1 | MODULE traadv_qck |
---|
2 | !!============================================================================== |
---|
3 | !! *** MODULE traadv_qck *** |
---|
4 | !! Ocean tracers: horizontal & vertical advective trend |
---|
5 | !!============================================================================== |
---|
6 | !! History : 3.0 ! 2008-07 (G. Reffray) Original code |
---|
7 | !! 3.3 ! 2010-05 (C.Ethe, G. Madec) merge TRC-TRA + switch from velocity to transport |
---|
8 | !!---------------------------------------------------------------------- |
---|
9 | |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | !! tra_adv_qck : update the tracer trend with the horizontal advection |
---|
12 | !! trends using a 3rd order finite difference scheme |
---|
13 | !! tra_adv_qck_i : apply QUICK scheme in i-direction |
---|
14 | !! tra_adv_qck_j : apply QUICK scheme in j-direction |
---|
15 | !! tra_adv_cen2_k : 2nd centered scheme for the vertical advection |
---|
16 | !!---------------------------------------------------------------------- |
---|
17 | USE oce ! ocean dynamics and active tracers |
---|
18 | USE dom_oce ! ocean space and time domain |
---|
19 | ! TEMP: This change not necessary after trd_tra is tiled |
---|
20 | USE domain, ONLY : dom_tile |
---|
21 | USE trc_oce ! share passive tracers/Ocean variables |
---|
22 | USE trd_oce ! trends: ocean variables |
---|
23 | USE trdtra ! trends manager: tracers |
---|
24 | USE diaptr ! poleward transport diagnostics |
---|
25 | USE iom |
---|
26 | ! |
---|
27 | USE in_out_manager ! I/O manager |
---|
28 | USE lib_mpp ! distribued memory computing |
---|
29 | USE lbclnk ! ocean lateral boundary condition (or mpp link) |
---|
30 | USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) |
---|
31 | |
---|
32 | IMPLICIT NONE |
---|
33 | PRIVATE |
---|
34 | |
---|
35 | PUBLIC tra_adv_qck ! routine called by step.F90 |
---|
36 | |
---|
37 | REAL(wp) :: r1_6 = 1./ 6. ! 1/6 ratio |
---|
38 | |
---|
39 | LOGICAL :: l_trd ! flag to compute trends |
---|
40 | LOGICAL :: l_ptr ! flag to compute poleward transport |
---|
41 | |
---|
42 | |
---|
43 | !! * Substitutions |
---|
44 | # include "do_loop_substitute.h90" |
---|
45 | !!---------------------------------------------------------------------- |
---|
46 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
47 | !! $Id$ |
---|
48 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
49 | !!---------------------------------------------------------------------- |
---|
50 | CONTAINS |
---|
51 | |
---|
52 | SUBROUTINE tra_adv_qck ( kt, kit000, cdtype, p2dt, pU, pV, pW, Kbb, Kmm, pt, kjpt, Krhs ) |
---|
53 | !!---------------------------------------------------------------------- |
---|
54 | !! *** ROUTINE tra_adv_qck *** |
---|
55 | !! |
---|
56 | !! ** Purpose : Compute the now trend due to the advection of tracers |
---|
57 | !! and add it to the general trend of passive tracer equations. |
---|
58 | !! |
---|
59 | !! ** Method : The advection is evaluated by a third order scheme |
---|
60 | !! For a positive velocity u : u(i)>0 |
---|
61 | !! |--FU--|--FC--|--FD--|------| |
---|
62 | !! i-1 i i+1 i+2 |
---|
63 | !! |
---|
64 | !! For a negative velocity u : u(i)<0 |
---|
65 | !! |------|--FD--|--FC--|--FU--| |
---|
66 | !! i-1 i i+1 i+2 |
---|
67 | !! where FU is the second upwind point |
---|
68 | !! FD is the first douwning point |
---|
69 | !! FC is the central point (or the first upwind point) |
---|
70 | !! |
---|
71 | !! Flux(i) = u(i) * { 0.5(FC+FD) -0.5C(i)(FD-FC) -((1-C(i))/6)(FU+FD-2FC) } |
---|
72 | !! with C(i)=|u(i)|dx(i)/dt (=Courant number) |
---|
73 | !! |
---|
74 | !! dt = 2*rdtra and the scalar values are tb and sb |
---|
75 | !! |
---|
76 | !! On the vertical, the simple centered scheme used pt(:,:,:,:,Kmm) |
---|
77 | !! |
---|
78 | !! The fluxes are bounded by the ULTIMATE limiter to |
---|
79 | !! guarantee the monotonicity of the solution and to |
---|
80 | !! prevent the appearance of spurious numerical oscillations |
---|
81 | !! |
---|
82 | !! ** Action : - update pt(:,:,:,:,Krhs) with the now advective tracer trends |
---|
83 | !! - send trends to trdtra module for further diagnostcs (l_trdtra=T) |
---|
84 | !! - poleward advective heat and salt transport (ln_diaptr=T) |
---|
85 | !! |
---|
86 | !! ** Reference : Leonard (1979, 1991) |
---|
87 | !!---------------------------------------------------------------------- |
---|
88 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
89 | INTEGER , INTENT(in ) :: Kbb, Kmm, Krhs ! ocean time level indices |
---|
90 | INTEGER , INTENT(in ) :: kit000 ! first time step index |
---|
91 | CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) |
---|
92 | INTEGER , INTENT(in ) :: kjpt ! number of tracers |
---|
93 | REAL(wp) , INTENT(in ) :: p2dt ! tracer time-step |
---|
94 | ! TEMP: This can be A2D after trd_tra is tiled |
---|
95 | REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pU, pV, pW ! 3 ocean volume transport components |
---|
96 | REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt,jpt), INTENT(inout) :: pt ! tracers and RHS of tracer equation |
---|
97 | !!---------------------------------------------------------------------- |
---|
98 | ! |
---|
99 | IF( ntile == 0 .OR. ntile == 1 ) THEN ! Do only on the first tile |
---|
100 | IF( kt == kit000 ) THEN |
---|
101 | IF(lwp) WRITE(numout,*) |
---|
102 | IF(lwp) WRITE(numout,*) 'tra_adv_qck : 3rd order quickest advection scheme on ', cdtype |
---|
103 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~' |
---|
104 | IF(lwp) WRITE(numout,*) |
---|
105 | ENDIF |
---|
106 | ! |
---|
107 | l_trd = .FALSE. |
---|
108 | l_ptr = .FALSE. |
---|
109 | IF( ( cdtype == 'TRA' .AND. l_trdtra ) .OR. ( cdtype == 'TRC' .AND. l_trdtrc ) ) l_trd = .TRUE. |
---|
110 | IF( cdtype == 'TRA' .AND. ( iom_use( 'sophtadv' ) .OR. iom_use( 'sophtadv' ) ) ) l_ptr = .TRUE. |
---|
111 | ENDIF |
---|
112 | ! |
---|
113 | ! |
---|
114 | ! ! horizontal fluxes are computed with the QUICKEST + ULTIMATE scheme |
---|
115 | CALL tra_adv_qck_i( kt, cdtype, p2dt, pU, Kbb, Kmm, pt, kjpt, Krhs ) |
---|
116 | CALL tra_adv_qck_j( kt, cdtype, p2dt, pV, Kbb, Kmm, pt, kjpt, Krhs ) |
---|
117 | |
---|
118 | ! ! vertical fluxes are computed with the 2nd order centered scheme |
---|
119 | CALL tra_adv_cen2_k( kt, cdtype, pW, Kmm, pt, kjpt, Krhs ) |
---|
120 | ! |
---|
121 | END SUBROUTINE tra_adv_qck |
---|
122 | |
---|
123 | |
---|
124 | SUBROUTINE tra_adv_qck_i( kt, cdtype, p2dt, pU, Kbb, Kmm, pt, kjpt, Krhs ) |
---|
125 | !!---------------------------------------------------------------------- |
---|
126 | !! |
---|
127 | !!---------------------------------------------------------------------- |
---|
128 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
129 | INTEGER , INTENT(in ) :: Kbb, Kmm, Krhs ! ocean time level indices |
---|
130 | CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) |
---|
131 | INTEGER , INTENT(in ) :: kjpt ! number of tracers |
---|
132 | REAL(wp) , INTENT(in ) :: p2dt ! tracer time-step |
---|
133 | ! TEMP: This can be A2D after trd_tra is tiled |
---|
134 | REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pU ! i-velocity components |
---|
135 | REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt,jpt), INTENT(inout) :: pt ! active tracers and RHS of tracer equation |
---|
136 | !! |
---|
137 | ! TEMP: This change not necessary after trd_tra is tiled |
---|
138 | INTEGER :: itile |
---|
139 | INTEGER :: ji, jj, jk, jn ! dummy loop indices |
---|
140 | REAL(wp) :: ztra, zbtr, zdir, zdx, zmsk ! local scalars |
---|
141 | REAL(wp), DIMENSION(A2D,jpk) :: zwx, zfu, zfc, zfd |
---|
142 | ! TEMP: This change not necessary after trd_tra is tiled |
---|
143 | REAL(wp), DIMENSION(:,:,:), SAVE, ALLOCATABLE :: ztrdx |
---|
144 | !---------------------------------------------------------------------- |
---|
145 | ! TEMP: This change not necessary after trd_tra is tiled |
---|
146 | itile = ntile |
---|
147 | ! |
---|
148 | ! TEMP: This can be A2D after trd_tra is tiled |
---|
149 | IF( ntile == 0 .OR. ntile == 1 ) THEN ! Do only on the first tile |
---|
150 | IF( kt == nit000 .AND. l_trd ) THEN |
---|
151 | ALLOCATE( ztrdx(jpi,jpj,jpk) ) |
---|
152 | ENDIF |
---|
153 | ENDIF |
---|
154 | ! ! =========== |
---|
155 | DO jn = 1, kjpt ! tracer loop |
---|
156 | ! ! =========== |
---|
157 | zfu(:,:,:) = 0._wp ; zfc(:,:,:) = 0._wp |
---|
158 | zfd(:,:,:) = 0._wp ; zwx(:,:,:) = 0._wp |
---|
159 | ! |
---|
160 | !!gm why not using a SHIFT instruction... |
---|
161 | DO_3D_00_00( 1, jpkm1 ) |
---|
162 | zfc(ji,jj,jk) = pt(ji-1,jj,jk,jn,Kbb) ! Upstream in the x-direction for the tracer |
---|
163 | zfd(ji,jj,jk) = pt(ji+1,jj,jk,jn,Kbb) ! Downstream in the x-direction for the tracer |
---|
164 | END_3D |
---|
165 | CALL lbc_lnk_multi( 'traadv_qck', zfc(:,:,:), 'T', 1. , zfd(:,:,:), 'T', 1. ) ! Lateral boundary conditions |
---|
166 | |
---|
167 | ! |
---|
168 | ! Horizontal advective fluxes |
---|
169 | ! --------------------------- |
---|
170 | DO_3D_00_00( 1, jpkm1 ) |
---|
171 | zdir = 0.5 + SIGN( 0.5, pU(ji,jj,jk) ) ! if pU > 0 : zdir = 1 otherwise zdir = 0 |
---|
172 | zfu(ji,jj,jk) = zdir * zfc(ji,jj,jk ) + ( 1. - zdir ) * zfd(ji+1,jj,jk) ! FU in the x-direction for T |
---|
173 | END_3D |
---|
174 | ! |
---|
175 | DO_3D_00_00( 1, jpkm1 ) |
---|
176 | zdir = 0.5 + SIGN( 0.5, pU(ji,jj,jk) ) ! if pU > 0 : zdir = 1 otherwise zdir = 0 |
---|
177 | zdx = ( zdir * e1t(ji,jj) + ( 1. - zdir ) * e1t(ji+1,jj) ) * e2u(ji,jj) * e3u(ji,jj,jk,Kmm) |
---|
178 | zwx(ji,jj,jk) = ABS( pU(ji,jj,jk) ) * p2dt / zdx ! (0<zc_cfl<1 : Courant number on x-direction) |
---|
179 | zfc(ji,jj,jk) = zdir * pt(ji ,jj,jk,jn,Kbb) + ( 1. - zdir ) * pt(ji+1,jj,jk,jn,Kbb) ! FC in the x-direction for T |
---|
180 | zfd(ji,jj,jk) = zdir * pt(ji+1,jj,jk,jn,Kbb) + ( 1. - zdir ) * pt(ji ,jj,jk,jn,Kbb) ! FD in the x-direction for T |
---|
181 | END_3D |
---|
182 | !--- Lateral boundary conditions |
---|
183 | CALL lbc_lnk_multi( 'traadv_qck', zfu(:,:,:), 'T', 1. , zfd(:,:,:), 'T', 1., zfc(:,:,:), 'T', 1., zwx(:,:,:), 'T', 1. ) |
---|
184 | |
---|
185 | !--- QUICKEST scheme |
---|
186 | CALL quickest( zfu, zfd, zfc, zwx ) |
---|
187 | ! |
---|
188 | ! Mask at the T-points in the x-direction (mask=0 or mask=1) |
---|
189 | DO_3D_00_00( 1, jpkm1 ) |
---|
190 | zfu(ji,jj,jk) = tmask(ji-1,jj,jk) + tmask(ji,jj,jk) + tmask(ji+1,jj,jk) - 2. |
---|
191 | END_3D |
---|
192 | CALL lbc_lnk( 'traadv_qck', zfu(:,:,:), 'T', 1. ) ! Lateral boundary conditions |
---|
193 | |
---|
194 | ! |
---|
195 | ! Tracer flux on the x-direction |
---|
196 | DO jk = 1, jpkm1 |
---|
197 | ! |
---|
198 | DO_2D_00_00 |
---|
199 | zdir = 0.5 + SIGN( 0.5, pU(ji,jj,jk) ) ! if pU > 0 : zdir = 1 otherwise zdir = 0 |
---|
200 | !--- If the second ustream point is a land point |
---|
201 | !--- the flux is computed by the 1st order UPWIND scheme |
---|
202 | zmsk = zdir * zfu(ji,jj,jk) + ( 1. - zdir ) * zfu(ji+1,jj,jk) |
---|
203 | zwx(ji,jj,jk) = zmsk * zwx(ji,jj,jk) + ( 1. - zmsk ) * zfc(ji,jj,jk) |
---|
204 | zwx(ji,jj,jk) = zwx(ji,jj,jk) * pU(ji,jj,jk) |
---|
205 | END_2D |
---|
206 | END DO |
---|
207 | ! |
---|
208 | CALL lbc_lnk( 'traadv_qck', zwx(:,:,:), 'T', 1. ) ! Lateral boundary conditions |
---|
209 | ! |
---|
210 | ! Computation of the trend |
---|
211 | DO_3D_00_00( 1, jpkm1 ) |
---|
212 | zbtr = r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm) |
---|
213 | ! horizontal advective trends |
---|
214 | ztra = - zbtr * ( zwx(ji,jj,jk) - zwx(ji-1,jj,jk) ) |
---|
215 | !--- add it to the general tracer trends |
---|
216 | pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) + ztra |
---|
217 | END_3D |
---|
218 | ! ! trend diagnostics |
---|
219 | ! TEMP: These changes not necessary after trd_tra is tiled |
---|
220 | IF( l_trd ) THEN |
---|
221 | DO_3D_11_11( 1, jpk ) |
---|
222 | ztrdx(ji,jj,jk) = zwx(ji,jj,jk) |
---|
223 | END_3D |
---|
224 | |
---|
225 | IF( ntile == 0 .OR. ntile == nijtile ) THEN ! Do only for the full domain |
---|
226 | IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = 0 ) ! Use full domain |
---|
227 | |
---|
228 | ! TODO: TO BE TILED- trd_tra |
---|
229 | CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_xad, ztrdx, pU, pt(:,:,:,jn,Kmm) ) |
---|
230 | |
---|
231 | IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = itile ) ! Revert to tile domain |
---|
232 | ENDIF |
---|
233 | ENDIF |
---|
234 | ! |
---|
235 | END DO |
---|
236 | ! |
---|
237 | END SUBROUTINE tra_adv_qck_i |
---|
238 | |
---|
239 | |
---|
240 | SUBROUTINE tra_adv_qck_j( kt, cdtype, p2dt, pV, Kbb, Kmm, pt, kjpt, Krhs ) |
---|
241 | !!---------------------------------------------------------------------- |
---|
242 | !! |
---|
243 | !!---------------------------------------------------------------------- |
---|
244 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
245 | INTEGER , INTENT(in ) :: Kbb, Kmm, Krhs ! ocean time level indices |
---|
246 | CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) |
---|
247 | INTEGER , INTENT(in ) :: kjpt ! number of tracers |
---|
248 | REAL(wp) , INTENT(in ) :: p2dt ! tracer time-step |
---|
249 | ! TEMP: This can be A2D after trd_tra is tiled |
---|
250 | REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pV ! j-velocity components |
---|
251 | REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt,jpt), INTENT(inout) :: pt ! active tracers and RHS of tracer equation |
---|
252 | !! |
---|
253 | ! TEMP: This change not necessary after trd_tra is tiled |
---|
254 | INTEGER :: itile |
---|
255 | INTEGER :: ji, jj, jk, jn ! dummy loop indices |
---|
256 | REAL(wp) :: ztra, zbtr, zdir, zdx, zmsk ! local scalars |
---|
257 | REAL(wp), DIMENSION(A2D,jpk) :: zwy, zfu, zfc, zfd ! 3D workspace |
---|
258 | ! TEMP: This change not necessary after trd_tra is tiled |
---|
259 | REAL(wp), DIMENSION(:,:,:), SAVE, ALLOCATABLE :: ztrdy |
---|
260 | !---------------------------------------------------------------------- |
---|
261 | ! TEMP: This change not necessary after trd_tra is tiled |
---|
262 | itile = ntile |
---|
263 | ! |
---|
264 | ! TEMP: This can be A2D after trd_tra is tiled |
---|
265 | IF( ntile == 0 .OR. ntile == 1 ) THEN ! Do only on the first tile |
---|
266 | IF( kt == nit000 .AND. l_trd ) THEN |
---|
267 | ALLOCATE( ztrdy(jpi,jpj,jpk) ) |
---|
268 | ENDIF |
---|
269 | ENDIF |
---|
270 | ! ! =========== |
---|
271 | DO jn = 1, kjpt ! tracer loop |
---|
272 | ! ! =========== |
---|
273 | zfu(:,:,:) = 0.0 ; zfc(:,:,:) = 0.0 |
---|
274 | zfd(:,:,:) = 0.0 ; zwy(:,:,:) = 0.0 |
---|
275 | ! |
---|
276 | DO jk = 1, jpkm1 |
---|
277 | ! |
---|
278 | !--- Computation of the ustream and downstream value of the tracer and the mask |
---|
279 | DO_2D_00_00 |
---|
280 | ! Upstream in the x-direction for the tracer |
---|
281 | zfc(ji,jj,jk) = pt(ji,jj-1,jk,jn,Kbb) |
---|
282 | ! Downstream in the x-direction for the tracer |
---|
283 | zfd(ji,jj,jk) = pt(ji,jj+1,jk,jn,Kbb) |
---|
284 | END_2D |
---|
285 | END DO |
---|
286 | CALL lbc_lnk_multi( 'traadv_qck', zfc(:,:,:), 'T', 1. , zfd(:,:,:), 'T', 1. ) ! Lateral boundary conditions |
---|
287 | |
---|
288 | |
---|
289 | ! |
---|
290 | ! Horizontal advective fluxes |
---|
291 | ! --------------------------- |
---|
292 | ! |
---|
293 | DO_3D_00_00( 1, jpkm1 ) |
---|
294 | zdir = 0.5 + SIGN( 0.5, pV(ji,jj,jk) ) ! if pU > 0 : zdir = 1 otherwise zdir = 0 |
---|
295 | zfu(ji,jj,jk) = zdir * zfc(ji,jj,jk ) + ( 1. - zdir ) * zfd(ji,jj+1,jk) ! FU in the x-direction for T |
---|
296 | END_3D |
---|
297 | ! |
---|
298 | DO_3D_00_00( 1, jpkm1 ) |
---|
299 | zdir = 0.5 + SIGN( 0.5, pV(ji,jj,jk) ) ! if pU > 0 : zdir = 1 otherwise zdir = 0 |
---|
300 | zdx = ( zdir * e2t(ji,jj) + ( 1. - zdir ) * e2t(ji,jj+1) ) * e1v(ji,jj) * e3v(ji,jj,jk,Kmm) |
---|
301 | zwy(ji,jj,jk) = ABS( pV(ji,jj,jk) ) * p2dt / zdx ! (0<zc_cfl<1 : Courant number on x-direction) |
---|
302 | zfc(ji,jj,jk) = zdir * pt(ji,jj ,jk,jn,Kbb) + ( 1. - zdir ) * pt(ji,jj+1,jk,jn,Kbb) ! FC in the x-direction for T |
---|
303 | zfd(ji,jj,jk) = zdir * pt(ji,jj+1,jk,jn,Kbb) + ( 1. - zdir ) * pt(ji,jj ,jk,jn,Kbb) ! FD in the x-direction for T |
---|
304 | END_3D |
---|
305 | |
---|
306 | !--- Lateral boundary conditions |
---|
307 | CALL lbc_lnk_multi( 'traadv_qck', zfu(:,:,:), 'T', 1. , zfd(:,:,:), 'T', 1., zfc(:,:,:), 'T', 1., zwy(:,:,:), 'T', 1. ) |
---|
308 | |
---|
309 | !--- QUICKEST scheme |
---|
310 | CALL quickest( zfu, zfd, zfc, zwy ) |
---|
311 | ! |
---|
312 | ! Mask at the T-points in the x-direction (mask=0 or mask=1) |
---|
313 | DO_3D_00_00( 1, jpkm1 ) |
---|
314 | zfu(ji,jj,jk) = tmask(ji,jj-1,jk) + tmask(ji,jj,jk) + tmask(ji,jj+1,jk) - 2. |
---|
315 | END_3D |
---|
316 | CALL lbc_lnk( 'traadv_qck', zfu(:,:,:), 'T', 1. ) !--- Lateral boundary conditions |
---|
317 | ! |
---|
318 | ! Tracer flux on the x-direction |
---|
319 | DO jk = 1, jpkm1 |
---|
320 | ! |
---|
321 | DO_2D_00_00 |
---|
322 | zdir = 0.5 + SIGN( 0.5, pV(ji,jj,jk) ) ! if pU > 0 : zdir = 1 otherwise zdir = 0 |
---|
323 | !--- If the second ustream point is a land point |
---|
324 | !--- the flux is computed by the 1st order UPWIND scheme |
---|
325 | zmsk = zdir * zfu(ji,jj,jk) + ( 1. - zdir ) * zfu(ji,jj+1,jk) |
---|
326 | zwy(ji,jj,jk) = zmsk * zwy(ji,jj,jk) + ( 1. - zmsk ) * zfc(ji,jj,jk) |
---|
327 | zwy(ji,jj,jk) = zwy(ji,jj,jk) * pV(ji,jj,jk) |
---|
328 | END_2D |
---|
329 | END DO |
---|
330 | ! |
---|
331 | CALL lbc_lnk( 'traadv_qck', zwy(:,:,:), 'T', 1. ) ! Lateral boundary conditions |
---|
332 | ! |
---|
333 | ! Computation of the trend |
---|
334 | DO_3D_00_00( 1, jpkm1 ) |
---|
335 | zbtr = r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm) |
---|
336 | ! horizontal advective trends |
---|
337 | ztra = - zbtr * ( zwy(ji,jj,jk) - zwy(ji,jj-1,jk) ) |
---|
338 | !--- add it to the general tracer trends |
---|
339 | pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) + ztra |
---|
340 | END_3D |
---|
341 | ! ! trend diagnostics |
---|
342 | ! TEMP: These changes not necessary after trd_tra is tiled |
---|
343 | IF( l_trd ) THEN |
---|
344 | DO_3D_11_11( 1, jpk ) |
---|
345 | ztrdy(ji,jj,jk) = zwy(ji,jj,jk) |
---|
346 | END_3D |
---|
347 | |
---|
348 | IF( ntile == 0 .OR. ntile == nijtile ) THEN ! Do only for the full domain |
---|
349 | IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = 0 ) ! Use full domain |
---|
350 | |
---|
351 | ! TODO: TO BE TILED- trd_tra |
---|
352 | CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_yad, ztrdy, pV, pt(:,:,:,jn,Kmm) ) |
---|
353 | |
---|
354 | IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = itile ) ! Revert to tile domain |
---|
355 | ENDIF |
---|
356 | ENDIF |
---|
357 | ! ! "Poleward" heat and salt transports (contribution of upstream fluxes) |
---|
358 | IF( l_ptr ) CALL dia_ptr_hst( jn, 'adv', zwy(:,:,:) ) |
---|
359 | ! |
---|
360 | END DO |
---|
361 | ! |
---|
362 | END SUBROUTINE tra_adv_qck_j |
---|
363 | |
---|
364 | |
---|
365 | SUBROUTINE tra_adv_cen2_k( kt, cdtype, pW, Kmm, pt, kjpt, Krhs ) |
---|
366 | !!---------------------------------------------------------------------- |
---|
367 | !! |
---|
368 | !!---------------------------------------------------------------------- |
---|
369 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
370 | INTEGER , INTENT(in ) :: Kmm, Krhs ! ocean time level indices |
---|
371 | CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) |
---|
372 | INTEGER , INTENT(in ) :: kjpt ! number of tracers |
---|
373 | ! TEMP: This can be A2D after trd_tra is tiled |
---|
374 | REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pW ! vertical velocity |
---|
375 | REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt,jpt), INTENT(inout) :: pt ! active tracers and RHS of tracer equation |
---|
376 | ! |
---|
377 | ! TEMP: This change not necessary after trd_tra is tiled |
---|
378 | INTEGER :: itile |
---|
379 | INTEGER :: ji, jj, jk, jn ! dummy loop indices |
---|
380 | REAL(wp), DIMENSION(A2D,jpk) :: zwz ! 3D workspace |
---|
381 | ! TEMP: This change not necessary after trd_tra is tiled |
---|
382 | REAL(wp), DIMENSION(:,:,:), SAVE, ALLOCATABLE :: ztrdz |
---|
383 | !!---------------------------------------------------------------------- |
---|
384 | ! TEMP: This change not necessary after trd_tra is tiled |
---|
385 | itile = ntile |
---|
386 | ! |
---|
387 | ! TEMP: This can be A2D after trd_tra is tiled |
---|
388 | IF( ntile == 0 .OR. ntile == 1 ) THEN ! Do only on the first tile |
---|
389 | IF( kt == nit000 .AND. l_trd ) THEN |
---|
390 | ALLOCATE( ztrdz(jpi,jpj,jpk) ) |
---|
391 | ENDIF |
---|
392 | ENDIF |
---|
393 | |
---|
394 | zwz(:,:, 1 ) = 0._wp ! surface & bottom values set to zero for all tracers |
---|
395 | zwz(:,:,jpk) = 0._wp |
---|
396 | ! |
---|
397 | ! ! =========== |
---|
398 | DO jn = 1, kjpt ! tracer loop |
---|
399 | ! ! =========== |
---|
400 | ! |
---|
401 | DO_3D_00_00( 2, jpkm1 ) |
---|
402 | zwz(ji,jj,jk) = 0.5 * pW(ji,jj,jk) * ( pt(ji,jj,jk-1,jn,Kmm) + pt(ji,jj,jk,jn,Kmm) ) * wmask(ji,jj,jk) |
---|
403 | END_3D |
---|
404 | IF( ln_linssh ) THEN !* top value (only in linear free surf. as zwz is multiplied by wmask) |
---|
405 | ! TODO: NOT TESTED- requires isf |
---|
406 | IF( ln_isfcav ) THEN ! ice-shelf cavities (top of the ocean) |
---|
407 | DO_2D_11_11 |
---|
408 | zwz(ji,jj, mikt(ji,jj) ) = pW(ji,jj,mikt(ji,jj)) * pt(ji,jj,mikt(ji,jj),jn,Kmm) ! linear free surface |
---|
409 | END_2D |
---|
410 | ELSE ! no ocean cavities (only ocean surface) |
---|
411 | DO_2D_11_11 |
---|
412 | zwz(ji,jj,1) = pW(ji,jj,1) * pt(ji,jj,1,jn,Kmm) |
---|
413 | END_2D |
---|
414 | ENDIF |
---|
415 | ENDIF |
---|
416 | ! |
---|
417 | DO_3D_00_00( 1, jpkm1 ) |
---|
418 | pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) - ( zwz(ji,jj,jk) - zwz(ji,jj,jk+1) ) & |
---|
419 | & * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm) |
---|
420 | END_3D |
---|
421 | ! ! Send trends for diagnostic |
---|
422 | ! TEMP: These changes not necessary after trd_tra is tiled |
---|
423 | IF( l_trd ) THEN |
---|
424 | DO_3D_11_11( 1, jpk ) |
---|
425 | ztrdz(ji,jj,jk) = zwz(ji,jj,jk) |
---|
426 | END_3D |
---|
427 | |
---|
428 | IF( ntile == 0 .OR. ntile == nijtile ) THEN ! Do only for the full domain |
---|
429 | IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = 0 ) ! Use full domain |
---|
430 | |
---|
431 | ! TODO: TO BE TILED- trd_tra |
---|
432 | CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_zad, ztrdz, pW, pt(:,:,:,jn,Kmm) ) |
---|
433 | |
---|
434 | IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = itile ) ! Revert to tile domain |
---|
435 | ENDIF |
---|
436 | ENDIF |
---|
437 | ! |
---|
438 | END DO |
---|
439 | ! |
---|
440 | END SUBROUTINE tra_adv_cen2_k |
---|
441 | |
---|
442 | |
---|
443 | SUBROUTINE quickest( pfu, pfd, pfc, puc ) |
---|
444 | !!---------------------------------------------------------------------- |
---|
445 | !! |
---|
446 | !! ** Purpose : Computation of advective flux with Quickest scheme |
---|
447 | !! |
---|
448 | !! ** Method : |
---|
449 | !!---------------------------------------------------------------------- |
---|
450 | REAL(wp), DIMENSION(A2D,jpk), INTENT(in ) :: pfu ! second upwind point |
---|
451 | REAL(wp), DIMENSION(A2D,jpk), INTENT(in ) :: pfd ! first douwning point |
---|
452 | REAL(wp), DIMENSION(A2D,jpk), INTENT(in ) :: pfc ! the central point (or the first upwind point) |
---|
453 | REAL(wp), DIMENSION(A2D,jpk), INTENT(inout) :: puc ! input as Courant number ; output as flux |
---|
454 | !! |
---|
455 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
456 | REAL(wp) :: zcoef1, zcoef2, zcoef3 ! local scalars |
---|
457 | REAL(wp) :: zc, zcurv, zfho ! - - |
---|
458 | !---------------------------------------------------------------------- |
---|
459 | ! |
---|
460 | DO_3D_11_11( 1, jpkm1 ) |
---|
461 | zc = puc(ji,jj,jk) ! Courant number |
---|
462 | zcurv = pfd(ji,jj,jk) + pfu(ji,jj,jk) - 2. * pfc(ji,jj,jk) |
---|
463 | zcoef1 = 0.5 * ( pfc(ji,jj,jk) + pfd(ji,jj,jk) ) |
---|
464 | zcoef2 = 0.5 * zc * ( pfd(ji,jj,jk) - pfc(ji,jj,jk) ) |
---|
465 | zcoef3 = ( 1. - ( zc * zc ) ) * r1_6 * zcurv |
---|
466 | zfho = zcoef1 - zcoef2 - zcoef3 ! phi_f QUICKEST |
---|
467 | ! |
---|
468 | zcoef1 = pfd(ji,jj,jk) - pfu(ji,jj,jk) |
---|
469 | zcoef2 = ABS( zcoef1 ) |
---|
470 | zcoef3 = ABS( zcurv ) |
---|
471 | IF( zcoef3 >= zcoef2 ) THEN |
---|
472 | zfho = pfc(ji,jj,jk) |
---|
473 | ELSE |
---|
474 | zcoef3 = pfu(ji,jj,jk) + ( ( pfc(ji,jj,jk) - pfu(ji,jj,jk) ) / MAX( zc, 1.e-9 ) ) ! phi_REF |
---|
475 | IF( zcoef1 >= 0. ) THEN |
---|
476 | zfho = MAX( pfc(ji,jj,jk), zfho ) |
---|
477 | zfho = MIN( zfho, MIN( zcoef3, pfd(ji,jj,jk) ) ) |
---|
478 | ELSE |
---|
479 | zfho = MIN( pfc(ji,jj,jk), zfho ) |
---|
480 | zfho = MAX( zfho, MAX( zcoef3, pfd(ji,jj,jk) ) ) |
---|
481 | ENDIF |
---|
482 | ENDIF |
---|
483 | puc(ji,jj,jk) = zfho |
---|
484 | END_3D |
---|
485 | ! |
---|
486 | END SUBROUTINE quickest |
---|
487 | |
---|
488 | !!====================================================================== |
---|
489 | END MODULE traadv_qck |
---|