1 | MODULE traldf_triad |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE traldf_triad *** |
---|
4 | !! Ocean tracers: horizontal component of the lateral tracer mixing trend |
---|
5 | !!====================================================================== |
---|
6 | !! History : 3.3 ! 2010-10 (G. Nurser, C. Harris, G. Madec) Griffies operator (original code) |
---|
7 | !! 3.7 ! 2013-12 (F. Lemarie, G. Madec) triad operator (Griffies) + Method of Stabilizing Correction |
---|
8 | !!---------------------------------------------------------------------- |
---|
9 | |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | !! tra_ldf_triad : update the tracer trend with the iso-neutral laplacian triad-operator |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | USE oce ! ocean dynamics and active tracers |
---|
14 | USE dom_oce ! ocean space and time domain |
---|
15 | ! TEMP: This change not necessary if lbc_lnk is removed from ldf_eiv_dia and XIOS has subdomain support |
---|
16 | USE domain, ONLY : dom_tile |
---|
17 | USE domutl, ONLY : is_tile |
---|
18 | USE phycst ! physical constants |
---|
19 | USE trc_oce ! share passive tracers/Ocean variables |
---|
20 | USE zdf_oce ! ocean vertical physics |
---|
21 | USE ldftra ! lateral physics: eddy diffusivity |
---|
22 | USE ldfslp ! lateral physics: iso-neutral slopes |
---|
23 | USE traldf_iso ! lateral diffusion (Madec operator) (tra_ldf_iso routine) |
---|
24 | USE diaptr ! poleward transport diagnostics |
---|
25 | USE diaar5 ! AR5 diagnostics |
---|
26 | USE zpshde ! partial step: hor. derivative (zps_hde routine) |
---|
27 | ! |
---|
28 | USE in_out_manager ! I/O manager |
---|
29 | USE iom ! I/O library |
---|
30 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
31 | USE lib_mpp ! MPP library |
---|
32 | |
---|
33 | IMPLICIT NONE |
---|
34 | PRIVATE |
---|
35 | |
---|
36 | PUBLIC tra_ldf_triad ! routine called by traldf.F90 |
---|
37 | |
---|
38 | LOGICAL :: l_ptr ! flag to compute poleward transport |
---|
39 | LOGICAL :: l_hst ! flag to compute heat transport |
---|
40 | |
---|
41 | |
---|
42 | !! * Substitutions |
---|
43 | # include "do_loop_substitute.h90" |
---|
44 | !!---------------------------------------------------------------------- |
---|
45 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
46 | !! $Id$ |
---|
47 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
48 | !!---------------------------------------------------------------------- |
---|
49 | CONTAINS |
---|
50 | |
---|
51 | SUBROUTINE tra_ldf_triad( kt, Kmm, kit000, cdtype, pahu, pahv, & |
---|
52 | & pgu , pgv , pgui, pgvi, & |
---|
53 | & pt, pt2, pt_rhs, kjpt, kpass ) |
---|
54 | !! |
---|
55 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
56 | INTEGER , INTENT(in ) :: kit000 ! first time step index |
---|
57 | CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) |
---|
58 | INTEGER , INTENT(in ) :: kjpt ! number of tracers |
---|
59 | INTEGER , INTENT(in ) :: kpass ! =1/2 first or second passage |
---|
60 | INTEGER , INTENT(in ) :: Kmm ! ocean time level indices |
---|
61 | REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: pahu, pahv ! eddy diffusivity at u- and v-points [m2/s] |
---|
62 | REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: pgu , pgv ! tracer gradient at pstep levels |
---|
63 | REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: pgui, pgvi ! tracer gradient at top levels |
---|
64 | REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pt ! tracer (kpass=1) or laplacian of tracer (kpass=2) |
---|
65 | REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pt2 ! tracer (only used in kpass=2) |
---|
66 | REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) :: pt_rhs ! tracer trend |
---|
67 | !! |
---|
68 | CALL tra_ldf_triad_t( kt, Kmm, kit000, cdtype, pahu, pahv, is_tile(pahu), & |
---|
69 | & pgu , pgv , is_tile(pgu) , pgui, pgvi, is_tile(pgui), & |
---|
70 | & pt, is_tile(pt), pt2, is_tile(pt2), pt_rhs, is_tile(pt_rhs), kjpt, kpass ) |
---|
71 | END SUBROUTINE tra_ldf_triad |
---|
72 | |
---|
73 | |
---|
74 | SUBROUTINE tra_ldf_triad_t( kt, Kmm, kit000, cdtype, pahu, pahv, ktah, & |
---|
75 | & pgu , pgv , ktg , pgui, pgvi, ktgi, & |
---|
76 | & pt, ktt, pt2, ktt2, pt_rhs, ktt_rhs, kjpt, kpass ) |
---|
77 | !!---------------------------------------------------------------------- |
---|
78 | !! *** ROUTINE tra_ldf_triad *** |
---|
79 | !! |
---|
80 | !! ** Purpose : Compute the before horizontal tracer (t & s) diffusive |
---|
81 | !! trend for a laplacian tensor (ezxcept the dz[ dz[.] ] term) and |
---|
82 | !! add it to the general trend of tracer equation. |
---|
83 | !! |
---|
84 | !! ** Method : The horizontal component of the lateral diffusive trends |
---|
85 | !! is provided by a 2nd order operator rotated along neural or geopo- |
---|
86 | !! tential surfaces to which an eddy induced advection can be added |
---|
87 | !! It is computed using before fields (forward in time) and isopyc- |
---|
88 | !! nal or geopotential slopes computed in routine ldfslp. |
---|
89 | !! |
---|
90 | !! see documentation for the desciption |
---|
91 | !! |
---|
92 | !! ** Action : pt_rhs updated with the before rotated diffusion |
---|
93 | !! ah_wslp2 .... |
---|
94 | !! akz stabilizing vertical diffusivity coefficient (used in trazdf_imp) |
---|
95 | !!---------------------------------------------------------------------- |
---|
96 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
97 | INTEGER , INTENT(in ) :: kit000 ! first time step index |
---|
98 | CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) |
---|
99 | INTEGER , INTENT(in ) :: kjpt ! number of tracers |
---|
100 | INTEGER , INTENT(in ) :: kpass ! =1/2 first or second passage |
---|
101 | INTEGER , INTENT(in) :: Kmm ! ocean time level indices |
---|
102 | INTEGER , INTENT(in ) :: ktah, ktg, ktgi, ktt, ktt2, ktt_rhs |
---|
103 | REAL(wp), DIMENSION(T2D(ktah), jpk) , INTENT(in ) :: pahu, pahv ! eddy diffusivity at u- and v-points [m2/s] |
---|
104 | REAL(wp), DIMENSION(T2D(ktg), kjpt), INTENT(in ) :: pgu , pgv ! tracer gradient at pstep levels |
---|
105 | REAL(wp), DIMENSION(T2D(ktgi), kjpt), INTENT(in ) :: pgui, pgvi ! tracer gradient at top levels |
---|
106 | REAL(wp), DIMENSION(T2D(ktt), jpk,kjpt), INTENT(in ) :: pt ! tracer (kpass=1) or laplacian of tracer (kpass=2) |
---|
107 | REAL(wp), DIMENSION(T2D(ktt2), jpk,kjpt), INTENT(in ) :: pt2 ! tracer (only used in kpass=2) |
---|
108 | REAL(wp), DIMENSION(T2D(ktt_rhs),jpk,kjpt), INTENT(inout) :: pt_rhs ! tracer trend |
---|
109 | ! |
---|
110 | INTEGER :: ji, jj, jk, jn ! dummy loop indices |
---|
111 | INTEGER :: ip,jp,kp ! dummy loop indices |
---|
112 | INTEGER :: ierr ! local integer |
---|
113 | REAL(wp) :: zmsku, zabe1, zcof1, zcoef3 ! local scalars |
---|
114 | REAL(wp) :: zmskv, zabe2, zcof2, zcoef4 ! - - |
---|
115 | REAL(wp) :: zcoef0, ze3w_2, zsign ! - - |
---|
116 | ! |
---|
117 | REAL(wp) :: zslope_skew, zslope_iso, zslope2, zbu, zbv |
---|
118 | REAL(wp) :: ze1ur, ze2vr, ze3wr, zdxt, zdyt, zdzt |
---|
119 | REAL(wp) :: zah, zah_slp, zaei_slp |
---|
120 | REAL(wp), DIMENSION(A2D,0:1) :: zdkt3d ! vertical tracer gradient at 2 levels |
---|
121 | REAL(wp), DIMENSION(A2D ) :: z2d ! 2D workspace |
---|
122 | REAL(wp), DIMENSION(A2D ,jpk) :: zdit, zdjt, zftu, zftv, ztfw ! 3D - |
---|
123 | ! TEMP: This can be A2D if lbc_lnk is removed from ldf_eiv_dia and XIOS has subdomain support |
---|
124 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zpsi_uw, zpsi_vw |
---|
125 | !!---------------------------------------------------------------------- |
---|
126 | ! |
---|
127 | IF( ntile == 0 .OR. ntile == 1 ) THEN ! Do only on the first tile |
---|
128 | IF( kpass == 1 .AND. kt == kit000 ) THEN |
---|
129 | IF(lwp) WRITE(numout,*) |
---|
130 | IF(lwp) WRITE(numout,*) 'tra_ldf_triad : rotated laplacian diffusion operator on ', cdtype |
---|
131 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~' |
---|
132 | ENDIF |
---|
133 | ! |
---|
134 | l_hst = .FALSE. |
---|
135 | l_ptr = .FALSE. |
---|
136 | IF( cdtype == 'TRA' ) THEN |
---|
137 | IF( iom_use( 'sophtldf' ) .OR. iom_use( 'sopstldf') ) l_ptr = .TRUE. |
---|
138 | IF( iom_use("uadv_heattr") .OR. iom_use("vadv_heattr") .OR. & |
---|
139 | & iom_use("uadv_salttr") .OR. iom_use("vadv_salttr") ) l_hst = .TRUE. |
---|
140 | ENDIF |
---|
141 | ENDIF |
---|
142 | ! |
---|
143 | IF( kpass == 1 ) THEN ; zsign = 1._wp ! bilaplacian operator require a minus sign (eddy diffusivity >0) |
---|
144 | ELSE ; zsign = -1._wp |
---|
145 | ENDIF |
---|
146 | ! |
---|
147 | !!---------------------------------------------------------------------- |
---|
148 | !! 0 - calculate ah_wslp2, akz, and optionally zpsi_uw, zpsi_vw |
---|
149 | !!---------------------------------------------------------------------- |
---|
150 | ! |
---|
151 | IF( kpass == 1 ) THEN !== first pass only and whatever the tracer is ==! |
---|
152 | ! |
---|
153 | DO_3D_00_00( 1, jpk ) |
---|
154 | akz (ji,jj,jk) = 0._wp |
---|
155 | ah_wslp2(ji,jj,jk) = 0._wp |
---|
156 | END_3D |
---|
157 | ! |
---|
158 | DO ip = 0, 1 ! i-k triads |
---|
159 | DO kp = 0, 1 |
---|
160 | DO_3D_00_00( 1, jpkm1 ) |
---|
161 | ze3wr = 1._wp / e3w(ji,jj,jk+kp,Kmm) |
---|
162 | zbu = e1e2u(ji-ip,jj) * e3u(ji-ip,jj,jk,Kmm) |
---|
163 | zah = 0.25_wp * pahu(ji-ip,jj,jk) |
---|
164 | zslope_skew = triadi_g(ji,jj,jk,1-ip,kp) |
---|
165 | ! Subtract s-coordinate slope at t-points to give slope rel to s-surfaces (do this by *adding* gradient of depth) |
---|
166 | zslope2 = zslope_skew + ( gdept(ji-ip+1,jj,jk,Kmm) - gdept(ji-ip,jj,jk,Kmm) ) * r1_e1u(ji-ip,jj) * umask(ji-ip,jj,jk+kp) |
---|
167 | zslope2 = zslope2 *zslope2 |
---|
168 | ah_wslp2(ji,jj,jk+kp) = ah_wslp2(ji,jj,jk+kp) + zah * zbu * ze3wr * r1_e1e2t(ji,jj) * zslope2 |
---|
169 | akz (ji,jj,jk+kp) = akz (ji,jj,jk+kp) + zah * r1_e1u(ji-ip,jj) & |
---|
170 | & * r1_e1u(ji-ip,jj) * umask(ji-ip,jj,jk+kp) |
---|
171 | ! |
---|
172 | END_3D |
---|
173 | END DO |
---|
174 | END DO |
---|
175 | ! |
---|
176 | DO jp = 0, 1 ! j-k triads |
---|
177 | DO kp = 0, 1 |
---|
178 | DO_3D_00_00( 1, jpkm1 ) |
---|
179 | ze3wr = 1.0_wp / e3w(ji,jj,jk+kp,Kmm) |
---|
180 | zbv = e1e2v(ji,jj-jp) * e3v(ji,jj-jp,jk,Kmm) |
---|
181 | zah = 0.25_wp * pahv(ji,jj-jp,jk) |
---|
182 | zslope_skew = triadj_g(ji,jj,jk,1-jp,kp) |
---|
183 | ! Subtract s-coordinate slope at t-points to give slope rel to s surfaces |
---|
184 | ! (do this by *adding* gradient of depth) |
---|
185 | zslope2 = zslope_skew + ( gdept(ji,jj-jp+1,jk,Kmm) - gdept(ji,jj-jp,jk,Kmm) ) * r1_e2v(ji,jj-jp) * vmask(ji,jj-jp,jk+kp) |
---|
186 | zslope2 = zslope2 * zslope2 |
---|
187 | ah_wslp2(ji,jj,jk+kp) = ah_wslp2(ji,jj,jk+kp) + zah * zbv * ze3wr * r1_e1e2t(ji,jj) * zslope2 |
---|
188 | akz (ji,jj,jk+kp) = akz (ji,jj,jk+kp) + zah * r1_e2v(ji,jj-jp) & |
---|
189 | & * r1_e2v(ji,jj-jp) * vmask(ji,jj-jp,jk+kp) |
---|
190 | ! |
---|
191 | END_3D |
---|
192 | END DO |
---|
193 | END DO |
---|
194 | ! |
---|
195 | IF( ln_traldf_msc ) THEN ! stabilizing vertical diffusivity coefficient |
---|
196 | ! |
---|
197 | IF( ln_traldf_blp ) THEN ! bilaplacian operator |
---|
198 | DO_3D_00_00( 2, jpkm1 ) |
---|
199 | akz(ji,jj,jk) = 16._wp * ah_wslp2(ji,jj,jk) & |
---|
200 | & * ( akz(ji,jj,jk) + ah_wslp2(ji,jj,jk) / ( e3w(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm) ) ) |
---|
201 | END_3D |
---|
202 | ELSEIF( ln_traldf_lap ) THEN ! laplacian operator |
---|
203 | DO_3D_00_00( 2, jpkm1 ) |
---|
204 | ze3w_2 = e3w(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm) |
---|
205 | zcoef0 = rDt * ( akz(ji,jj,jk) + ah_wslp2(ji,jj,jk) / ze3w_2 ) |
---|
206 | akz(ji,jj,jk) = MAX( zcoef0 - 0.5_wp , 0._wp ) * ze3w_2 * r1_Dt |
---|
207 | END_3D |
---|
208 | ENDIF |
---|
209 | ! |
---|
210 | ELSE ! 33 flux set to zero with akz=ah_wslp2 ==>> computed in full implicit |
---|
211 | DO_3D_00_00( 1, jpk ) |
---|
212 | akz(ji,jj,jk) = ah_wslp2(ji,jj,jk) |
---|
213 | END_3D |
---|
214 | ENDIF |
---|
215 | ! |
---|
216 | ! TEMP: These changes not necessary if lbc_lnk is removed from ldf_eiv_dia and XIOS has subdomain support |
---|
217 | IF( ntile == 0 .OR. ntile == nijtile ) THEN ! Do only for the full domain |
---|
218 | IF( ln_ldfeiv_dia .AND. cdtype == 'TRA' ) THEN |
---|
219 | IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = 0 ) |
---|
220 | |
---|
221 | zpsi_uw(:,:,:) = 0._wp |
---|
222 | zpsi_vw(:,:,:) = 0._wp |
---|
223 | |
---|
224 | DO jp = 0, 1 |
---|
225 | DO kp = 0, 1 |
---|
226 | DO_3D_10_10( 1, jpkm1 ) |
---|
227 | zpsi_uw(ji,jj,jk+kp) = zpsi_uw(ji,jj,jk+kp) & |
---|
228 | & + 0.25_wp * aeiu(ji,jj,jk) * e2u(ji,jj) * triadi_g(ji+jp,jj,jk,1-jp,kp) |
---|
229 | zpsi_vw(ji,jj,jk+kp) = zpsi_vw(ji,jj,jk+kp) & |
---|
230 | & + 0.25_wp * aeiv(ji,jj,jk) * e1v(ji,jj) * triadj_g(ji,jj+jp,jk,1-jp,kp) |
---|
231 | END_3D |
---|
232 | END DO |
---|
233 | END DO |
---|
234 | CALL ldf_eiv_dia( zpsi_uw, zpsi_vw, Kmm ) |
---|
235 | |
---|
236 | IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = nijtile ) |
---|
237 | ENDIF |
---|
238 | ENDIF |
---|
239 | ! |
---|
240 | ENDIF !== end 1st pass only ==! |
---|
241 | ! |
---|
242 | ! ! =========== |
---|
243 | DO jn = 1, kjpt ! tracer loop |
---|
244 | ! ! =========== |
---|
245 | ! Zero fluxes for each tracer |
---|
246 | !!gm this should probably be done outside the jn loop |
---|
247 | ztfw(:,:,:) = 0._wp |
---|
248 | zftu(:,:,:) = 0._wp |
---|
249 | zftv(:,:,:) = 0._wp |
---|
250 | ! |
---|
251 | DO_3D_10_10( 1, jpkm1 ) |
---|
252 | zdit(ji,jj,jk) = ( pt(ji+1,jj ,jk,jn) - pt(ji,jj,jk,jn) ) * umask(ji,jj,jk) |
---|
253 | zdjt(ji,jj,jk) = ( pt(ji ,jj+1,jk,jn) - pt(ji,jj,jk,jn) ) * vmask(ji,jj,jk) |
---|
254 | END_3D |
---|
255 | ! TODO: NOT TESTED- requires zps |
---|
256 | IF( ln_zps .AND. l_grad_zps ) THEN ! partial steps: correction at top/bottom ocean level |
---|
257 | DO_2D_10_10 |
---|
258 | zdit(ji,jj,mbku(ji,jj)) = pgu(ji,jj,jn) |
---|
259 | zdjt(ji,jj,mbkv(ji,jj)) = pgv(ji,jj,jn) |
---|
260 | END_2D |
---|
261 | ! TODO: NOT TESTED- requires isf |
---|
262 | IF( ln_isfcav ) THEN ! top level (ocean cavities only) |
---|
263 | DO_2D_10_10 |
---|
264 | IF( miku(ji,jj) > 1 ) zdit(ji,jj,miku(ji,jj) ) = pgui(ji,jj,jn) |
---|
265 | IF( mikv(ji,jj) > 1 ) zdjt(ji,jj,mikv(ji,jj) ) = pgvi(ji,jj,jn) |
---|
266 | END_2D |
---|
267 | ENDIF |
---|
268 | ENDIF |
---|
269 | ! |
---|
270 | !!---------------------------------------------------------------------- |
---|
271 | !! II - horizontal trend (full) |
---|
272 | !!---------------------------------------------------------------------- |
---|
273 | ! |
---|
274 | DO jk = 1, jpkm1 |
---|
275 | ! !== Vertical tracer gradient at level jk and jk+1 |
---|
276 | DO_2D_11_11 |
---|
277 | zdkt3d(ji,jj,1) = ( pt(ji,jj,jk,jn) - pt(ji,jj,jk+1,jn) ) * tmask(ji,jj,jk+1) |
---|
278 | END_2D |
---|
279 | ! |
---|
280 | ! ! surface boundary condition: zdkt3d(jk=0)=zdkt3d(jk=1) |
---|
281 | IF( jk == 1 ) THEN ; zdkt3d(:,:,0) = zdkt3d(:,:,1) |
---|
282 | ELSE |
---|
283 | DO_2D_11_11 |
---|
284 | zdkt3d(ji,jj,0) = ( pt(ji,jj,jk-1,jn) - pt(ji,jj,jk,jn) ) * tmask(ji,jj,jk) |
---|
285 | END_2D |
---|
286 | ENDIF |
---|
287 | ! |
---|
288 | zaei_slp = 0._wp |
---|
289 | ! |
---|
290 | IF( ln_botmix_triad ) THEN |
---|
291 | DO ip = 0, 1 !== Horizontal & vertical fluxes |
---|
292 | DO kp = 0, 1 |
---|
293 | DO_2D_10_10 |
---|
294 | ze1ur = r1_e1u(ji,jj) |
---|
295 | zdxt = zdit(ji,jj,jk) * ze1ur |
---|
296 | ze3wr = 1._wp / e3w(ji+ip,jj,jk+kp,Kmm) |
---|
297 | zdzt = zdkt3d(ji+ip,jj,kp) * ze3wr |
---|
298 | zslope_skew = triadi_g(ji+ip,jj,jk,1-ip,kp) |
---|
299 | zslope_iso = triadi (ji+ip,jj,jk,1-ip,kp) |
---|
300 | ! |
---|
301 | zbu = 0.25_wp * e1e2u(ji,jj) * e3u(ji,jj,jk,Kmm) |
---|
302 | ! ln_botmix_triad is .T. don't mask zah for bottom half cells !!gm ????? ahu is masked.... |
---|
303 | zah = pahu(ji,jj,jk) |
---|
304 | zah_slp = zah * zslope_iso |
---|
305 | IF( ln_ldfeiv ) zaei_slp = aeiu(ji,jj,jk) * zslope_skew |
---|
306 | zftu(ji ,jj,jk ) = zftu(ji ,jj,jk ) - ( zah * zdxt + (zah_slp - zaei_slp) * zdzt ) * zbu * ze1ur |
---|
307 | ztfw(ji+ip,jj,jk+kp) = ztfw(ji+ip,jj,jk+kp) - ( zah_slp + zaei_slp) * zdxt * zbu * ze3wr |
---|
308 | END_2D |
---|
309 | END DO |
---|
310 | END DO |
---|
311 | ! |
---|
312 | DO jp = 0, 1 |
---|
313 | DO kp = 0, 1 |
---|
314 | DO_2D_10_10 |
---|
315 | ze2vr = r1_e2v(ji,jj) |
---|
316 | zdyt = zdjt(ji,jj,jk) * ze2vr |
---|
317 | ze3wr = 1._wp / e3w(ji,jj+jp,jk+kp,Kmm) |
---|
318 | zdzt = zdkt3d(ji,jj+jp,kp) * ze3wr |
---|
319 | zslope_skew = triadj_g(ji,jj+jp,jk,1-jp,kp) |
---|
320 | zslope_iso = triadj(ji,jj+jp,jk,1-jp,kp) |
---|
321 | zbv = 0.25_wp * e1e2v(ji,jj) * e3v(ji,jj,jk,Kmm) |
---|
322 | ! ln_botmix_triad is .T. don't mask zah for bottom half cells !!gm ????? ahv is masked... |
---|
323 | zah = pahv(ji,jj,jk) |
---|
324 | zah_slp = zah * zslope_iso |
---|
325 | IF( ln_ldfeiv ) zaei_slp = aeiv(ji,jj,jk) * zslope_skew |
---|
326 | zftv(ji,jj ,jk ) = zftv(ji,jj ,jk ) - ( zah * zdyt + (zah_slp - zaei_slp) * zdzt ) * zbv * ze2vr |
---|
327 | ztfw(ji,jj+jp,jk+kp) = ztfw(ji,jj+jp,jk+kp) - ( zah_slp + zaei_slp ) * zdyt * zbv * ze3wr |
---|
328 | END_2D |
---|
329 | END DO |
---|
330 | END DO |
---|
331 | ! |
---|
332 | ELSE |
---|
333 | ! |
---|
334 | DO ip = 0, 1 !== Horizontal & vertical fluxes |
---|
335 | DO kp = 0, 1 |
---|
336 | DO_2D_10_10 |
---|
337 | ze1ur = r1_e1u(ji,jj) |
---|
338 | zdxt = zdit(ji,jj,jk) * ze1ur |
---|
339 | ze3wr = 1._wp / e3w(ji+ip,jj,jk+kp,Kmm) |
---|
340 | zdzt = zdkt3d(ji+ip,jj,kp) * ze3wr |
---|
341 | zslope_skew = triadi_g(ji+ip,jj,jk,1-ip,kp) |
---|
342 | zslope_iso = triadi(ji+ip,jj,jk,1-ip,kp) |
---|
343 | ! |
---|
344 | zbu = 0.25_wp * e1e2u(ji,jj) * e3u(ji,jj,jk,Kmm) |
---|
345 | ! ln_botmix_triad is .F. mask zah for bottom half cells |
---|
346 | zah = pahu(ji,jj,jk) * umask(ji,jj,jk+kp) ! pahu(ji+ip,jj,jk) ===>> ???? |
---|
347 | zah_slp = zah * zslope_iso |
---|
348 | IF( ln_ldfeiv ) zaei_slp = aeiu(ji,jj,jk) * zslope_skew ! aeit(ji+ip,jj,jk)*zslope_skew |
---|
349 | zftu(ji ,jj,jk ) = zftu(ji ,jj,jk ) - ( zah * zdxt + (zah_slp - zaei_slp) * zdzt ) * zbu * ze1ur |
---|
350 | ztfw(ji+ip,jj,jk+kp) = ztfw(ji+ip,jj,jk+kp) - (zah_slp + zaei_slp) * zdxt * zbu * ze3wr |
---|
351 | END_2D |
---|
352 | END DO |
---|
353 | END DO |
---|
354 | ! |
---|
355 | DO jp = 0, 1 |
---|
356 | DO kp = 0, 1 |
---|
357 | DO_2D_10_10 |
---|
358 | ze2vr = r1_e2v(ji,jj) |
---|
359 | zdyt = zdjt(ji,jj,jk) * ze2vr |
---|
360 | ze3wr = 1._wp / e3w(ji,jj+jp,jk+kp,Kmm) |
---|
361 | zdzt = zdkt3d(ji,jj+jp,kp) * ze3wr |
---|
362 | zslope_skew = triadj_g(ji,jj+jp,jk,1-jp,kp) |
---|
363 | zslope_iso = triadj(ji,jj+jp,jk,1-jp,kp) |
---|
364 | zbv = 0.25_wp * e1e2v(ji,jj) * e3v(ji,jj,jk,Kmm) |
---|
365 | ! ln_botmix_triad is .F. mask zah for bottom half cells |
---|
366 | zah = pahv(ji,jj,jk) * vmask(ji,jj,jk+kp) ! pahv(ji,jj+jp,jk) ???? |
---|
367 | zah_slp = zah * zslope_iso |
---|
368 | IF( ln_ldfeiv ) zaei_slp = aeiv(ji,jj,jk) * zslope_skew ! aeit(ji,jj+jp,jk)*zslope_skew |
---|
369 | zftv(ji,jj,jk) = zftv(ji,jj,jk) - ( zah * zdyt + (zah_slp - zaei_slp) * zdzt ) * zbv * ze2vr |
---|
370 | ztfw(ji,jj+jp,jk+kp) = ztfw(ji,jj+jp,jk+kp) - (zah_slp + zaei_slp) * zdyt * zbv * ze3wr |
---|
371 | END_2D |
---|
372 | END DO |
---|
373 | END DO |
---|
374 | ENDIF |
---|
375 | ! !== horizontal divergence and add to the general trend ==! |
---|
376 | DO_2D_00_00 |
---|
377 | pt_rhs(ji,jj,jk,jn) = pt_rhs(ji,jj,jk,jn) + zsign * ( zftu(ji-1,jj,jk) - zftu(ji,jj,jk) & |
---|
378 | & + zftv(ji,jj-1,jk) - zftv(ji,jj,jk) ) & |
---|
379 | & / ( e1e2t(ji,jj) * e3t(ji,jj,jk,Kmm) ) |
---|
380 | END_2D |
---|
381 | ! |
---|
382 | END DO |
---|
383 | ! |
---|
384 | ! !== add the vertical 33 flux ==! |
---|
385 | IF( ln_traldf_lap ) THEN ! laplacian case: eddy coef = ah_wslp2 - akz |
---|
386 | DO_3D_10_00( 2, jpkm1 ) |
---|
387 | ztfw(ji,jj,jk) = ztfw(ji,jj,jk) - e1e2t(ji,jj) / e3w(ji,jj,jk,Kmm) * tmask(ji,jj,jk) & |
---|
388 | & * ( ah_wslp2(ji,jj,jk) - akz(ji,jj,jk) ) & |
---|
389 | & * ( pt(ji,jj,jk-1,jn) - pt(ji,jj,jk,jn) ) |
---|
390 | END_3D |
---|
391 | ELSE ! bilaplacian |
---|
392 | SELECT CASE( kpass ) |
---|
393 | CASE( 1 ) ! 1st pass : eddy coef = ah_wslp2 |
---|
394 | DO_3D_10_00( 2, jpkm1 ) |
---|
395 | ztfw(ji,jj,jk) = ztfw(ji,jj,jk) - e1e2t(ji,jj) / e3w(ji,jj,jk,Kmm) * tmask(ji,jj,jk) & |
---|
396 | & * ah_wslp2(ji,jj,jk) * ( pt(ji,jj,jk-1,jn) - pt(ji,jj,jk,jn) ) |
---|
397 | END_3D |
---|
398 | CASE( 2 ) ! 2nd pass : eddy flux = ah_wslp2 and akz applied on pt and pt2 gradients, resp. |
---|
399 | DO_3D_10_00( 2, jpkm1 ) |
---|
400 | ztfw(ji,jj,jk) = ztfw(ji,jj,jk) - e1e2t(ji,jj) / e3w(ji,jj,jk,Kmm) * tmask(ji,jj,jk) & |
---|
401 | & * ( ah_wslp2(ji,jj,jk) * ( pt (ji,jj,jk-1,jn) - pt (ji,jj,jk,jn) ) & |
---|
402 | & + akz (ji,jj,jk) * ( pt2(ji,jj,jk-1,jn) - pt2(ji,jj,jk,jn) ) ) |
---|
403 | END_3D |
---|
404 | END SELECT |
---|
405 | ENDIF |
---|
406 | ! |
---|
407 | DO_3D_00_00( 1, jpkm1 ) |
---|
408 | pt_rhs(ji,jj,jk,jn) = pt_rhs(ji,jj,jk,jn) + zsign * ( ztfw(ji,jj,jk+1) - ztfw(ji,jj,jk) ) & |
---|
409 | & / ( e1e2t(ji,jj) * e3t(ji,jj,jk,Kmm) ) |
---|
410 | END_3D |
---|
411 | ! |
---|
412 | IF( ( kpass == 1 .AND. ln_traldf_lap ) .OR. & !== first pass only ( laplacian) ==! |
---|
413 | ( kpass == 2 .AND. ln_traldf_blp ) ) THEN !== 2nd pass (bilaplacian) ==! |
---|
414 | ! |
---|
415 | ! ! "Poleward" diffusive heat or salt transports (T-S case only) |
---|
416 | IF( l_ptr ) CALL dia_ptr_hst( jn, 'ldf', zftv(:,:,:) ) |
---|
417 | ! ! Diffusive heat transports |
---|
418 | IF( l_hst ) CALL dia_ar5_hst( jn, 'ldf', zftu(:,:,:), zftv(:,:,:) ) |
---|
419 | ! |
---|
420 | ENDIF !== end pass selection ==! |
---|
421 | ! |
---|
422 | ! ! =============== |
---|
423 | END DO ! end tracer loop |
---|
424 | ! ! =============== |
---|
425 | END SUBROUTINE tra_ldf_triad_t |
---|
426 | |
---|
427 | !!============================================================================== |
---|
428 | END MODULE traldf_triad |
---|