1 | MODULE traadv_ubs |
---|
2 | !!============================================================================== |
---|
3 | !! *** MODULE traadv_ubs *** |
---|
4 | !! Ocean active tracers: horizontal & vertical advective trend |
---|
5 | !!============================================================================== |
---|
6 | !! History : 1.0 ! 2006-08 (L. Debreu, R. Benshila) Original code |
---|
7 | !! 3.3 ! 2010-05 (C. Ethe, G. Madec) merge TRC-TRA + switch from velocity to transport |
---|
8 | !!---------------------------------------------------------------------- |
---|
9 | |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | !! tra_adv_ubs : update the tracer trend with the horizontal |
---|
12 | !! advection trends using a third order biaised scheme |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | USE oce ! ocean dynamics and active tracers |
---|
15 | USE dom_oce ! ocean space and time domain |
---|
16 | ! TEMP: This change not necessary after trd_tra is tiled |
---|
17 | USE domain, ONLY : dom_tile |
---|
18 | USE trc_oce ! share passive tracers/Ocean variables |
---|
19 | USE trd_oce ! trends: ocean variables |
---|
20 | USE traadv_fct ! acces to routine interp_4th_cpt |
---|
21 | USE trdtra ! trends manager: tracers |
---|
22 | USE diaptr ! poleward transport diagnostics |
---|
23 | USE diaar5 ! AR5 diagnostics |
---|
24 | ! |
---|
25 | USE iom ! I/O library |
---|
26 | USE in_out_manager ! I/O manager |
---|
27 | USE lib_mpp ! massively parallel library |
---|
28 | USE lbclnk ! ocean lateral boundary condition (or mpp link) |
---|
29 | USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) |
---|
30 | |
---|
31 | IMPLICIT NONE |
---|
32 | PRIVATE |
---|
33 | |
---|
34 | PUBLIC tra_adv_ubs ! routine called by traadv module |
---|
35 | |
---|
36 | LOGICAL :: l_trd ! flag to compute trends |
---|
37 | LOGICAL :: l_ptr ! flag to compute poleward transport |
---|
38 | LOGICAL :: l_hst ! flag to compute heat transport |
---|
39 | |
---|
40 | |
---|
41 | !! * Substitutions |
---|
42 | # include "do_loop_substitute.h90" |
---|
43 | !!---------------------------------------------------------------------- |
---|
44 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
45 | !! $Id$ |
---|
46 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
47 | !!---------------------------------------------------------------------- |
---|
48 | CONTAINS |
---|
49 | |
---|
50 | SUBROUTINE tra_adv_ubs( kt, kit000, cdtype, p2dt, pU, pV, pW, & |
---|
51 | & Kbb, Kmm, pt, kjpt, Krhs, kn_ubs_v ) |
---|
52 | !!---------------------------------------------------------------------- |
---|
53 | !! *** ROUTINE tra_adv_ubs *** |
---|
54 | !! |
---|
55 | !! ** Purpose : Compute the now trend due to the advection of tracers |
---|
56 | !! and add it to the general trend of passive tracer equations. |
---|
57 | !! |
---|
58 | !! ** Method : The 3rd order Upstream Biased Scheme (UBS) is based on an |
---|
59 | !! upstream-biased parabolic interpolation (Shchepetkin and McWilliams 2005) |
---|
60 | !! It is only used in the horizontal direction. |
---|
61 | !! For example the i-component of the advective fluxes are given by : |
---|
62 | !! ! e2u e3u un ( mi(Tn) - zltu(i ) ) if un(i) >= 0 |
---|
63 | !! ztu = ! or |
---|
64 | !! ! e2u e3u un ( mi(Tn) - zltu(i+1) ) if un(i) < 0 |
---|
65 | !! where zltu is the second derivative of the before temperature field: |
---|
66 | !! zltu = 1/e3t di[ e2u e3u / e1u di[Tb] ] |
---|
67 | !! This results in a dissipatively dominant (i.e. hyper-diffusive) |
---|
68 | !! truncation error. The overall performance of the advection scheme |
---|
69 | !! is similar to that reported in (Farrow and Stevens, 1995). |
---|
70 | !! For stability reasons, the first term of the fluxes which corresponds |
---|
71 | !! to a second order centered scheme is evaluated using the now velocity |
---|
72 | !! (centered in time) while the second term which is the diffusive part |
---|
73 | !! of the scheme, is evaluated using the before velocity (forward in time). |
---|
74 | !! Note that UBS is not positive. Do not use it on passive tracers. |
---|
75 | !! On the vertical, the advection is evaluated using a FCT scheme, |
---|
76 | !! as the UBS have been found to be too diffusive. |
---|
77 | !! kn_ubs_v argument controles whether the FCT is based on |
---|
78 | !! a 2nd order centrered scheme (kn_ubs_v=2) or on a 4th order compact |
---|
79 | !! scheme (kn_ubs_v=4). |
---|
80 | !! |
---|
81 | !! ** Action : - update pt(:,:,:,:,Krhs) with the now advective tracer trends |
---|
82 | !! - send trends to trdtra module for further diagnostcs (l_trdtra=T) |
---|
83 | !! - poleward advective heat and salt transport (ln_diaptr=T) |
---|
84 | !! |
---|
85 | !! Reference : Shchepetkin, A. F., J. C. McWilliams, 2005, Ocean Modelling, 9, 347-404. |
---|
86 | !! Farrow, D.E., Stevens, D.P., 1995, J. Phys. Ocean. 25, 1731Ð1741. |
---|
87 | !!---------------------------------------------------------------------- |
---|
88 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
89 | INTEGER , INTENT(in ) :: Kbb, Kmm, Krhs ! ocean time level indices |
---|
90 | INTEGER , INTENT(in ) :: kit000 ! first time step index |
---|
91 | CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) |
---|
92 | INTEGER , INTENT(in ) :: kjpt ! number of tracers |
---|
93 | INTEGER , INTENT(in ) :: kn_ubs_v ! number of tracers |
---|
94 | REAL(wp) , INTENT(in ) :: p2dt ! tracer time-step |
---|
95 | ! TEMP: This can be A2D after trd_tra is tiled |
---|
96 | REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pU, pV, pW ! 3 ocean volume transport components |
---|
97 | REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt,jpt), INTENT(inout) :: pt ! tracers and RHS of tracer equation |
---|
98 | ! |
---|
99 | ! TEMP: This change not necessary after trd_tra is tiled |
---|
100 | INTEGER :: itile |
---|
101 | INTEGER :: ji, jj, jk, jn ! dummy loop indices |
---|
102 | REAL(wp) :: ztra, zbtr, zcoef ! local scalars |
---|
103 | REAL(wp) :: zfp_ui, zfm_ui, zcenut, ztak, zfp_wk, zfm_wk ! - - |
---|
104 | REAL(wp) :: zfp_vj, zfm_vj, zcenvt, zeeu, zeev, z_hdivn ! - - |
---|
105 | REAL(wp), DIMENSION(A2D,jpk) :: ztu, ztv, zltu, zltv, zti, ztw ! 3D workspace |
---|
106 | ! TEMP: This change not necessary after trd_tra is tiled |
---|
107 | REAL(wp), DIMENSION(:,:,:), SAVE, ALLOCATABLE :: ztrdx, ztrdy, ztrdz |
---|
108 | !!---------------------------------------------------------------------- |
---|
109 | ! TEMP: This change not necessary after trd_tra is tiled |
---|
110 | itile = ntile |
---|
111 | ! |
---|
112 | IF( ntile == 0 .OR. ntile == 1 ) THEN ! Do only on the first tile |
---|
113 | IF( kt == kit000 ) THEN |
---|
114 | IF(lwp) WRITE(numout,*) |
---|
115 | IF(lwp) WRITE(numout,*) 'tra_adv_ubs : horizontal UBS advection scheme on ', cdtype |
---|
116 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~' |
---|
117 | ENDIF |
---|
118 | ! |
---|
119 | l_trd = .FALSE. |
---|
120 | l_hst = .FALSE. |
---|
121 | l_ptr = .FALSE. |
---|
122 | IF( ( cdtype == 'TRA' .AND. l_trdtra ) .OR. ( cdtype == 'TRC' .AND. l_trdtrc ) ) l_trd = .TRUE. |
---|
123 | IF( cdtype == 'TRA' .AND. ( iom_use( 'sophtadv' ) .OR. iom_use( 'sophtadv' ) ) ) l_ptr = .TRUE. |
---|
124 | IF( cdtype == 'TRA' .AND. ( iom_use("uadv_heattr") .OR. iom_use("vadv_heattr") .OR. & |
---|
125 | & iom_use("uadv_salttr") .OR. iom_use("vadv_salttr") ) ) l_hst = .TRUE. |
---|
126 | |
---|
127 | ! TEMP: This can be A2D after trd_tra is tiled |
---|
128 | IF( kt == kit000 .AND. l_trd ) THEN |
---|
129 | ALLOCATE( ztrdx(jpi,jpj,jpk), ztrdy(jpi,jpj,jpk), ztrdz(jpi,jpj,jpk) ) |
---|
130 | ENDIF |
---|
131 | ENDIF |
---|
132 | ! |
---|
133 | ztw (:,:, 1 ) = 0._wp ! surface & bottom value : set to zero for all tracers |
---|
134 | zltu(:,:,jpk) = 0._wp ; zltv(:,:,jpk) = 0._wp |
---|
135 | ztw (:,:,jpk) = 0._wp ; zti (:,:,jpk) = 0._wp |
---|
136 | ! |
---|
137 | ! ! =========== |
---|
138 | DO jn = 1, kjpt ! tracer loop |
---|
139 | ! ! =========== |
---|
140 | ! |
---|
141 | DO jk = 1, jpkm1 !== horizontal laplacian of before tracer ==! |
---|
142 | DO_2D_10_10 |
---|
143 | zeeu = e2_e1u(ji,jj) * e3u(ji,jj,jk,Kmm) * umask(ji,jj,jk) |
---|
144 | zeev = e1_e2v(ji,jj) * e3v(ji,jj,jk,Kmm) * vmask(ji,jj,jk) |
---|
145 | ztu(ji,jj,jk) = zeeu * ( pt(ji+1,jj ,jk,jn,Kbb) - pt(ji,jj,jk,jn,Kbb) ) |
---|
146 | ztv(ji,jj,jk) = zeev * ( pt(ji ,jj+1,jk,jn,Kbb) - pt(ji,jj,jk,jn,Kbb) ) |
---|
147 | END_2D |
---|
148 | DO_2D_00_00 |
---|
149 | zcoef = 1._wp / ( 6._wp * e3t(ji,jj,jk,Kmm) ) |
---|
150 | zltu(ji,jj,jk) = ( ztu(ji,jj,jk) - ztu(ji-1,jj,jk) ) * zcoef |
---|
151 | zltv(ji,jj,jk) = ( ztv(ji,jj,jk) - ztv(ji,jj-1,jk) ) * zcoef |
---|
152 | END_2D |
---|
153 | ! |
---|
154 | END DO |
---|
155 | CALL lbc_lnk( 'traadv_ubs', zltu, 'T', 1. ) ; CALL lbc_lnk( 'traadv_ubs', zltv, 'T', 1. ) ! Lateral boundary cond. (unchanged sgn) |
---|
156 | ! |
---|
157 | DO_3D_10_10( 1, jpkm1 ) |
---|
158 | zfp_ui = pU(ji,jj,jk) + ABS( pU(ji,jj,jk) ) ! upstream transport (x2) |
---|
159 | zfm_ui = pU(ji,jj,jk) - ABS( pU(ji,jj,jk) ) |
---|
160 | zfp_vj = pV(ji,jj,jk) + ABS( pV(ji,jj,jk) ) |
---|
161 | zfm_vj = pV(ji,jj,jk) - ABS( pV(ji,jj,jk) ) |
---|
162 | ! ! 2nd order centered advective fluxes (x2) |
---|
163 | zcenut = pU(ji,jj,jk) * ( pt(ji,jj,jk,jn,Kmm) + pt(ji+1,jj ,jk,jn,Kmm) ) |
---|
164 | zcenvt = pV(ji,jj,jk) * ( pt(ji,jj,jk,jn,Kmm) + pt(ji ,jj+1,jk,jn,Kmm) ) |
---|
165 | ! ! UBS advective fluxes |
---|
166 | ztu(ji,jj,jk) = 0.5 * ( zcenut - zfp_ui * zltu(ji,jj,jk) - zfm_ui * zltu(ji+1,jj,jk) ) |
---|
167 | ztv(ji,jj,jk) = 0.5 * ( zcenvt - zfp_vj * zltv(ji,jj,jk) - zfm_vj * zltv(ji,jj+1,jk) ) |
---|
168 | END_3D |
---|
169 | ! |
---|
170 | DO_3D_11_11( 1, jpk ) |
---|
171 | zltu(ji,jj,jk) = pt(ji,jj,jk,jn,Krhs) ! store the initial trends before its update |
---|
172 | END_3D |
---|
173 | ! |
---|
174 | DO jk = 1, jpkm1 !== add the horizontal advective trend ==! |
---|
175 | DO_2D_00_00 |
---|
176 | pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) & |
---|
177 | & - ( ztu(ji,jj,jk) - ztu(ji-1,jj ,jk) & |
---|
178 | & + ztv(ji,jj,jk) - ztv(ji ,jj-1,jk) ) * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm) |
---|
179 | END_2D |
---|
180 | ! |
---|
181 | END DO |
---|
182 | ! |
---|
183 | DO_3D_11_11( 1, jpk ) |
---|
184 | zltu(ji,jj,jk) = pt(ji,jj,jk,jn,Krhs) - zltu(ji,jj,jk) ! Horizontal advective trend used in vertical 2nd order FCT case |
---|
185 | END_3D ! and/or in trend diagnostic (l_trd=T) |
---|
186 | ! |
---|
187 | ! TEMP: These changes not necessary after trd_tra is tiled |
---|
188 | IF( l_trd ) THEN ! trend diagnostics |
---|
189 | DO_3D_11_11( 1, jpk ) |
---|
190 | ztrdx(ji,jj,jk) = ztu(ji,jj,jk) |
---|
191 | ztrdy(ji,jj,jk) = ztv(ji,jj,jk) |
---|
192 | END_3D |
---|
193 | |
---|
194 | IF( ntile == 0 .OR. ntile == nijtile ) THEN ! Do only for the full domain |
---|
195 | IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = 0 ) ! Use full domain |
---|
196 | |
---|
197 | ! TODO: TO BE TILED- trd_tra |
---|
198 | CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_xad, ztrdx, pU, pt(:,:,:,jn,Kmm) ) |
---|
199 | CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_yad, ztrdy, pV, pt(:,:,:,jn,Kmm) ) |
---|
200 | |
---|
201 | IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = itile ) ! Revert to tile domain |
---|
202 | ENDIF |
---|
203 | END IF |
---|
204 | ! |
---|
205 | ! ! "Poleward" heat and salt transports (contribution of upstream fluxes) |
---|
206 | IF( l_ptr ) CALL dia_ptr_hst( jn, 'adv', ztv(:,:,:) ) |
---|
207 | ! ! heati/salt transport |
---|
208 | IF( l_hst ) CALL dia_ar5_hst( jn, 'adv', ztu(:,:,:), ztv(:,:,:) ) |
---|
209 | ! |
---|
210 | ! |
---|
211 | ! !== vertical advective trend ==! |
---|
212 | ! |
---|
213 | SELECT CASE( kn_ubs_v ) ! select the vertical advection scheme |
---|
214 | ! |
---|
215 | CASE( 2 ) ! 2nd order FCT |
---|
216 | ! |
---|
217 | IF( l_trd ) THEN |
---|
218 | DO_3D_11_11( 1, jpk ) |
---|
219 | zltv(ji,jj,jk) = pt(ji,jj,jk,jn,Krhs) ! store pt(:,:,:,:,Krhs) if trend diag. |
---|
220 | END_3D |
---|
221 | ENDIF |
---|
222 | ! |
---|
223 | ! !* upstream advection with initial mass fluxes & intermediate update ==! |
---|
224 | DO_3D_11_11( 2, jpkm1 ) |
---|
225 | zfp_wk = pW(ji,jj,jk) + ABS( pW(ji,jj,jk) ) |
---|
226 | zfm_wk = pW(ji,jj,jk) - ABS( pW(ji,jj,jk) ) |
---|
227 | ztw(ji,jj,jk) = 0.5_wp * ( zfp_wk * pt(ji,jj,jk,jn,Kbb) + zfm_wk * pt(ji,jj,jk-1,jn,Kbb) ) * wmask(ji,jj,jk) |
---|
228 | END_3D |
---|
229 | IF( ln_linssh ) THEN ! top ocean value (only in linear free surface as ztw has been w-masked) |
---|
230 | ! TODO: NOT TESTED- requires isf |
---|
231 | IF( ln_isfcav ) THEN ! top of the ice-shelf cavities and at the ocean surface |
---|
232 | DO_2D_11_11 |
---|
233 | ztw(ji,jj, mikt(ji,jj) ) = pW(ji,jj,mikt(ji,jj)) * pt(ji,jj,mikt(ji,jj),jn,Kbb) ! linear free surface |
---|
234 | END_2D |
---|
235 | ELSE ! no cavities: only at the ocean surface |
---|
236 | DO_2D_11_11 |
---|
237 | ztw(ji,jj,1) = pW(ji,jj,1) * pt(ji,jj,1,jn,Kbb) |
---|
238 | END_2D |
---|
239 | ENDIF |
---|
240 | ENDIF |
---|
241 | ! |
---|
242 | DO_3D_00_00( 1, jpkm1 ) |
---|
243 | ztak = - ( ztw(ji,jj,jk) - ztw(ji,jj,jk+1) ) * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm) |
---|
244 | pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) + ztak |
---|
245 | zti(ji,jj,jk) = ( pt(ji,jj,jk,jn,Kbb) + p2dt * ( ztak + zltu(ji,jj,jk) ) ) * tmask(ji,jj,jk) |
---|
246 | END_3D |
---|
247 | CALL lbc_lnk( 'traadv_ubs', zti, 'T', 1. ) ! Lateral boundary conditions on zti, zsi (unchanged sign) |
---|
248 | ! |
---|
249 | ! !* anti-diffusive flux : high order minus low order |
---|
250 | DO_3D_11_11( 2, jpkm1 ) |
---|
251 | ztw(ji,jj,jk) = ( 0.5_wp * pW(ji,jj,jk) * ( pt(ji,jj,jk,jn,Kmm) + pt(ji,jj,jk-1,jn,Kmm) ) & |
---|
252 | & - ztw(ji,jj,jk) ) * wmask(ji,jj,jk) |
---|
253 | END_3D |
---|
254 | ! ! top ocean value: high order == upstream ==>> zwz=0 |
---|
255 | IF( ln_linssh ) ztw(:,:, 1 ) = 0._wp ! only ocean surface as interior zwz values have been w-masked |
---|
256 | ! |
---|
257 | CALL nonosc_z( Kmm, pt(:,:,:,jn,Kbb), ztw, zti, p2dt ) ! monotonicity algorithm |
---|
258 | ! |
---|
259 | CASE( 4 ) ! 4th order COMPACT |
---|
260 | CALL interp_4th_cpt( pt(:,:,:,jn,Kmm) , ztw ) ! 4th order compact interpolation of T at w-point |
---|
261 | DO_3D_00_00( 2, jpkm1 ) |
---|
262 | ztw(ji,jj,jk) = pW(ji,jj,jk) * ztw(ji,jj,jk) * wmask(ji,jj,jk) |
---|
263 | END_3D |
---|
264 | IF( ln_linssh ) THEN |
---|
265 | DO_2D_11_11 |
---|
266 | ztw(ji,jj,1) = pW(ji,jj,1) * pt(ji,jj,1,jn,Kmm) !!gm ISF & 4th COMPACT doesn't work |
---|
267 | END_2D |
---|
268 | ENDIF |
---|
269 | ! |
---|
270 | END SELECT |
---|
271 | ! |
---|
272 | DO_3D_00_00( 1, jpkm1 ) |
---|
273 | pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) - ( ztw(ji,jj,jk) - ztw(ji,jj,jk+1) ) * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm) |
---|
274 | END_3D |
---|
275 | ! |
---|
276 | ! TEMP: These changes not necessary after trd_tra is tiled |
---|
277 | IF( l_trd ) THEN ! vertical advective trend diagnostics |
---|
278 | DO_3D_00_00( 1, jpkm1 ) |
---|
279 | ztrdz(ji,jj,jk) = pt(ji,jj,jk,jn,Krhs) - zltv(ji,jj,jk) & |
---|
280 | & + pt(ji,jj,jk,jn,Kmm) * ( pW(ji,jj,jk) - pW(ji,jj,jk+1) ) & |
---|
281 | & * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm) |
---|
282 | END_3D |
---|
283 | |
---|
284 | IF( ntile == 0 .OR. ntile == nijtile ) THEN ! Do only for the full domain |
---|
285 | IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = 0 ) ! Use full domain |
---|
286 | |
---|
287 | ! TODO: TO BE TILED- trd_tra |
---|
288 | CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_zad, ztrdz ) |
---|
289 | |
---|
290 | IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = nijtile ) ! Revert to tile domain |
---|
291 | ENDIF |
---|
292 | ENDIF |
---|
293 | ! |
---|
294 | END DO |
---|
295 | ! |
---|
296 | END SUBROUTINE tra_adv_ubs |
---|
297 | |
---|
298 | |
---|
299 | SUBROUTINE nonosc_z( Kmm, pbef, pcc, paft, p2dt ) |
---|
300 | !!--------------------------------------------------------------------- |
---|
301 | !! *** ROUTINE nonosc_z *** |
---|
302 | !! |
---|
303 | !! ** Purpose : compute monotonic tracer fluxes from the upstream |
---|
304 | !! scheme and the before field by a nonoscillatory algorithm |
---|
305 | !! |
---|
306 | !! ** Method : ... ??? |
---|
307 | !! warning : pbef and paft must be masked, but the boundaries |
---|
308 | !! conditions on the fluxes are not necessary zalezak (1979) |
---|
309 | !! drange (1995) multi-dimensional forward-in-time and upstream- |
---|
310 | !! in-space based differencing for fluid |
---|
311 | !!---------------------------------------------------------------------- |
---|
312 | INTEGER , INTENT(in ) :: Kmm ! time level index |
---|
313 | REAL(wp), INTENT(in ) :: p2dt ! tracer time-step |
---|
314 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: pbef ! before field |
---|
315 | REAL(wp), INTENT(inout), DIMENSION(A2D ,jpk) :: paft ! after field |
---|
316 | REAL(wp), INTENT(inout), DIMENSION(A2D ,jpk) :: pcc ! monotonic flux in the k direction |
---|
317 | ! |
---|
318 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
319 | INTEGER :: ikm1 ! local integer |
---|
320 | REAL(wp) :: zpos, zneg, zbt, za, zb, zc, zbig, zrtrn ! local scalars |
---|
321 | REAL(wp), DIMENSION(A2D,jpk) :: zbetup, zbetdo ! 3D workspace |
---|
322 | !!---------------------------------------------------------------------- |
---|
323 | ! |
---|
324 | zbig = 1.e+40_wp |
---|
325 | zrtrn = 1.e-15_wp |
---|
326 | zbetup(:,:,:) = 0._wp ; zbetdo(:,:,:) = 0._wp |
---|
327 | ! |
---|
328 | ! Search local extrema |
---|
329 | ! -------------------- |
---|
330 | ! ! large negative value (-zbig) inside land |
---|
331 | DO_3D_00_00( 1, jpk ) |
---|
332 | pbef(ji,jj,jk) = pbef(ji,jj,jk) * tmask(ji,jj,jk) - zbig * ( 1.e0 - tmask(ji,jj,jk) ) |
---|
333 | paft(ji,jj,jk) = paft(ji,jj,jk) * tmask(ji,jj,jk) - zbig * ( 1.e0 - tmask(ji,jj,jk) ) |
---|
334 | END_3D |
---|
335 | ! |
---|
336 | DO jk = 1, jpkm1 ! search maximum in neighbourhood |
---|
337 | ikm1 = MAX(jk-1,1) |
---|
338 | DO_2D_00_00 |
---|
339 | zbetup(ji,jj,jk) = MAX( pbef(ji ,jj ,jk ), paft(ji ,jj ,jk ), & |
---|
340 | & pbef(ji ,jj ,ikm1), pbef(ji ,jj ,jk+1), & |
---|
341 | & paft(ji ,jj ,ikm1), paft(ji ,jj ,jk+1) ) |
---|
342 | END_2D |
---|
343 | END DO |
---|
344 | ! ! large positive value (+zbig) inside land |
---|
345 | DO_3D_00_00( 1, jpk ) |
---|
346 | pbef(ji,jj,jk) = pbef(ji,jj,jk) * tmask(ji,jj,jk) + zbig * ( 1.e0 - tmask(ji,jj,jk) ) |
---|
347 | paft(ji,jj,jk) = paft(ji,jj,jk) * tmask(ji,jj,jk) + zbig * ( 1.e0 - tmask(ji,jj,jk) ) |
---|
348 | END_3D |
---|
349 | ! |
---|
350 | DO jk = 1, jpkm1 ! search minimum in neighbourhood |
---|
351 | ikm1 = MAX(jk-1,1) |
---|
352 | DO_2D_00_00 |
---|
353 | zbetdo(ji,jj,jk) = MIN( pbef(ji ,jj ,jk ), paft(ji ,jj ,jk ), & |
---|
354 | & pbef(ji ,jj ,ikm1), pbef(ji ,jj ,jk+1), & |
---|
355 | & paft(ji ,jj ,ikm1), paft(ji ,jj ,jk+1) ) |
---|
356 | END_2D |
---|
357 | END DO |
---|
358 | ! ! restore masked values to zero |
---|
359 | DO_3D_00_00( 1, jpk ) |
---|
360 | pbef(ji,jj,jk) = pbef(ji,jj,jk) * tmask(ji,jj,jk) |
---|
361 | paft(ji,jj,jk) = paft(ji,jj,jk) * tmask(ji,jj,jk) |
---|
362 | END_3D |
---|
363 | ! |
---|
364 | ! Positive and negative part of fluxes and beta terms |
---|
365 | ! --------------------------------------------------- |
---|
366 | DO_3D_00_00( 1, jpkm1 ) |
---|
367 | ! positive & negative part of the flux |
---|
368 | zpos = MAX( 0., pcc(ji ,jj ,jk+1) ) - MIN( 0., pcc(ji ,jj ,jk ) ) |
---|
369 | zneg = MAX( 0., pcc(ji ,jj ,jk ) ) - MIN( 0., pcc(ji ,jj ,jk+1) ) |
---|
370 | ! up & down beta terms |
---|
371 | zbt = e1e2t(ji,jj) * e3t(ji,jj,jk,Kmm) / p2dt |
---|
372 | zbetup(ji,jj,jk) = ( zbetup(ji,jj,jk) - paft(ji,jj,jk) ) / (zpos+zrtrn) * zbt |
---|
373 | zbetdo(ji,jj,jk) = ( paft(ji,jj,jk) - zbetdo(ji,jj,jk) ) / (zneg+zrtrn) * zbt |
---|
374 | END_3D |
---|
375 | ! |
---|
376 | ! monotonic flux in the k direction, i.e. pcc |
---|
377 | ! ------------------------------------------- |
---|
378 | DO_3D_00_00( 2, jpkm1 ) |
---|
379 | za = MIN( 1., zbetdo(ji,jj,jk), zbetup(ji,jj,jk-1) ) |
---|
380 | zb = MIN( 1., zbetup(ji,jj,jk), zbetdo(ji,jj,jk-1) ) |
---|
381 | zc = 0.5 * ( 1.e0 + SIGN( 1.e0, pcc(ji,jj,jk) ) ) |
---|
382 | pcc(ji,jj,jk) = pcc(ji,jj,jk) * ( zc * za + ( 1.e0 - zc) * zb ) |
---|
383 | END_3D |
---|
384 | ! |
---|
385 | END SUBROUTINE nonosc_z |
---|
386 | |
---|
387 | !!====================================================================== |
---|
388 | END MODULE traadv_ubs |
---|