !!---------------------------------------------------------------------- |
---|
338 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
339 | INTEGER , INTENT(in ) :: kvor ! total, planetary, relative, or metric |
---|
340 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pun, pvn ! now velocities |
---|
341 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pua, pva ! total v-trend |
---|
342 | ! |
---|
343 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
344 | REAL(wp) :: zx1, zy1, zx2, zy2 ! local scalars |
---|
345 | REAL(wp), DIMENSION(jpi,jpj) :: zwx, zwy, zwz ! 2D workspace |
---|
346 | !!---------------------------------------------------------------------- |
---|
347 | ! |
---|
348 | IF( kt == nit000 ) THEN |
---|
349 | IF(lwp) WRITE(numout,*) |
---|
350 | IF(lwp) WRITE(numout,*) 'dyn:vor_ene : vorticity term: energy conserving scheme' |
---|
351 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' |
---|
352 | ENDIF |
---|
353 | ! |
---|
354 | ! ! =============== |
---|
355 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
356 | ! ! =============== |
---|
357 | ! |
---|
358 | SELECT CASE( kvor ) !== vorticity considered ==! |
---|
359 | CASE ( np_COR ) !* Coriolis (planetary vorticity) |
---|
360 | zwz(:,:) = ff_f(:,:) |
---|
361 | CASE ( np_RVO ) !* relative vorticity |
---|
362 | DO jj = 1, jpjm1 |
---|
363 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
364 | zwz(ji,jj) = ( e2v(ji+1,jj ) * pvn(ji+1,jj ,jk) - e2v(ji,jj) * pvn(ji,jj,jk) & |
---|
365 | & - e1u(ji ,jj+1) * pun(ji ,jj+1,jk) + e1u(ji,jj) * pun(ji,jj,jk) ) * r1_e1e2f(ji,jj) |
---|
366 | END DO |
---|
367 | END DO |
---|
368 | CASE ( np_MET ) !* metric term |
---|
369 | DO jj = 1, jpjm1 |
---|
370 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
371 | zwz(ji,jj) = ( pvn(ji+1,jj ,jk) + pvn(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) & |
---|
372 | & - ( pun(ji ,jj+1,jk) + pun(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj) |
---|
373 | END DO |
---|
374 | END DO |
---|
375 | CASE ( np_CRV ) !* Coriolis + relative vorticity |
---|
376 | DO jj = 1, jpjm1 |
---|
377 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
378 | zwz(ji,jj) = ff_f(ji,jj) + ( e2v(ji+1,jj) * pvn(ji+1,jj,jk) - e2v(ji,jj) * pvn(ji,jj,jk) & |
---|
379 | & - e1u(ji,jj+1) * pun(ji,jj+1,jk) + e1u(ji,jj) * pun(ji,jj,jk) ) * r1_e1e2f(ji,jj) |
---|
380 | END DO |
---|
381 | END DO |
---|
382 | CASE ( np_CME ) !* Coriolis + metric |
---|
383 | DO jj = 1, jpjm1 |
---|
384 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
385 | zwz(ji,jj) = ff_f(ji,jj) + ( pvn(ji+1,jj ,jk) + pvn(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) & |
---|
386 | & - ( pun(ji ,jj+1,jk) + pun(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj) |
---|
387 | END DO |
---|
388 | END DO |
---|
389 | CASE DEFAULT ! error |
---|
390 | CALL ctl_stop('STOP','dyn_vor: wrong value for kvor' ) |
---|
391 | END SELECT |
---|
392 | ! |
---|
393 | IF( ln_dynvor_msk ) THEN !== mask/unmask vorticity ==! |
---|
394 | DO jj = 1, jpjm1 |
---|
395 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
396 | zwz(ji,jj) = zwz(ji,jj) * fmask(ji,jj,jk) |
---|
397 | END DO |
---|
398 | END DO |
---|
399 | ENDIF |
---|
400 | |
---|
401 | IF( ln_sco ) THEN |
---|
402 | zwz(:,:) = zwz(:,:) / e3f_n(:,:,jk) |
---|
403 | zwx(:,:) = e2u(:,:) * e3u_n(:,:,jk) * pun(:,:,jk) |
---|
404 | zwy(:,:) = e1v(:,:) * e3v_n(:,:,jk) * pvn(:,:,jk) |
---|
405 | ELSE |
---|
406 | zwx(:,:) = e2u(:,:) * pun(:,:,jk) |
---|
407 | zwy(:,:) = e1v(:,:) * pvn(:,:,jk) |
---|
408 | ENDIF |
---|
409 | ! !== compute and add the vorticity term trend =! |
---|
410 | DO jj = 2, jpjm1 |
---|
411 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
412 | zy1 = zwy(ji,jj-1) + zwy(ji+1,jj-1) |
---|
413 | zy2 = zwy(ji,jj ) + zwy(ji+1,jj ) |
---|
414 | zx1 = zwx(ji-1,jj) + zwx(ji-1,jj+1) |
---|
415 | zx2 = zwx(ji ,jj) + zwx(ji ,jj+1) |
---|
416 | pua(ji,jj,jk) = pua(ji,jj,jk) + r1_4 * r1_e1u(ji,jj) * ( zwz(ji ,jj-1) * zy1 + zwz(ji,jj) * zy2 ) |
---|
417 | pva(ji,jj,jk) = pva(ji,jj,jk) - r1_4 * r1_e2v(ji,jj) * ( zwz(ji-1,jj ) * zx1 + zwz(ji,jj) * zx2 ) |
---|
418 | END DO |
---|
419 | END DO |
---|
420 | ! ! =============== |
---|
421 | END DO ! End of slab |
---|
422 | ! ! =============== |
---|
423 | END SUBROUTINE vor_ene |
---|
424 | |
---|
425 | |
---|
426 | SUBROUTINE vor_ens( kt, kvor, pun, pvn, pua, pva ) |
---|
427 | !!---------------------------------------------------------------------- |
---|
428 | !! *** ROUTINE vor_ens *** |
---|
429 | !! |
---|
430 | !! ** Purpose : Compute the now total vorticity trend and add it to |
---|
431 | !! the general trend of the momentum equation. |
---|
432 | !! |
---|
433 | !! ** Method : Trend evaluated using now fields (centered in time) |
---|
434 | !! and the Sadourny (1975) flux FORM formulation : conserves the |
---|
435 | !! potential enstrophy of a horizontally non-divergent flow. the |
---|
436 | !! trend of the vorticity term is given by: |
---|
437 | !! voru = 1/e1u mj-1[ (rvor+f)/e3f ] mj-1[ mi(e1v*e3v vn) ] |
---|
438 | !! vorv = 1/e2v mi-1[ (rvor+f)/e3f ] mi-1[ mj(e2u*e3u un) ] |
---|
439 | !! Add this trend to the general momentum trend (ua,va): |
---|
440 | !! (ua,va) = (ua,va) + ( voru , vorv ) |
---|
441 | !! |
---|
442 | !! ** Action : - Update (ua,va) arrays with the now vorticity term trend |
---|
443 | !! |
---|
444 | !! References : Sadourny, r., 1975, j. atmos. sciences, 32, 680-689. |
---|
445 | !!---------------------------------------------------------------------- |
---|
446 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
447 | INTEGER , INTENT(in ) :: kvor ! total, planetary, relative, or metric |
---|
448 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pun, pvn ! now velocities |
---|
449 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pua, pva ! total v-trend |
---|
450 | ! |
---|
451 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
452 | REAL(wp) :: zuav, zvau ! local scalars |
---|
453 | REAL(wp), DIMENSION(jpi,jpj) :: zwx, zwy, zwz, zww ! 2D workspace |
---|
454 | !!---------------------------------------------------------------------- |
---|
455 | ! |
---|
456 | IF( kt == nit000 ) THEN |
---|
457 | IF(lwp) WRITE(numout,*) |
---|
458 | IF(lwp) WRITE(numout,*) 'dyn:vor_ens : vorticity term: enstrophy conserving scheme' |
---|
459 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' |
---|
460 | ENDIF |
---|
461 | ! ! =============== |
---|
462 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
463 | ! ! =============== |
---|
464 | ! |
---|
465 | SELECT CASE( kvor ) !== vorticity considered ==! |
---|
466 | CASE ( np_COR ) !* Coriolis (planetary vorticity) |
---|
467 | zwz(:,:) = ff_f(:,:) |
---|
468 | CASE ( np_RVO ) !* relative vorticity |
---|
469 | DO jj = 1, jpjm1 |
---|
470 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
471 | zwz(ji,jj) = ( e2v(ji+1,jj ) * pvn(ji+1,jj ,jk) - e2v(ji,jj) * pvn(ji,jj,jk) & |
---|
472 | & - e1u(ji ,jj+1) * pun(ji ,jj+1,jk) + e1u(ji,jj) * pun(ji,jj,jk) ) * r1_e1e2f(ji,jj) |
---|
473 | END DO |
---|
474 | END DO |
---|
475 | CASE ( np_MET ) !* metric term |
---|
476 | DO jj = 1, jpjm1 |
---|
477 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
478 | zwz(ji,jj) = ( pvn(ji+1,jj ,jk) + pvn(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) & |
---|
479 | & - ( pun(ji ,jj+1,jk) + pun(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj) |
---|
480 | END DO |
---|
481 | END DO |
---|
482 | CASE ( np_CRV ) !* Coriolis + relative vorticity |
---|
483 | DO jj = 1, jpjm1 |
---|
484 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
485 | zwz(ji,jj) = ff_f(ji,jj) + ( e2v(ji+1,jj ) * pvn(ji+1,jj ,jk) - e2v(ji,jj) * pvn(ji,jj,jk) & |
---|
486 | & - e1u(ji ,jj+1) * pun(ji ,jj+1,jk) + e1u(ji,jj) * pun(ji,jj,jk) ) * r1_e1e2f(ji,jj) |
---|
487 | END DO |
---|
488 | END DO |
---|
489 | CASE ( np_CME ) !* Coriolis + metric |
---|
490 | DO jj = 1, jpjm1 |
---|
491 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
492 | zwz(ji,jj) = ff_f(ji,jj) + ( pvn(ji+1,jj ,jk) + pvn(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) & |
---|
493 | & - ( pun(ji ,jj+1,jk) + pun(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj) |
---|
494 | END DO |
---|
495 | END DO |
---|
496 | CASE DEFAULT ! error |
---|
497 | CALL ctl_stop('STOP','dyn_vor: wrong value for kvor' ) |
---|
498 | END SELECT |
---|
499 | ! |
---|
500 | IF( ln_dynvor_msk ) THEN !== mask/unmask vorticity ==! |
---|
501 | DO jj = 1, jpjm1 |
---|
502 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
503 | zwz(ji,jj) = zwz(ji,jj) * fmask(ji,jj,jk) |
---|
504 | END DO |
---|
505 | END DO |
---|
506 | ENDIF |
---|
507 | ! |
---|
508 | IF( ln_sco ) THEN !== horizontal fluxes ==! |
---|
509 | zwz(:,:) = zwz(:,:) / e3f_n(:,:,jk) |
---|
510 | zwx(:,:) = e2u(:,:) * e3u_n(:,:,jk) * pun(:,:,jk) |
---|
511 | zwy(:,:) = e1v(:,:) * e3v_n(:,:,jk) * pvn(:,:,jk) |
---|
512 | ELSE |
---|
513 | zwx(:,:) = e2u(:,:) * pun(:,:,jk) |
---|
514 | zwy(:,:) = e1v(:,:) * pvn(:,:,jk) |
---|
515 | ENDIF |
---|
516 | ! !== compute and add the vorticity term trend =! |
---|
517 | DO jj = 2, jpjm1 |
---|
518 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
519 | zuav = r1_8 * r1_e1u(ji,jj) * ( zwy(ji ,jj-1) + zwy(ji+1,jj-1) & |
---|
520 | & + zwy(ji ,jj ) + zwy(ji+1,jj ) ) |
---|
521 | zvau =-r1_8 * r1_e2v(ji,jj) * ( zwx(ji-1,jj ) + zwx(ji-1,jj+1) & |
---|
522 | & + zwx(ji ,jj ) + zwx(ji ,jj+1) ) |
---|
523 | pua(ji,jj,jk) = pua(ji,jj,jk) + zuav * ( zwz(ji ,jj-1) + zwz(ji,jj) ) |
---|
524 | pva(ji,jj,jk) = pva(ji,jj,jk) + zvau * ( zwz(ji-1,jj ) + zwz(ji,jj) ) |
---|
525 | END DO |
---|
526 | END DO |
---|
527 | ! ! =============== |
---|
528 | END DO ! End of slab |
---|
529 | ! ! =============== |
---|
530 | END SUBROUTINE vor_ens |
---|
531 | |
---|
532 | |
---|
533 | SUBROUTINE vor_een( kt, kvor, pun, pvn, pua, pva ) |
---|
534 | !!---------------------------------------------------------------------- |
---|
535 | !! *** ROUTINE vor_een *** |
---|
536 | !! |
---|
537 | !! ** Purpose : Compute the now total vorticity trend and add it to |
---|
538 | !! the general trend of the momentum equation. |
---|
539 | !! |
---|
540 | !! ** Method : Trend evaluated using now fields (centered in time) |
---|
541 | !! and the Arakawa and Lamb (1980) flux form formulation : conserves |
---|
542 | !! both the horizontal kinetic energy and the potential enstrophy |
---|
543 | !! when horizontal divergence is zero (see the NEMO documentation) |
---|
544 | !! Add this trend to the general momentum trend (ua,va). |
---|
545 | !! |
---|
546 | !! ** Action : - Update (ua,va) with the now vorticity term trend |
---|
547 | !! |
---|
548 | !! References : Arakawa and Lamb 1980, Mon. Wea. Rev., 109, 18-36 |
---|
549 | !!---------------------------------------------------------------------- |
---|
550 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
551 | INTEGER , INTENT(in ) :: kvor ! total, planetary, relative, or metric |
---|
552 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pun, pvn ! now velocities |
---|
553 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pua, pva ! total v-trend |
---|
554 | ! |
---|
555 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
556 | INTEGER :: ierr ! local integer |
---|
557 | REAL(wp) :: zua, zva ! local scalars |
---|
558 | REAL(wp) :: zmsk, ze3f ! local scalars |
---|
559 | REAL(wp), DIMENSION(jpi,jpj) :: zwx , zwy , zwz , z1_e3f |
---|
560 | REAL(wp), DIMENSION(jpi,jpj) :: ztnw, ztne, ztsw, ztse |
---|
561 | !!---------------------------------------------------------------------- |
---|
562 | ! |
---|
563 | IF( kt == nit000 ) THEN |
---|
564 | IF(lwp) WRITE(numout,*) |
---|
565 | IF(lwp) WRITE(numout,*) 'dyn:vor_een : vorticity term: energy and enstrophy conserving scheme' |
---|
566 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' |
---|
567 | ENDIF |
---|
568 | ! |
---|
569 | ! ! =============== |
---|
570 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
571 | ! ! =============== |
---|
572 | ! |
---|
573 | SELECT CASE( nn_een_e3f ) ! == reciprocal of e3 at F-point |
---|
574 | CASE ( 0 ) ! original formulation (masked averaging of e3t divided by 4) |
---|
575 | DO jj = 1, jpjm1 |
---|
576 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
577 | ze3f = ( e3t_n(ji,jj+1,jk)*tmask(ji,jj+1,jk) + e3t_n(ji+1,jj+1,jk)*tmask(ji+1,jj+1,jk) & |
---|
578 | & + e3t_n(ji,jj ,jk)*tmask(ji,jj ,jk) + e3t_n(ji+1,jj ,jk)*tmask(ji+1,jj ,jk) ) |
---|
579 | IF( ze3f /= 0._wp ) THEN ; z1_e3f(ji,jj) = 4._wp / ze3f |
---|
580 | ELSE ; z1_e3f(ji,jj) = 0._wp |
---|
581 | ENDIF |
---|
582 | END DO |
---|
583 | END DO |
---|
584 | CASE ( 1 ) ! new formulation (masked averaging of e3t divided by the sum of mask) |
---|
585 | DO jj = 1, jpjm1 |
---|
586 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
587 | ze3f = ( e3t_n(ji,jj+1,jk)*tmask(ji,jj+1,jk) + e3t_n(ji+1,jj+1,jk)*tmask(ji+1,jj+1,jk) & |
---|
588 | & + e3t_n(ji,jj ,jk)*tmask(ji,jj ,jk) + e3t_n(ji+1,jj ,jk)*tmask(ji+1,jj ,jk) ) |
---|
589 | zmsk = ( tmask(ji,jj+1,jk) + tmask(ji+1,jj+1,jk) & |
---|
590 | & + tmask(ji,jj ,jk) + tmask(ji+1,jj ,jk) ) |
---|
591 | IF( ze3f /= 0._wp ) THEN ; z1_e3f(ji,jj) = zmsk / ze3f |
---|
592 | ELSE ; z1_e3f(ji,jj) = 0._wp |
---|
593 | ENDIF |
---|
594 | END DO |
---|
595 | END DO |
---|
596 | END SELECT |
---|
597 | ! |
---|
598 | SELECT CASE( kvor ) !== vorticity considered ==! |
---|
599 | CASE ( np_COR ) !* Coriolis (planetary vorticity) |
---|
600 | DO jj = 1, jpjm1 |
---|
601 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
602 | zwz(ji,jj) = ff_f(ji,jj) * z1_e3f(ji,jj) |
---|
603 | END DO |
---|
604 | END DO |
---|
605 | CASE ( np_RVO ) !* relative vorticity |
---|
606 | DO jj = 1, jpjm1 |
---|
607 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
608 | zwz(ji,jj) = ( e2v(ji+1,jj ) * pvn(ji+1,jj,jk) - e2v(ji,jj) * pvn(ji,jj,jk) & |
---|
609 | & - e1u(ji ,jj+1) * pun(ji,jj+1,jk) + e1u(ji,jj) * pun(ji,jj,jk) ) * r1_e1e2f(ji,jj)*z1_e3f(ji,jj) |
---|
610 | END DO |
---|
611 | END DO |
---|
612 | CASE ( np_MET ) !* metric term |
---|
613 | DO jj = 1, jpjm1 |
---|
614 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
615 | zwz(ji,jj) = ( ( pvn(ji+1,jj,jk) + pvn(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) & |
---|
616 | & - ( pun(ji,jj+1,jk) + pun(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj) ) * z1_e3f(ji,jj) |
---|
617 | END DO |
---|
618 | END DO |
---|
619 | CASE ( np_CRV ) !* Coriolis + relative vorticity |
---|
620 | DO jj = 1, jpjm1 |
---|
621 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
622 | zwz(ji,jj) = ( ff_f(ji,jj) + ( e2v(ji+1,jj ) * pvn(ji+1,jj,jk) - e2v(ji,jj) * pvn(ji,jj,jk) & |
---|
623 | & - e1u(ji ,jj+1) * pun(ji,jj+1,jk) + e1u(ji,jj) * pun(ji,jj,jk) ) & |
---|
624 | & * r1_e1e2f(ji,jj) ) * z1_e3f(ji,jj) |
---|
625 | END DO |
---|
626 | END DO |
---|
627 | CASE ( np_CME ) !* Coriolis + metric |
---|
628 | DO jj = 1, jpjm1 |
---|
629 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
630 | zwz(ji,jj) = ( ff_f(ji,jj) + ( pvn(ji+1,jj ,jk) + pvn(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) & |
---|
631 | & - ( pun(ji ,jj+1,jk) + pun(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj) ) * z1_e3f(ji,jj) |
---|
632 | END DO |
---|
633 | END DO |
---|
634 | CASE DEFAULT ! error |
---|
635 | CALL ctl_stop('STOP','dyn_vor: wrong value for kvor' ) |
---|
636 | END SELECT |
---|
637 | ! |
---|
638 | IF( ln_dynvor_msk ) THEN !== mask/unmask vorticity ==! |
---|
639 | DO jj = 1, jpjm1 |
---|
640 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
641 | zwz(ji,jj) = zwz(ji,jj) * fmask(ji,jj,jk) |
---|
642 | END DO |
---|
643 | END DO |
---|
644 | ENDIF |
---|
645 | ! |
---|
646 | CALL lbc_lnk( zwz, 'F', 1. ) |
---|
647 | ! |
---|
648 | ! !== horizontal fluxes ==! |
---|
649 | zwx(:,:) = e2u(:,:) * e3u_n(:,:,jk) * pun(:,:,jk) |
---|
650 | zwy(:,:) = e1v(:,:) * e3v_n(:,:,jk) * pvn(:,:,jk) |
---|
651 | |
---|
652 | ! !== compute and add the vorticity term trend =! |
---|
653 | jj = 2 |
---|
654 | ztne(1,:) = 0 ; ztnw(1,:) = 0 ; ztse(1,:) = 0 ; ztsw(1,:) = 0 |
---|
655 | DO ji = 2, jpi ! split in 2 parts due to vector opt. |
---|
656 | ztne(ji,jj) = zwz(ji-1,jj ) + zwz(ji ,jj ) + zwz(ji ,jj-1) |
---|
657 | ztnw(ji,jj) = zwz(ji-1,jj-1) + zwz(ji-1,jj ) + zwz(ji ,jj ) |
---|
658 | ztse(ji,jj) = zwz(ji ,jj ) + zwz(ji ,jj-1) + zwz(ji-1,jj-1) |
---|
659 | ztsw(ji,jj) = zwz(ji ,jj-1) + zwz(ji-1,jj-1) + zwz(ji-1,jj ) |
---|
660 | END DO |
---|
661 | DO jj = 3, jpj |
---|
662 | DO ji = fs_2, jpi ! vector opt. ok because we start at jj = 3 |
---|
663 | ztne(ji,jj) = zwz(ji-1,jj ) + zwz(ji ,jj ) + zwz(ji ,jj-1) |
---|
664 | ztnw(ji,jj) = zwz(ji-1,jj-1) + zwz(ji-1,jj ) + zwz(ji ,jj ) |
---|
665 | ztse(ji,jj) = zwz(ji ,jj ) + zwz(ji ,jj-1) + zwz(ji-1,jj-1) |
---|
666 | ztsw(ji,jj) = zwz(ji ,jj-1) + zwz(ji-1,jj-1) + zwz(ji-1,jj ) |
---|
667 | END DO |
---|
668 | END DO |
---|
669 | DO jj = 2, jpjm1 |
---|
670 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
671 | zua = + r1_12 * r1_e1u(ji,jj) * ( ztne(ji,jj ) * zwy(ji ,jj ) + ztnw(ji+1,jj) * zwy(ji+1,jj ) & |
---|
672 | & + ztse(ji,jj ) * zwy(ji ,jj-1) + ztsw(ji+1,jj) * zwy(ji+1,jj-1) ) |
---|
673 | zva = - r1_12 * r1_e2v(ji,jj) * ( ztsw(ji,jj+1) * zwx(ji-1,jj+1) + ztse(ji,jj+1) * zwx(ji ,jj+1) & |
---|
674 | & + ztnw(ji,jj ) * zwx(ji-1,jj ) + ztne(ji,jj ) * zwx(ji ,jj ) ) |
---|
675 | pua(ji,jj,jk) = pua(ji,jj,jk) + zua |
---|
676 | pva(ji,jj,jk) = pva(ji,jj,jk) + zva |
---|
677 | END DO |
---|
678 | END DO |
---|
679 | ! ! =============== |
---|
680 | END DO ! End of slab |
---|
681 | ! ! =============== |
---|
682 | END SUBROUTINE vor_een |
---|
683 | |
---|
684 | |
---|
685 | |
---|
686 | SUBROUTINE vor_eeT( kt, kvor, pun, pvn, pua, pva ) |
---|
687 | !!---------------------------------------------------------------------- |
---|
688 | !! *** ROUTINE vor_eeT *** |
---|
689 | !! |
---|
690 | !! ** Purpose : Compute the now total vorticity trend and add it to |
---|
691 | !! the general trend of the momentum equation. |
---|
692 | !! |
---|
693 | !! ** Method : Trend evaluated using now fields (centered in time) |
---|
694 | !! and the Arakawa and Lamb (1980) vector form formulation using |
---|
695 | !! a modified version of Arakawa and Lamb (1980) scheme (see vor_een). |
---|
696 | !! The change consists in |
---|
697 | !! Add this trend to the general momentum trend (ua,va). |
---|
698 | !! |
---|
699 | !! ** Action : - Update (ua,va) with the now vorticity term trend |
---|
700 | !! |
---|
701 | !! References : Arakawa and Lamb 1980, Mon. Wea. Rev., 109, 18-36 |
---|
702 | !!---------------------------------------------------------------------- |
---|
703 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
704 | INTEGER , INTENT(in ) :: kvor ! total, planetary, relative, or metric |
---|
705 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pun, pvn ! now velocities |
---|
706 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pua, pva ! total v-trend |
---|
707 | ! |
---|
708 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
709 | INTEGER :: ierr ! local integer |
---|
710 | REAL(wp) :: zua, zva ! local scalars |
---|
711 | REAL(wp) :: zmsk, z1_e3t ! local scalars |
---|
712 | REAL(wp), DIMENSION(jpi,jpj) :: zwx , zwy , zwz |
---|
713 | REAL(wp), DIMENSION(jpi,jpj) :: ztnw, ztne, ztsw, ztse |
---|
714 | !!---------------------------------------------------------------------- |
---|
715 | ! |
---|
716 | IF( kt == nit000 ) THEN |
---|
717 | IF(lwp) WRITE(numout,*) |
---|
718 | IF(lwp) WRITE(numout,*) 'dyn:vor_een : vorticity term: energy and enstrophy conserving scheme' |
---|
719 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' |
---|
720 | ENDIF |
---|
721 | ! |
---|
722 | ! ! =============== |
---|
723 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
724 | ! ! =============== |
---|
725 | ! |
---|
726 | ! |
---|
727 | SELECT CASE( kvor ) !== vorticity considered ==! |
---|
728 | CASE ( np_COR ) !* Coriolis (planetary vorticity) |
---|
729 | DO jj = 1, jpjm1 |
---|
730 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
731 | zwz(ji,jj) = ff_f(ji,jj) |
---|
732 | END DO |
---|
733 | END DO |
---|
734 | CASE ( np_RVO ) !* relative vorticity |
---|
735 | DO jj = 1, jpjm1 |
---|
736 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
737 | zwz(ji,jj) = ( e2v(ji+1,jj ) * pvn(ji+1,jj ,jk) - e2v(ji,jj) * pvn(ji,jj,jk) & |
---|
738 | & - e1u(ji ,jj+1) * pun(ji ,jj+1,jk) + e1u(ji,jj) * pun(ji,jj,jk) ) & |
---|
739 | & * r1_e1e2f(ji,jj) |
---|
740 | END DO |
---|
741 | END DO |
---|
742 | CASE ( np_MET ) !* metric term |
---|
743 | DO jj = 1, jpjm1 |
---|
744 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
745 | zwz(ji,jj) = ( pvn(ji+1,jj ,jk) + pvn(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) & |
---|
746 | & - ( pun(ji ,jj+1,jk) + pun(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj) |
---|
747 | END DO |
---|
748 | END DO |
---|
749 | CASE ( np_CRV ) !* Coriolis + relative vorticity |
---|
750 | DO jj = 1, jpjm1 |
---|
751 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
752 | zwz(ji,jj) = ( ff_f(ji,jj) + ( e2v(ji+1,jj ) * pvn(ji+1,jj ,jk) - e2v(ji,jj) * pvn(ji,jj,jk) & |
---|
753 | & - e1u(ji ,jj+1) * pun(ji ,jj+1,jk) + e1u(ji,jj) * pun(ji,jj,jk) ) & |
---|
754 | & * r1_e1e2f(ji,jj) ) |
---|
755 | END DO |
---|
756 | END DO |
---|
757 | CASE ( np_CME ) !* Coriolis + metric |
---|
758 | DO jj = 1, jpjm1 |
---|
759 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
760 | zwz(ji,jj) = ff_f(ji,jj) + ( pvn(ji+1,jj ,jk) + pvn(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) & |
---|
761 | & - ( pun(ji ,jj+1,jk) + pun(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj) |
---|
762 | END DO |
---|
763 | END DO |
---|
764 | CASE DEFAULT ! error |
---|
765 | CALL ctl_stop('STOP','dyn_vor: wrong value for kvor' ) |
---|
766 | END SELECT |
---|
767 | ! |
---|
768 | IF( ln_dynvor_msk ) THEN !== mask/unmask vorticity ==! |
---|
769 | DO jj = 1, jpjm1 |
---|
770 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
771 | zwz(ji,jj) = zwz(ji,jj) * fmask(ji,jj,jk) |
---|
772 | END DO |
---|
773 | END DO |
---|
774 | ENDIF |
---|
775 | ! |
---|
776 | CALL lbc_lnk( zwz, 'F', 1. ) |
---|
777 | ! |
---|
778 | ! !== horizontal fluxes ==! |
---|
779 | zwx(:,:) = e2u(:,:) * e3u_n(:,:,jk) * pun(:,:,jk) |
---|
780 | zwy(:,:) = e1v(:,:) * e3v_n(:,:,jk) * pvn(:,:,jk) |
---|
781 | |
---|
782 | ! !== compute and add the vorticity term trend =! |
---|
783 | jj = 2 |
---|
784 | ztne(1,:) = 0 ; ztnw(1,:) = 0 ; ztse(1,:) = 0 ; ztsw(1,:) = 0 |
---|
785 | DO ji = 2, jpi ! split in 2 parts due to vector opt. |
---|
786 | z1_e3t = 1._wp / e3t_n(ji,jj,jk) |
---|
787 | ztne(ji,jj) = ( zwz(ji-1,jj ) + zwz(ji ,jj ) + zwz(ji ,jj-1) ) * z1_e3t |
---|
788 | ztnw(ji,jj) = ( zwz(ji-1,jj-1) + zwz(ji-1,jj ) + zwz(ji ,jj ) ) * z1_e3t |
---|
789 | ztse(ji,jj) = ( zwz(ji ,jj ) + zwz(ji ,jj-1) + zwz(ji-1,jj-1) ) * z1_e3t |
---|
790 | ztsw(ji,jj) = ( zwz(ji ,jj-1) + zwz(ji-1,jj-1) + zwz(ji-1,jj ) ) * z1_e3t |
---|
791 | END DO |
---|
792 | DO jj = 3, jpj |
---|
793 | DO ji = fs_2, jpi ! vector opt. ok because we start at jj = 3 |
---|
794 | z1_e3t = 1._wp / e3t_n(ji,jj,jk) |
---|
795 | ztne(ji,jj) = ( zwz(ji-1,jj ) + zwz(ji ,jj ) + zwz(ji ,jj-1) ) * z1_e3t |
---|
796 | ztnw(ji,jj) = ( zwz(ji-1,jj-1) + zwz(ji-1,jj ) + zwz(ji ,jj ) ) * z1_e3t |
---|
797 | ztse(ji,jj) = ( zwz(ji ,jj ) + zwz(ji ,jj-1) + zwz(ji-1,jj-1) ) * z1_e3t |
---|
798 | ztsw(ji,jj) = ( zwz(ji ,jj-1) + zwz(ji-1,jj-1) + zwz(ji-1,jj ) ) * z1_e3t |
---|
799 | END DO |
---|
800 | END DO |
---|
801 | DO jj = 2, jpjm1 |
---|
802 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
803 | zua = + r1_12 * r1_e1u(ji,jj) * ( ztne(ji,jj ) * zwy(ji ,jj ) + ztnw(ji+1,jj) * zwy(ji+1,jj ) & |
---|
804 | & + ztse(ji,jj ) * zwy(ji ,jj-1) + ztsw(ji+1,jj) * zwy(ji+1,jj-1) ) |
---|
805 | zva = - r1_12 * r1_e2v(ji,jj) * ( ztsw(ji,jj+1) * zwx(ji-1,jj+1) + ztse(ji,jj+1) * zwx(ji ,jj+1) & |
---|
806 | & + ztnw(ji,jj ) * zwx(ji-1,jj ) + ztne(ji,jj ) * zwx(ji ,jj ) ) |
---|
807 | pua(ji,jj,jk) = pua(ji,jj,jk) + zua |
---|
808 | pva(ji,jj,jk) = pva(ji,jj,jk) + zva |
---|
809 | END DO |
---|
810 | END DO |
---|
811 | ! ! =============== |
---|
812 | END DO ! End of slab |
---|
813 | ! ! =============== |
---|
814 | END SUBROUTINE vor_eeT |
---|
815 | |
---|
816 | |
---|
817 | SUBROUTINE vor_eeUV( kt, kvor, pun, pvn, pua, pva ) |
---|
818 | !!---------------------------------------------------------------------- |
---|
819 | !! *** ROUTINE vor_eeUV *** |
---|
820 | !! |
---|
821 | !! ** Purpose : Compute the now total vorticity trend and add it to |
---|
822 | !! the general trend of the momentum equation. |
---|
823 | !! |
---|
824 | !! ** Method : Trend evaluated using now fields (centered in time) |
---|
825 | !! and the Arakawa and Lamb (1980) flux form formulation : conserves |
---|
826 | !! both the horizontal kinetic energy and the potential enstrophy |
---|
827 | !! when horizontal divergence is zero (see the NEMO documentation) |
---|
828 | !! Add this trend to the general momentum trend (ua,va). |
---|
829 | !! |
---|
830 | !! Modified version of EEN as suggested by Mike Bell. |
---|
831 | !! |
---|
832 | !! ** Action : - Update (ua,va) with the now vorticity term trend |
---|
833 | !! |
---|
834 | !! References : Arakawa and Lamb 1980, Mon. Wea. Rev., 109, 18-36 |
---|
835 | !! Bell, Johnson and Marshall, unpublished notes 2017 |
---|
836 | !!---------------------------------------------------------------------- |
---|
837 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
838 | INTEGER , INTENT(in ) :: kvor ! total, planetary, relative, or metric |
---|
839 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pun, pvn ! now velocities |
---|
840 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pua, pva ! total v-trend |
---|
841 | ! |
---|
842 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
843 | INTEGER :: ierr ! local integer |
---|
844 | REAL(wp) :: zua, zva ! local scalars |
---|
845 | REAL(wp) :: zmsk, ze3f ! local scalars |
---|
846 | REAL(wp), DIMENSION(jpi,jpj) :: zwx , zwy , zwz |
---|
847 | REAL(wp), DIMENSION(jpi,jpj) :: ztnw, ztne, ztsw, ztse |
---|
848 | !!---------------------------------------------------------------------- |
---|
849 | ! |
---|
850 | IF( kt == nit000 ) THEN |
---|
851 | IF(lwp) WRITE(numout,*) |
---|
852 | IF(lwp) WRITE(numout,*) 'dyn:vor_een : vorticity term: energy and enstrophy conserving scheme' |
---|
853 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' |
---|
854 | ENDIF |
---|
855 | ! |
---|
856 | ! ! =============== |
---|
857 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
858 | ! ! =============== |
---|
859 | ! |
---|
860 | SELECT CASE( kvor ) !== vorticity considered ==! |
---|
861 | CASE ( np_COR ) !* Coriolis (planetary vorticity) |
---|
862 | DO jj = 1, jpjm1 |
---|
863 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
864 | zwz(ji,jj) = ff_f(ji,jj) |
---|
865 | END DO |
---|
866 | END DO |
---|
867 | CASE ( np_RVO ) !* relative vorticity |
---|
868 | DO jj = 1, jpjm1 |
---|
869 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
870 | zwz(ji,jj) = ( e2v(ji+1,jj ) * pvn(ji+1,jj,jk) - e2v(ji,jj) * pvn(ji,jj,jk) & |
---|
871 | & - e1u(ji ,jj+1) * pun(ji,jj+1,jk) + e1u(ji,jj) * pun(ji,jj,jk) ) * r1_e1e2f(ji,jj) |
---|
872 | END DO |
---|
873 | END DO |
---|
874 | CASE ( np_MET ) !* metric term |
---|
875 | DO jj = 1, jpjm1 |
---|
876 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
877 | zwz(ji,jj) = ( ( pvn(ji+1,jj,jk) + pvn(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) & |
---|
878 | & - ( pun(ji,jj+1,jk) + pun(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj) ) |
---|
879 | END DO |
---|
880 | END DO |
---|
881 | CASE ( np_CRV ) !* Coriolis + relative vorticity |
---|
882 | DO jj = 1, jpjm1 |
---|
883 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
884 | zwz(ji,jj) = ( ff_f(ji,jj) + ( e2v(ji+1,jj ) * pvn(ji+1,jj,jk) - e2v(ji,jj) * pvn(ji,jj,jk) & |
---|
885 | & - e1u(ji ,jj+1) * pun(ji,jj+1,jk) + e1u(ji,jj) * pun(ji,jj,jk) ) & |
---|
886 | & * r1_e1e2f(ji,jj) ) |
---|
887 | END DO |
---|
888 | END DO |
---|
889 | CASE ( np_CME ) !* Coriolis + metric |
---|
890 | DO jj = 1, jpjm1 |
---|
891 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
892 | zwz(ji,jj) = ( ff_f(ji,jj) + ( pvn(ji+1,jj ,jk) + pvn(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) & |
---|
893 | & - ( pun(ji ,jj+1,jk) + pun(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj) ) |
---|
894 | END DO |
---|
895 | END DO |
---|
896 | CASE DEFAULT ! error |
---|
897 | CALL ctl_stop('STOP','dyn_vor: wrong value for kvor' ) |
---|
898 | END SELECT |
---|
899 | ! |
---|
900 | IF( ln_dynvor_msk ) THEN !== mask/unmask vorticity ==! |
---|
901 | DO jj = 1, jpjm1 |
---|
902 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
903 | zwz(ji,jj) = zwz(ji,jj) * fmask(ji,jj,jk) |
---|
904 | END DO |
---|
905 | END DO |
---|
906 | ENDIF |
---|
907 | ! |
---|
908 | CALL lbc_lnk( zwz, 'F', 1. ) |
---|
909 | ! |
---|
910 | ! !== horizontal fluxes ==! |
---|
911 | zwx(:,:) = e2u(:,:) * e3u_n(:,:,jk) * pun(:,:,jk) |
---|
912 | zwy(:,:) = e1v(:,:) * e3v_n(:,:,jk) * pvn(:,:,jk) |
---|
913 | |
---|
914 | ! !== compute and add the vorticity term trend =! |
---|
915 | jj = 2 |
---|
916 | ztne(1,:) = 0 ; ztnw(1,:) = 0 ; ztse(1,:) = 0 ; ztsw(1,:) = 0 |
---|
917 | DO ji = 2, jpi ! split in 2 parts due to vector opt. |
---|
918 | ztne(ji,jj) = ( zwz(ji-1,jj ) + zwz(ji ,jj ) + zwz(ji ,jj-1) ) / ( e3u_n(ji , jj, jk) + e3v_n(ji, jj , jk ) ) |
---|
919 | ztnw(ji,jj) = ( zwz(ji-1,jj-1) + zwz(ji-1,jj ) + zwz(ji ,jj ) ) / ( e3u_n(ji-1, jj, jk) + e3v_n(ji, jj , jk ) ) |
---|
920 | ztse(ji,jj) = ( zwz(ji ,jj ) + zwz(ji ,jj-1) + zwz(ji-1,jj-1) ) / ( e3u_n(ji , jj, jk) + e3v_n(ji, jj-1, jk ) ) |
---|
921 | ztsw(ji,jj) = ( zwz(ji ,jj-1) + zwz(ji-1,jj-1) + zwz(ji-1,jj ) ) / ( e3u_n(ji-1, jj, jk) + e3v_n(ji, jj-1, jk ) ) |
---|
922 | END DO |
---|
923 | DO jj = 3, jpj |
---|
924 | DO ji = fs_2, jpi ! vector opt. ok because we start at jj = 3 |
---|
925 | ztne(ji,jj) = ( zwz(ji-1,jj ) + zwz(ji ,jj ) + zwz(ji ,jj-1) ) / ( e3u_n(ji , jj, jk) + e3v_n(ji, jj , jk ) ) |
---|
926 | ztnw(ji,jj) = ( zwz(ji-1,jj-1) + zwz(ji-1,jj ) + zwz(ji ,jj ) ) / ( e3u_n(ji-1, jj, jk) + e3v_n(ji, jj , jk ) ) |
---|
927 | ztse(ji,jj) = ( zwz(ji ,jj ) + zwz(ji ,jj-1) + zwz(ji-1,jj-1) ) / ( e3u_n(ji , jj, jk) + e3v_n(ji, jj-1, jk ) ) |
---|
928 | ztsw(ji,jj) = ( zwz(ji ,jj-1) + zwz(ji-1,jj-1) + zwz(ji-1,jj ) ) / ( e3u_n(ji-1, jj, jk) + e3v_n(ji, jj-1, jk ) ) |
---|
929 | END DO |
---|
930 | END DO |
---|
931 | DO jj = 2, jpjm1 |
---|
932 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
933 | zua = + r1_6 * r1_e1u(ji,jj) * ( ztne(ji,jj ) * zwy(ji ,jj ) + ztnw(ji+1,jj) * zwy(ji+1,jj ) & |
---|
934 | & + ztse(ji,jj ) * zwy(ji ,jj-1) + ztsw(ji+1,jj) * zwy(ji+1,jj-1) ) |
---|
935 | zva = - r1_6 * r1_e2v(ji,jj) * ( ztsw(ji,jj+1) * zwx(ji-1,jj+1) + ztse(ji,jj+1) * zwx(ji ,jj+1) & |
---|
936 | & + ztnw(ji,jj ) * zwx(ji-1,jj ) + ztne(ji,jj ) * zwx(ji ,jj ) ) |
---|
937 | pua(ji,jj,jk) = pua(ji,jj,jk) + zua |
---|
938 | pva(ji,jj,jk) = pva(ji,jj,jk) + zva |
---|
939 | END DO |
---|
940 | END DO |
---|
941 | ! ! =============== |
---|
942 | END DO ! End of slab |
---|
943 | ! ! =============== |
---|
944 | END SUBROUTINE vor_eeUV |
---|
945 | |
---|
946 | |
---|
947 | SUBROUTINE dyn_vor_init |
---|
948 | !!--------------------------------------------------------------------- |
---|
949 | !! *** ROUTINE dyn_vor_init *** |
---|
950 | !! |
---|
951 | !! ** Purpose : Control the consistency between cpp options for |
---|
952 | !! tracer advection schemes |
---|
953 | !!---------------------------------------------------------------------- |
---|
954 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
955 | INTEGER :: ioptio, ios ! local integer |
---|
956 | !! |
---|
957 | NAMELIST/namdyn_vor/ ln_dynvor_ens, ln_dynvor_ene, ln_dynvor_enT, ln_dynvor_eeT, & |
---|
958 | & ln_dynvor_eeUV, ln_dynvor_een, nn_een_e3f , ln_dynvor_mix, ln_dynvor_msk |
---|
959 | !!---------------------------------------------------------------------- |
---|
960 | ! |
---|
961 | IF(lwp) THEN |
---|
962 | WRITE(numout,*) |
---|
963 | WRITE(numout,*) 'dyn_vor_init : vorticity term : read namelist and control the consistency' |
---|
964 | WRITE(numout,*) '~~~~~~~~~~~~' |
---|
965 | ENDIF |
---|
966 | ! |
---|
967 | REWIND( numnam_ref ) ! Namelist namdyn_vor in reference namelist : Vorticity scheme options |
---|
968 | READ ( numnam_ref, namdyn_vor, IOSTAT = ios, ERR = 901) |
---|
969 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namdyn_vor in reference namelist', lwp ) |
---|
970 | REWIND( numnam_cfg ) ! Namelist namdyn_vor in configuration namelist : Vorticity scheme options |
---|
971 | READ ( numnam_cfg, namdyn_vor, IOSTAT = ios, ERR = 902 ) |
---|
972 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namdyn_vor in configuration namelist', lwp ) |
---|
973 | IF(lwm) WRITE ( numond, namdyn_vor ) |
---|
974 | ! |
---|
975 | IF(lwp) THEN ! Namelist print |
---|
976 | WRITE(numout,*) ' Namelist namdyn_vor : choice of the vorticity term scheme' |
---|
977 | WRITE(numout,*) ' enstrophy conserving scheme ln_dynvor_ens = ', ln_dynvor_ens |
---|
978 | WRITE(numout,*) ' f-point energy conserving scheme ln_dynvor_ene = ', ln_dynvor_ene |
---|
979 | WRITE(numout,*) ' t-point energy conserving scheme ln_dynvor_enT = ', ln_dynvor_enT |
---|
980 | WRITE(numout,*) ' energy conserving scheme (een using e3t) ln_dynvor_eeT = ', ln_dynvor_eeT |
---|
981 | WRITE(numout,*) ' energy conserving scheme (een using e3u and e3v) ln_dynvor_eeUV = ', ln_dynvor_eeUV |
---|
982 | WRITE(numout,*) ' enstrophy and energy conserving scheme ln_dynvor_een = ', ln_dynvor_een |
---|
983 | WRITE(numout,*) ' e3f = averaging /4 (=0) or /sum(tmask) (=1) nn_een_e3f = ', nn_een_e3f |
---|
984 | WRITE(numout,*) ' mixed enstrophy/energy conserving scheme ln_dynvor_mix = ', ln_dynvor_mix |
---|
985 | WRITE(numout,*) ' masked (=T) or unmasked(=F) vorticity ln_dynvor_msk = ', ln_dynvor_msk |
---|
986 | ENDIF |
---|
987 | |
---|
988 | IF( ln_dynvor_msk ) CALL ctl_stop( 'dyn_vor_init: masked vorticity is not currently not available') |
---|
989 | |
---|
990 | !!gm this should be removed when choosing a unique strategy for fmask at the coast |
---|
991 | ! If energy, enstrophy or mixed advection of momentum in vector form change the value for masks |
---|
992 | ! at angles with three ocean points and one land point |
---|
993 | IF(lwp) WRITE(numout,*) |
---|
994 | IF(lwp) WRITE(numout,*) ' change fmask value in the angles (T) ln_vorlat = ', ln_vorlat |
---|
995 | IF( ln_vorlat .AND. ( ln_dynvor_ene .OR. ln_dynvor_ens .OR. ln_dynvor_mix ) ) THEN |
---|
996 | DO jk = 1, jpk |
---|
997 | DO jj = 1, jpjm1 |
---|
998 | DO ji = 1, jpim1 |
---|
999 | IF( tmask(ji,jj+1,jk) + tmask(ji+1,jj+1,jk) & |
---|
1000 | & + tmask(ji,jj ,jk) + tmask(ji+1,jj+1,jk) == 3._wp ) fmask(ji,jj,jk) = 1._wp |
---|
1001 | END DO |
---|
1002 | END DO |
---|
1003 | END DO |
---|
1004 | ! |
---|
1005 | CALL lbc_lnk( fmask, 'F', 1._wp ) ! Lateral boundary conditions on fmask |
---|
1006 | ! |
---|
1007 | ENDIF |
---|
1008 | !!gm end |
---|
1009 | |
---|
1010 | ioptio = 0 ! type of scheme for vorticity (set nvor_scheme) |
---|
1011 | IF( ln_dynvor_ens ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_ENS ; ENDIF |
---|
1012 | IF( ln_dynvor_ene ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_ENE ; ENDIF |
---|
1013 | IF( ln_dynvor_enT ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_ENT ; ENDIF |
---|
1014 | IF( ln_dynvor_eeT ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_EET ; ENDIF |
---|
1015 | IF( ln_dynvor_eeUV ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_EEUV ; ENDIF |
---|
1016 | IF( ln_dynvor_een ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_EEN ; ENDIF |
---|
1017 | IF( ln_dynvor_mix ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_MIX ; ENDIF |
---|
1018 | ! |
---|
1019 | IF( ioptio /= 1 ) CALL ctl_stop( ' use ONE and ONLY one vorticity scheme' ) |
---|
1020 | ! |
---|
1021 | IF(lwp) WRITE(numout,*) ! type of calculated vorticity (set ncor, nrvm, ntot) |
---|
1022 | ncor = np_COR ! planetary vorticity |
---|
1023 | SELECT CASE( n_dynadv ) |
---|
1024 | CASE( np_LIN_dyn ) |
---|
1025 | IF(lwp) WRITE(numout,*) ' ==>>> linear dynamics : total vorticity = Coriolis' |
---|
1026 | nrvm = np_COR ! planetary vorticity |
---|
1027 | ntot = np_COR ! - - |
---|
1028 | CASE( np_VEC_c2 ) |
---|
1029 | IF(lwp) WRITE(numout,*) ' ==>>> vector form dynamics : total vorticity = Coriolis + relative vorticity' |
---|
1030 | nrvm = np_RVO ! relative vorticity |
---|
1031 | ntot = np_CRV ! relative + planetary vorticity |
---|
1032 | CASE( np_FLX_c2 , np_FLX_ubs ) |
---|
1033 | IF(lwp) WRITE(numout,*) ' ==>>> flux form dynamics : total vorticity = Coriolis + metric term' |
---|
1034 | nrvm = np_MET ! metric term |
---|
1035 | ntot = np_CME ! Coriolis + metric term |
---|
1036 | ! |
---|
1037 | SELECT CASE( nvor_scheme ) ! pre-computed gradients for the metric term: |
---|
1038 | CASE( np_ENT ) !* T-point metric term : pre-compute di(e2u)/2 and dj(e1v)/2 |
---|
1039 | ALLOCATE( di_e2u_2(jpi,jpj), dj_e1v_2(jpi,jpj) ) |
---|
1040 | DO jj = 2, jpjm1 |
---|
1041 | DO ji = 2, jpim1 |
---|
1042 | di_e2u_2(ji,jj) = ( e2u(ji,jj) - e2u(ji-1,jj ) ) * 0.5_wp |
---|
1043 | dj_e1v_2(ji,jj) = ( e1v(ji,jj) - e1v(ji ,jj-1) ) * 0.5_wp |
---|
1044 | END DO |
---|
1045 | END DO |
---|
1046 | CALL lbc_lnk_multi( di_e2u_2, 'T', -1. , dj_e1v_2, 'T', -1. ) ! Lateral boundary conditions |
---|
1047 | ! |
---|
1048 | CASE DEFAULT !* F-point metric term : pre-compute di(e2u)/(2*e1e2f) and dj(e1v)/(2*e1e2f) |
---|
1049 | ALLOCATE( di_e2v_2e1e2f(jpi,jpj), dj_e1u_2e1e2f(jpi,jpj) ) |
---|
1050 | DO jj = 1, jpjm1 |
---|
1051 | DO ji = 1, jpim1 |
---|
1052 | di_e2v_2e1e2f(ji,jj) = ( e2v(ji+1,jj ) - e2v(ji,jj) ) * 0.5 * r1_e1e2f(ji,jj) |
---|
1053 | dj_e1u_2e1e2f(ji,jj) = ( e1u(ji ,jj+1) - e1u(ji,jj) ) * 0.5 * r1_e1e2f(ji,jj) |
---|
1054 | END DO |
---|
1055 | END DO |
---|
1056 | CALL lbc_lnk_multi( di_e2v_2e1e2f, 'F', -1. , dj_e1u_2e1e2f, 'F', -1. ) ! Lateral boundary conditions |
---|
1057 | END SELECT |
---|
1058 | ! |
---|
1059 | END SELECT |
---|
1060 | |
---|
1061 | IF(lwp) THEN ! Print the choice |
---|
1062 | WRITE(numout,*) |
---|
1063 | SELECT CASE( nvor_scheme ) |
---|
1064 | CASE( np_ENS ) ; WRITE(numout,*) ' ==>>> enstrophy conserving scheme (ENS)' |
---|
1065 | CASE( np_ENE ) ; WRITE(numout,*) ' ==>>> energy conserving scheme (Coriolis at F-points) (ENE)' |
---|
1066 | CASE( np_ENT ) ; WRITE(numout,*) ' ==>>> energy conserving scheme (Coriolis at T-points) (ENT)' |
---|
1067 | CASE( np_EET ) ; WRITE(numout,*) ' ==>>> energy conserving scheme (EEN scheme using e3t) (EET)' |
---|
1068 | CASE( np_EEUV ) ; WRITE(numout,*) ' ==>>> energy conserving scheme (EEN scheme using e3u and e3v) (EEUV)' |
---|
1069 | CASE( np_EEN ) ; WRITE(numout,*) ' ==>>> energy and enstrophy conserving scheme (EEN)' |
---|
1070 | CASE( np_MIX ) ; WRITE(numout,*) ' ==>>> mixed enstrophy/energy conserving scheme (MIX)' |
---|
1071 | END SELECT |
---|
1072 | ENDIF |
---|
1073 | ! |
---|
1074 | END SUBROUTINE dyn_vor_init |
---|
1075 | |
---|
1076 | !!============================================================================== |
---|
1077 | END MODULE dynvor |
---|