1 | \documentclass[../main/NEMO_manual]{subfiles} |
---|
2 | |
---|
3 | \begin{document} |
---|
4 | % ================================================================ |
---|
5 | % Chapter 1 Model Basics |
---|
6 | % ================================================================ |
---|
7 | |
---|
8 | \chapter{Model Basics} |
---|
9 | \label{chap:PE} |
---|
10 | |
---|
11 | \minitoc |
---|
12 | |
---|
13 | \newpage |
---|
14 | |
---|
15 | % ================================================================ |
---|
16 | % Primitive Equations |
---|
17 | % ================================================================ |
---|
18 | \section{Primitive equations} |
---|
19 | \label{sec:PE_PE} |
---|
20 | |
---|
21 | % ------------------------------------------------------------------------------------------------------------- |
---|
22 | % Vector Invariant Formulation |
---|
23 | % ------------------------------------------------------------------------------------------------------------- |
---|
24 | |
---|
25 | \subsection{Vector invariant formulation} |
---|
26 | \label{subsec:PE_Vector} |
---|
27 | |
---|
28 | |
---|
29 | The ocean is a fluid that can be described to a good approximation by the primitive equations, |
---|
30 | \ie the Navier-Stokes equations along with a nonlinear equation of state which |
---|
31 | couples the two active tracers (temperature and salinity) to the fluid velocity, |
---|
32 | plus the following additional assumptions made from scale considerations: |
---|
33 | |
---|
34 | \textit{(1) spherical earth approximation:} the geopotential surfaces are assumed to be spheres so that |
---|
35 | gravity (local vertical) is parallel to the earth's radius |
---|
36 | |
---|
37 | \textit{(2) thin-shell approximation:} the ocean depth is neglected compared to the earth's radius |
---|
38 | |
---|
39 | \textit{(3) turbulent closure hypothesis:} the turbulent fluxes |
---|
40 | (which represent the effect of small scale processes on the large-scale) are expressed in terms of |
---|
41 | large-scale features |
---|
42 | |
---|
43 | \textit{(4) Boussinesq hypothesis:} density variations are neglected except in their contribution to |
---|
44 | the buoyancy force |
---|
45 | |
---|
46 | \textit{(5) Hydrostatic hypothesis:} the vertical momentum equation is reduced to a balance between |
---|
47 | the vertical pressure gradient and the buoyancy force |
---|
48 | (this removes convective processes from the initial Navier-Stokes equations and so |
---|
49 | convective processes must be parameterized instead) |
---|
50 | |
---|
51 | \textit{(6) Incompressibility hypothesis:} the three dimensional divergence of the velocity vector is assumed to |
---|
52 | be zero. |
---|
53 | |
---|
54 | Because the gravitational force is so dominant in the equations of large-scale motions, |
---|
55 | it is useful to choose an orthogonal set of unit vectors (\textbf{i},\textbf{j},\textbf{k}) linked to |
---|
56 | the earth such that \textbf{k} is the local upward vector and (\textbf{i},\textbf{j}) are two vectors orthogonal to |
---|
57 | \textbf{k}, \ie tangent to the geopotential surfaces. |
---|
58 | Let us define the following variables: \textbf{U} the vector velocity, $\textbf{U}=\textbf{U}_h + w\, \textbf{k}$ |
---|
59 | (the subscript $h$ denotes the local horizontal vector, \ie over the (\textbf{i},\textbf{j}) plane), |
---|
60 | $T$ the potential temperature, $S$ the salinity, \textit{$\rho $} the \textit{in situ} density. |
---|
61 | The vector invariant form of the primitive equations in the (\textbf{i},\textbf{j},\textbf{k}) vector system |
---|
62 | provides the following six equations |
---|
63 | (namely the momentum balance, the hydrostatic equilibrium, the incompressibility equation, |
---|
64 | the heat and salt conservation equations and an equation of state): |
---|
65 | \begin{subequations} |
---|
66 | \label{eq:PE} |
---|
67 | \begin{equation} |
---|
68 | \label{eq:PE_dyn} |
---|
69 | \frac{\partial {\rm {\bf U}}_h }{\partial t}= |
---|
70 | -\left[ {\left( {\nabla \times {\rm {\bf U}}} \right)\times {\rm {\bf U}} |
---|
71 | +\frac{1}{2}\nabla \left( {{\rm {\bf U}}^2} \right)} \right]_h |
---|
72 | -f\;{\rm {\bf k}}\times {\rm {\bf U}}_h |
---|
73 | -\frac{1}{\rho_o }\nabla _h p + {\rm {\bf D}}^{\rm {\bf U}} + {\rm {\bf F}}^{\rm {\bf U}} |
---|
74 | \end{equation} |
---|
75 | \begin{equation} |
---|
76 | \label{eq:PE_hydrostatic} |
---|
77 | \frac{\partial p }{\partial z} = - \rho \ g |
---|
78 | \end{equation} |
---|
79 | \begin{equation} |
---|
80 | \label{eq:PE_continuity} |
---|
81 | \nabla \cdot {\bf U}= 0 |
---|
82 | \end{equation} |
---|
83 | \begin{equation} |
---|
84 | \label{eq:PE_tra_T} |
---|
85 | \frac{\partial T}{\partial t} = - \nabla \cdot \left( T \ \rm{\bf U} \right) + D^T + F^T |
---|
86 | \end{equation} |
---|
87 | \begin{equation} |
---|
88 | \label{eq:PE_tra_S} |
---|
89 | \frac{\partial S}{\partial t} = - \nabla \cdot \left( S \ \rm{\bf U} \right) + D^S + F^S |
---|
90 | \end{equation} |
---|
91 | \begin{equation} |
---|
92 | \label{eq:PE_eos} |
---|
93 | \rho = \rho \left( T,S,p \right) |
---|
94 | \end{equation} |
---|
95 | \end{subequations} |
---|
96 | where $\nabla$ is the generalised derivative vector operator in $(\bf i,\bf j, \bf k)$ directions, $t$ is the time, |
---|
97 | $z$ is the vertical coordinate, $\rho $ is the \textit{in situ} density given by the equation of state |
---|
98 | (\autoref{eq:PE_eos}), $\rho_o$ is a reference density, $p$ the pressure, |
---|
99 | $f=2 \bf \Omega \cdot \bf k$ is the Coriolis acceleration |
---|
100 | (where $\bf \Omega$ is the Earth's angular velocity vector), and $g$ is the gravitational acceleration. |
---|
101 | ${\rm {\bf D}}^{\rm {\bf U}}$, $D^T$ and $D^S$ are the parameterisations of small-scale physics for momentum, |
---|
102 | temperature and salinity, and ${\rm {\bf F}}^{\rm {\bf U}}$, $F^T$ and $F^S$ surface forcing terms. |
---|
103 | Their nature and formulation are discussed in \autoref{sec:PE_zdf_ldf} and \autoref{subsec:PE_boundary_condition}. |
---|
104 | |
---|
105 | |
---|
106 | |
---|
107 | % ------------------------------------------------------------------------------------------------------------- |
---|
108 | % Boundary condition |
---|
109 | % ------------------------------------------------------------------------------------------------------------- |
---|
110 | \subsection{Boundary conditions} |
---|
111 | \label{subsec:PE_boundary_condition} |
---|
112 | |
---|
113 | An ocean is bounded by complex coastlines, bottom topography at its base and |
---|
114 | an air-sea or ice-sea interface at its top. |
---|
115 | These boundaries can be defined by two surfaces, $z=-H(i,j)$ and $z=\eta(i,j,k,t)$, |
---|
116 | where $H$ is the depth of the ocean bottom and $\eta$ is the height of the sea surface. |
---|
117 | Both $H$ and $\eta$ are usually referenced to a given surface, $z=0$, chosen as a mean sea surface |
---|
118 | (\autoref{fig:ocean_bc}). |
---|
119 | Through these two boundaries, the ocean can exchange fluxes of heat, fresh water, salt, and momentum with |
---|
120 | the solid earth, the continental margins, the sea ice and the atmosphere. |
---|
121 | However, some of these fluxes are so weak that even on climatic time scales of thousands of years |
---|
122 | they can be neglected. |
---|
123 | In the following, we briefly review the fluxes exchanged at the interfaces between the ocean and |
---|
124 | the other components of the earth system. |
---|
125 | |
---|
126 | %>>>>>>>>>>>>>>>>>>>>>>>>>>>> |
---|
127 | \begin{figure}[!ht] |
---|
128 | \begin{center} |
---|
129 | \includegraphics[width=0.90\textwidth]{Fig_I_ocean_bc} |
---|
130 | \caption{ \protect\label{fig:ocean_bc} |
---|
131 | The ocean is bounded by two surfaces, $z=-H(i,j)$ and $z=\eta(i,j,t)$, |
---|
132 | where $H$ is the depth of the sea floor and $\eta$ the height of the sea surface. |
---|
133 | Both $H$ and $\eta$ are referenced to $z=0$. |
---|
134 | } |
---|
135 | \end{center} |
---|
136 | \end{figure} |
---|
137 | %>>>>>>>>>>>>>>>>>>>>>>>>>>>> |
---|
138 | |
---|
139 | |
---|
140 | \begin{description} |
---|
141 | \item[Land - ocean interface:] |
---|
142 | the major flux between continental margins and the ocean is a mass exchange of fresh water through river runoff. |
---|
143 | Such an exchange modifies the sea surface salinity especially in the vicinity of major river mouths. |
---|
144 | It can be neglected for short range integrations but has to be taken into account for long term integrations as |
---|
145 | it influences the characteristics of water masses formed (especially at high latitudes). |
---|
146 | It is required in order to close the water cycle of the climate system. |
---|
147 | It is usually specified as a fresh water flux at the air-sea interface in the vicinity of river mouths. |
---|
148 | \item[Solid earth - ocean interface:] |
---|
149 | heat and salt fluxes through the sea floor are small, except in special areas of little extent. |
---|
150 | They are usually neglected in the model |
---|
151 | \footnote{ |
---|
152 | In fact, it has been shown that the heat flux associated with the solid Earth cooling |
---|
153 | (\ie the geothermal heating) is not negligible for the thermohaline circulation of the world ocean |
---|
154 | (see \autoref{subsec:TRA_bbc}). |
---|
155 | }. |
---|
156 | The boundary condition is thus set to no flux of heat and salt across solid boundaries. |
---|
157 | For momentum, the situation is different. There is no flow across solid boundaries, |
---|
158 | \ie the velocity normal to the ocean bottom and coastlines is zero (in other words, |
---|
159 | the bottom velocity is parallel to solid boundaries). This kinematic boundary condition |
---|
160 | can be expressed as: |
---|
161 | \begin{equation} |
---|
162 | \label{eq:PE_w_bbc} |
---|
163 | w = -{\rm {\bf U}}_h \cdot \nabla _h \left( H \right) |
---|
164 | \end{equation} |
---|
165 | In addition, the ocean exchanges momentum with the earth through frictional processes. |
---|
166 | Such momentum transfer occurs at small scales in a boundary layer. |
---|
167 | It must be parameterized in terms of turbulent fluxes using bottom and/or lateral boundary conditions. |
---|
168 | Its specification depends on the nature of the physical parameterisation used for |
---|
169 | ${\rm {\bf D}}^{\rm {\bf U}}$ in \autoref{eq:PE_dyn}. |
---|
170 | It is discussed in \autoref{eq:PE_zdf}.% and Chap. III.6 to 9. |
---|
171 | \item[Atmosphere - ocean interface:] |
---|
172 | the kinematic surface condition plus the mass flux of fresh water PE (the precipitation minus evaporation budget) |
---|
173 | leads to: |
---|
174 | \[ |
---|
175 | % \label{eq:PE_w_sbc} |
---|
176 | w = \frac{\partial \eta }{\partial t} |
---|
177 | + \left. {{\rm {\bf U}}_h } \right|_{z=\eta } \cdot \nabla _h \left( \eta \right) |
---|
178 | + P-E |
---|
179 | \] |
---|
180 | The dynamic boundary condition, neglecting the surface tension (which removes capillary waves from the system) |
---|
181 | leads to the continuity of pressure across the interface $z=\eta$. |
---|
182 | The atmosphere and ocean also exchange horizontal momentum (wind stress), and heat. |
---|
183 | \item[Sea ice - ocean interface:] |
---|
184 | the ocean and sea ice exchange heat, salt, fresh water and momentum. |
---|
185 | The sea surface temperature is constrained to be at the freezing point at the interface. |
---|
186 | Sea ice salinity is very low ($\sim4-6 \,psu$) compared to those of the ocean ($\sim34 \,psu$). |
---|
187 | The cycle of freezing/melting is associated with fresh water and salt fluxes that cannot be neglected. |
---|
188 | \end{description} |
---|
189 | |
---|
190 | |
---|
191 | %\newpage |
---|
192 | |
---|
193 | % ================================================================ |
---|
194 | % The Horizontal Pressure Gradient |
---|
195 | % ================================================================ |
---|
196 | \section{Horizontal pressure gradient } |
---|
197 | \label{sec:PE_hor_pg} |
---|
198 | |
---|
199 | % ------------------------------------------------------------------------------------------------------------- |
---|
200 | % Pressure Formulation |
---|
201 | % ------------------------------------------------------------------------------------------------------------- |
---|
202 | \subsection{Pressure formulation} |
---|
203 | \label{subsec:PE_p_formulation} |
---|
204 | |
---|
205 | The total pressure at a given depth $z$ is composed of a surface pressure $p_s$ at |
---|
206 | a reference geopotential surface ($z=0$) and a hydrostatic pressure $p_h$ such that: |
---|
207 | $p(i,j,k,t)=p_s(i,j,t)+p_h(i,j,k,t)$. |
---|
208 | The latter is computed by integrating (\autoref{eq:PE_hydrostatic}), |
---|
209 | assuming that pressure in decibars can be approximated by depth in meters in (\autoref{eq:PE_eos}). |
---|
210 | The hydrostatic pressure is then given by: |
---|
211 | \[ |
---|
212 | % \label{eq:PE_pressure} |
---|
213 | p_h \left( {i,j,z,t} \right) |
---|
214 | = \int_{\varsigma =z}^{\varsigma =0} {g\;\rho \left( {T,S,\varsigma} \right)\;d\varsigma } |
---|
215 | \] |
---|
216 | Two strategies can be considered for the surface pressure term: |
---|
217 | $(a)$ introduce of a new variable $\eta$, the free-surface elevation, |
---|
218 | for which a prognostic equation can be established and solved; |
---|
219 | $(b)$ assume that the ocean surface is a rigid lid, |
---|
220 | on which the pressure (or its horizontal gradient) can be diagnosed. |
---|
221 | When the former strategy is used, one solution of the free-surface elevation consists of |
---|
222 | the excitation of external gravity waves. |
---|
223 | The flow is barotropic and the surface moves up and down with gravity as the restoring force. |
---|
224 | The phase speed of such waves is high (some hundreds of metres per second) so that |
---|
225 | the time step would have to be very short if they were present in the model. |
---|
226 | The latter strategy filters out these waves since the rigid lid approximation implies $\eta=0$, |
---|
227 | \ie the sea surface is the surface $z=0$. |
---|
228 | This well known approximation increases the surface wave speed to infinity and |
---|
229 | modifies certain other longwave dynamics (\eg barotropic Rossby or planetary waves). |
---|
230 | The rigid-lid hypothesis is an obsolescent feature in modern OGCMs. |
---|
231 | It has been available until the release 3.1 of \NEMO, and it has been removed in release 3.2 and followings. |
---|
232 | Only the free surface formulation is now described in the this document (see the next sub-section). |
---|
233 | |
---|
234 | % ------------------------------------------------------------------------------------------------------------- |
---|
235 | % Free Surface Formulation |
---|
236 | % ------------------------------------------------------------------------------------------------------------- |
---|
237 | \subsection{Free surface formulation} |
---|
238 | \label{subsec:PE_free_surface} |
---|
239 | |
---|
240 | In the free surface formulation, a variable $\eta$, the sea-surface height, |
---|
241 | is introduced which describes the shape of the air-sea interface. |
---|
242 | This variable is solution of a prognostic equation which is established by forming the vertical average of |
---|
243 | the kinematic surface condition (\autoref{eq:PE_w_bbc}): |
---|
244 | \begin{equation} |
---|
245 | \label{eq:PE_ssh} |
---|
246 | \frac{\partial \eta }{\partial t}=-D+P-E |
---|
247 | \quad \text{where} \ |
---|
248 | D=\nabla \cdot \left[ {\left( {H+\eta } \right) \; {\rm{\bf \overline{U}}}_h \,} \right] |
---|
249 | \end{equation} |
---|
250 | and using (\autoref{eq:PE_hydrostatic}) the surface pressure is given by: $p_s = \rho \, g \, \eta$. |
---|
251 | |
---|
252 | Allowing the air-sea interface to move introduces the external gravity waves (EGWs) as |
---|
253 | a class of solution of the primitive equations. |
---|
254 | These waves are barotropic because of hydrostatic assumption, and their phase speed is quite high. |
---|
255 | Their time scale is short with respect to the other processes described by the primitive equations. |
---|
256 | |
---|
257 | Two choices can be made regarding the implementation of the free surface in the model, |
---|
258 | depending on the physical processes of interest. |
---|
259 | |
---|
260 | $\bullet$ If one is interested in EGWs, in particular the tides and their interaction with |
---|
261 | the baroclinic structure of the ocean (internal waves) possibly in shallow seas, |
---|
262 | then a non linear free surface is the most appropriate. |
---|
263 | This means that no approximation is made in (\autoref{eq:PE_ssh}) and that |
---|
264 | the variation of the ocean volume is fully taken into account. |
---|
265 | Note that in order to study the fast time scales associated with EGWs it is necessary to |
---|
266 | minimize time filtering effects |
---|
267 | (use an explicit time scheme with very small time step, or a split-explicit scheme with reasonably small time step, |
---|
268 | see \autoref{subsec:DYN_spg_exp} or \autoref{subsec:DYN_spg_ts}). |
---|
269 | |
---|
270 | $\bullet$ If one is not interested in EGW but rather sees them as high frequency noise, |
---|
271 | it is possible to apply an explicit filter to slow down the fastest waves while |
---|
272 | not altering the slow barotropic Rossby waves. |
---|
273 | If further, an approximative conservation of heat and salt contents is sufficient for the problem solved, |
---|
274 | then it is sufficient to solve a linearized version of (\autoref{eq:PE_ssh}), |
---|
275 | which still allows to take into account freshwater fluxes applied at the ocean surface \citep{Roullet_Madec_JGR00}. |
---|
276 | Nevertheless, with the linearization, an exact conservation of heat and salt contents is lost. |
---|
277 | |
---|
278 | The filtering of EGWs in models with a free surface is usually a matter of discretisation of |
---|
279 | the temporal derivatives, |
---|
280 | using a split-explicit method \citep{Killworth_al_JPO91, Zhang_Endoh_JGR92} or |
---|
281 | the implicit scheme \citep{Dukowicz1994} or |
---|
282 | the addition of a filtering force in the momentum equation \citep{Roullet_Madec_JGR00}. |
---|
283 | With the present release, \NEMO offers the choice between |
---|
284 | an explicit free surface (see \autoref{subsec:DYN_spg_exp}) or |
---|
285 | a split-explicit scheme strongly inspired the one proposed by \citet{Shchepetkin_McWilliams_OM05} |
---|
286 | (see \autoref{subsec:DYN_spg_ts}). |
---|
287 | |
---|
288 | %\newpage |
---|
289 | |
---|
290 | % ================================================================ |
---|
291 | % Curvilinear z-coordinate System |
---|
292 | % ================================================================ |
---|
293 | \section{Curvilinear \textit{z-}coordinate system} |
---|
294 | \label{sec:PE_zco} |
---|
295 | |
---|
296 | |
---|
297 | % ------------------------------------------------------------------------------------------------------------- |
---|
298 | % Tensorial Formalism |
---|
299 | % ------------------------------------------------------------------------------------------------------------- |
---|
300 | \subsection{Tensorial formalism} |
---|
301 | \label{subsec:PE_tensorial} |
---|
302 | |
---|
303 | In many ocean circulation problems, the flow field has regions of enhanced dynamics |
---|
304 | (\ie surface layers, western boundary currents, equatorial currents, or ocean fronts). |
---|
305 | The representation of such dynamical processes can be improved by |
---|
306 | specifically increasing the model resolution in these regions. |
---|
307 | As well, it may be convenient to use a lateral boundary-following coordinate system to |
---|
308 | better represent coastal dynamics. |
---|
309 | Moreover, the common geographical coordinate system has a singular point at the North Pole that |
---|
310 | cannot be easily treated in a global model without filtering. |
---|
311 | A solution consists of introducing an appropriate coordinate transformation that |
---|
312 | shifts the singular point onto land \citep{Madec_Imbard_CD96, Murray_JCP96}. |
---|
313 | As a consequence, it is important to solve the primitive equations in various curvilinear coordinate systems. |
---|
314 | An efficient way of introducing an appropriate coordinate transform can be found when using a tensorial formalism. |
---|
315 | This formalism is suited to any multidimensional curvilinear coordinate system. |
---|
316 | Ocean modellers mainly use three-dimensional orthogonal grids on the sphere (spherical earth approximation), |
---|
317 | with preservation of the local vertical. Here we give the simplified equations for this particular case. |
---|
318 | The general case is detailed by \citet{Eiseman1980} in their survey of the conservation laws of fluid dynamics. |
---|
319 | |
---|
320 | Let (\textit{i},\textit{j},\textit{k}) be a set of orthogonal curvilinear coordinates on |
---|
321 | the sphere associated with the positively oriented orthogonal set of unit vectors |
---|
322 | (\textbf{i},\textbf{j},\textbf{k}) linked to the earth such that |
---|
323 | \textbf{k} is the local upward vector and (\textbf{i},\textbf{j}) are two vectors orthogonal to \textbf{k}, |
---|
324 | \ie along geopotential surfaces (\autoref{fig:referential}). |
---|
325 | Let $(\lambda,\varphi,z)$ be the geographical coordinate system in which a position is defined by |
---|
326 | the latitude $\varphi(i,j)$, the longitude $\lambda(i,j)$ and |
---|
327 | the distance from the centre of the earth $a+z(k)$ where $a$ is the earth's radius and |
---|
328 | $z$ the altitude above a reference sea level (\autoref{fig:referential}). |
---|
329 | The local deformation of the curvilinear coordinate system is given by $e_1$, $e_2$ and $e_3$, |
---|
330 | the three scale factors: |
---|
331 | \begin{equation} |
---|
332 | \label{eq:scale_factors} |
---|
333 | \begin{aligned} |
---|
334 | e_1 &=\left( {a+z} \right)\;\left[ {\left( {\frac{\partial \lambda}{\partial i}\cos \varphi } \right)^2 |
---|
335 | +\left( {\frac{\partial \varphi }{\partial i}} \right)^2} \right]^{1/2} \\ |
---|
336 | e_2 &=\left( {a+z} \right)\;\left[ {\left( {\frac{\partial \lambda }{\partial j}\cos \varphi } \right)^2+ |
---|
337 | \left( {\frac{\partial \varphi }{\partial j}} \right)^2} \right]^{1/2} \\ |
---|
338 | e_3 &=\left( {\frac{\partial z}{\partial k}} \right) \\ |
---|
339 | \end{aligned} |
---|
340 | \end{equation} |
---|
341 | |
---|
342 | % >>>>>>>>>>>>>>>>>>>>>>>>>>>> |
---|
343 | \begin{figure}[!tb] |
---|
344 | \begin{center} |
---|
345 | \includegraphics[width=0.60\textwidth]{Fig_I_earth_referential} |
---|
346 | \caption{ \protect\label{fig:referential} |
---|
347 | the geographical coordinate system $(\lambda,\varphi,z)$ and the curvilinear |
---|
348 | coordinate system (\textbf{i},\textbf{j},\textbf{k}). } |
---|
349 | \end{center} |
---|
350 | \end{figure} |
---|
351 | %>>>>>>>>>>>>>>>>>>>>>>>>>>>> |
---|
352 | |
---|
353 | Since the ocean depth is far smaller than the earth's radius, $a+z$, can be replaced by $a$ in |
---|
354 | (\autoref{eq:scale_factors}) (thin-shell approximation). |
---|
355 | The resulting horizontal scale factors $e_1$, $e_2$ are independent of $k$ while |
---|
356 | the vertical scale factor is a single function of $k$ as \textbf{k} is parallel to \textbf{z}. |
---|
357 | The scalar and vector operators that appear in the primitive equations |
---|
358 | (\autoref{eq:PE_dyn} to \autoref{eq:PE_eos}) can be written in the tensorial form, |
---|
359 | invariant in any orthogonal horizontal curvilinear coordinate system transformation: |
---|
360 | \begin{subequations} |
---|
361 | % \label{eq:PE_discrete_operators} |
---|
362 | \begin{equation} |
---|
363 | \label{eq:PE_grad} |
---|
364 | \nabla q=\frac{1}{e_1 }\frac{\partial q}{\partial i}\;{\rm {\bf |
---|
365 | i}}+\frac{1}{e_2 }\frac{\partial q}{\partial j}\;{\rm {\bf j}}+\frac{1}{e_3 |
---|
366 | }\frac{\partial q}{\partial k}\;{\rm {\bf k}} \\ |
---|
367 | \end{equation} |
---|
368 | \begin{equation} |
---|
369 | \label{eq:PE_div} |
---|
370 | \nabla \cdot {\rm {\bf A}} |
---|
371 | = \frac{1}{e_1 \; e_2} \left[ |
---|
372 | \frac{\partial \left(e_2 \; a_1\right)}{\partial i } |
---|
373 | +\frac{\partial \left(e_1 \; a_2\right)}{\partial j } \right] |
---|
374 | + \frac{1}{e_3} \left[ \frac{\partial a_3}{\partial k } \right] |
---|
375 | \end{equation} |
---|
376 | \begin{equation} |
---|
377 | \label{eq:PE_curl} |
---|
378 | \begin{split} |
---|
379 | \nabla \times \vect{A} = |
---|
380 | \left[ {\frac{1}{e_2 }\frac{\partial a_3}{\partial j} |
---|
381 | -\frac{1}{e_3 }\frac{\partial a_2 }{\partial k}} \right] \; \vect{i} |
---|
382 | &+\left[ {\frac{1}{e_3 }\frac{\partial a_1 }{\partial k} |
---|
383 | -\frac{1}{e_1 }\frac{\partial a_3 }{\partial i}} \right] \; \vect{j} \\ |
---|
384 | &+\frac{1}{e_1 e_2 } \left[ {\frac{\partial \left( {e_2 a_2 } \right)}{\partial i} |
---|
385 | -\frac{\partial \left( {e_1 a_1 } \right)}{\partial j}} \right] \; \vect{k} |
---|
386 | \end{split} |
---|
387 | \end{equation} |
---|
388 | \begin{equation} |
---|
389 | \label{eq:PE_lap} |
---|
390 | \Delta q = \nabla \cdot \left( \nabla q \right) |
---|
391 | \end{equation} |
---|
392 | \begin{equation} |
---|
393 | \label{eq:PE_lap_vector} |
---|
394 | \Delta {\rm {\bf A}} = |
---|
395 | \nabla \left( \nabla \cdot {\rm {\bf A}} \right) |
---|
396 | - \nabla \times \left( \nabla \times {\rm {\bf A}} \right) |
---|
397 | \end{equation} |
---|
398 | \end{subequations} |
---|
399 | where $q$ is a scalar quantity and ${\rm {\bf A}}=(a_1,a_2,a_3)$ a vector in the $(i,j,k)$ coordinate system. |
---|
400 | |
---|
401 | % ------------------------------------------------------------------------------------------------------------- |
---|
402 | % Continuous Model Equations |
---|
403 | % ------------------------------------------------------------------------------------------------------------- |
---|
404 | \subsection{Continuous model equations} |
---|
405 | \label{subsec:PE_zco_Eq} |
---|
406 | |
---|
407 | In order to express the Primitive Equations in tensorial formalism, |
---|
408 | it is necessary to compute the horizontal component of the non-linear and viscous terms of the equation using |
---|
409 | \autoref{eq:PE_grad}) to \autoref{eq:PE_lap_vector}. |
---|
410 | Let us set $\vect U=(u,v,w)={\vect{U}}_h +w\;\vect{k}$, the velocity in the $(i,j,k)$ coordinate system and |
---|
411 | define the relative vorticity $\zeta$ and the divergence of the horizontal velocity field $\chi$, by: |
---|
412 | \begin{equation} |
---|
413 | \label{eq:PE_curl_Uh} |
---|
414 | \zeta =\frac{1}{e_1 e_2 }\left[ {\frac{\partial \left( {e_2 \,v} |
---|
415 | \right)}{\partial i}-\frac{\partial \left( {e_1 \,u} \right)}{\partial j}} |
---|
416 | \right] |
---|
417 | \end{equation} |
---|
418 | \begin{equation} |
---|
419 | \label{eq:PE_div_Uh} |
---|
420 | \chi =\frac{1}{e_1 e_2 }\left[ {\frac{\partial \left( {e_2 \,u} |
---|
421 | \right)}{\partial i}+\frac{\partial \left( {e_1 \,v} \right)}{\partial j}} |
---|
422 | \right] |
---|
423 | \end{equation} |
---|
424 | |
---|
425 | Using the fact that the horizontal scale factors $e_1$ and $e_2$ are independent of $k$ and that |
---|
426 | $e_3$ is a function of the single variable $k$, |
---|
427 | the nonlinear term of \autoref{eq:PE_dyn} can be transformed as follows: |
---|
428 | \begin{flalign*} |
---|
429 | &\left[ {\left( { \nabla \times {\rm {\bf U}} } \right) \times {\rm {\bf U}} |
---|
430 | +\frac{1}{2} \nabla \left( {{\rm {\bf U}}^2} \right)} \right]_h & |
---|
431 | \end{flalign*} |
---|
432 | \begin{flalign*} |
---|
433 | &\qquad=\left( {{ |
---|
434 | \begin{array}{*{20}c} |
---|
435 | {\left[ { \frac{1}{e_3} \frac{\partial u }{\partial k} |
---|
436 | -\frac{1}{e_1} \frac{\partial w }{\partial i} } \right] w - \zeta \; v } \\ |
---|
437 | {\zeta \; u - \left[ { \frac{1}{e_2} \frac{\partial w}{\partial j} |
---|
438 | -\frac{1}{e_3} \frac{\partial v}{\partial k} } \right] \ w} \\ |
---|
439 | \end{array} |
---|
440 | }} \right) |
---|
441 | +\frac{1}{2} \left( {{ |
---|
442 | \begin{array}{*{20}c} |
---|
443 | { \frac{1}{e_1} \frac{\partial \left( u^2+v^2+w^2 \right)}{\partial i}} \hfill \\ |
---|
444 | { \frac{1}{e_2} \frac{\partial \left( u^2+v^2+w^2 \right)}{\partial j}} \hfill \\ |
---|
445 | \end{array} |
---|
446 | }} \right) & |
---|
447 | \end{flalign*} |
---|
448 | \begin{flalign*} |
---|
449 | & \qquad =\left( {{ |
---|
450 | \begin{array}{*{20}c} |
---|
451 | {-\zeta \; v} \hfill \\ |
---|
452 | { \zeta \; u} \hfill \\ |
---|
453 | \end{array} |
---|
454 | }} \right) |
---|
455 | +\frac{1}{2}\left( {{ |
---|
456 | \begin{array}{*{20}c} |
---|
457 | {\frac{1}{e_1 }\frac{\partial \left( {u^2+v^2} \right)}{\partial i}} \hfill \\ |
---|
458 | {\frac{1}{e_2 }\frac{\partial \left( {u^2+v^2} \right)}{\partial j}} \hfill \\ |
---|
459 | \end{array} |
---|
460 | }} \right) |
---|
461 | +\frac{1}{e_3 }\left( {{ |
---|
462 | \begin{array}{*{20}c} |
---|
463 | { w \; \frac{\partial u}{\partial k}} \\ |
---|
464 | { w \; \frac{\partial v}{\partial k}} \\ |
---|
465 | \end{array} |
---|
466 | }} \right) |
---|
467 | -\left( {{ |
---|
468 | \begin{array}{*{20}c} |
---|
469 | {\frac{w}{e_1}\frac{\partial w}{\partial i} -\frac{1}{2e_1}\frac{\partial w^2}{\partial i}} \hfill \\ |
---|
470 | {\frac{w}{e_2}\frac{\partial w}{\partial j} -\frac{1}{2e_2}\frac{\partial w^2}{\partial j}} \hfill \\ |
---|
471 | \end{array} |
---|
472 | }} \right) & |
---|
473 | \end{flalign*} |
---|
474 | |
---|
475 | The last term of the right hand side is obviously zero, and thus the nonlinear term of |
---|
476 | \autoref{eq:PE_dyn} is written in the $(i,j,k)$ coordinate system: |
---|
477 | \begin{equation} |
---|
478 | \label{eq:PE_vector_form} |
---|
479 | \left[ {\left( { \nabla \times {\rm {\bf U}} } \right) \times {\rm {\bf U}} |
---|
480 | +\frac{1}{2} \nabla \left( {{\rm {\bf U}}^2} \right)} \right]_h |
---|
481 | =\zeta |
---|
482 | \;{\rm {\bf k}}\times {\rm {\bf U}}_h +\frac{1}{2}\nabla _h \left( {{\rm |
---|
483 | {\bf U}}_h^2 } \right)+\frac{1}{e_3 }w\frac{\partial {\rm {\bf U}}_h |
---|
484 | }{\partial k} |
---|
485 | \end{equation} |
---|
486 | |
---|
487 | This is the so-called \textit{vector invariant form} of the momentum advection term. |
---|
488 | For some purposes, it can be advantageous to write this term in the so-called flux form, |
---|
489 | \ie to write it as the divergence of fluxes. |
---|
490 | For example, the first component of \autoref{eq:PE_vector_form} (the $i$-component) is transformed as follows: |
---|
491 | \begin{flalign*} |
---|
492 | &{ |
---|
493 | \begin{array}{*{20}l} |
---|
494 | \left[ {\left( {\nabla \times \vect{U}} \right)\times \vect{U} |
---|
495 | +\frac{1}{2}\nabla \left( {\vect{U}}^2 \right)} \right]_i % \\ |
---|
496 | % \\ |
---|
497 | = - \zeta \;v |
---|
498 | + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i} |
---|
499 | + \frac{1}{e_3}w \ \frac{\partial u}{\partial k} \\ \\ |
---|
500 | \qquad =\frac{1}{e_1 \; e_2} \left( -v\frac{\partial \left( {e_2 \,v} \right)}{\partial i} |
---|
501 | +v\frac{\partial \left( {e_1 \,u} \right)}{\partial j} \right) |
---|
502 | +\frac{1}{e_1 e_2 }\left( +e_2 \; u\frac{\partial u}{\partial i} |
---|
503 | +e_2 \; v\frac{\partial v}{\partial i} \right) |
---|
504 | +\frac{1}{e_3} \left( w\;\frac{\partial u}{\partial k} \right) \\ |
---|
505 | \end{array} |
---|
506 | } & |
---|
507 | \end{flalign*} |
---|
508 | \begin{flalign*} |
---|
509 | &{ |
---|
510 | \begin{array}{*{20}l} |
---|
511 | \qquad =\frac{1}{e_1 \; e_2} \left\{ |
---|
512 | -\left( v^2 \frac{\partial e_2 }{\partial i} |
---|
513 | +e_2 \,v \frac{\partial v }{\partial i} \right) |
---|
514 | +\left( \frac{\partial \left( {e_1 \,u\,v} \right)}{\partial j} |
---|
515 | -e_1 \,u \frac{\partial v }{\partial j} \right) \right. \\ |
---|
516 | \left. \qquad \qquad \quad |
---|
517 | +\left( \frac{\partial \left( {e_2 u\,u} \right)}{\partial i} |
---|
518 | -u \frac{\partial \left( {e_2 u} \right)}{\partial i} \right) |
---|
519 | +e_2 v \frac{\partial v }{\partial i} |
---|
520 | \right\} |
---|
521 | +\frac{1}{e_3} \left( |
---|
522 | \frac{\partial \left( {w\,u} \right) }{\partial k} |
---|
523 | -u \frac{\partial w }{\partial k} \right) \\ |
---|
524 | \end{array} |
---|
525 | } & |
---|
526 | \end{flalign*} |
---|
527 | \begin{flalign*} |
---|
528 | & |
---|
529 | { |
---|
530 | \begin{array}{*{20}l} |
---|
531 | \qquad =\frac{1}{e_1 \; e_2} \left( |
---|
532 | \frac{\partial \left( {e_2 \,u\,u} \right)}{\partial i} |
---|
533 | + \frac{\partial \left( {e_1 \,u\,v} \right)}{\partial j} \right) |
---|
534 | +\frac{1}{e_3 } \frac{\partial \left( {w\,u } \right)}{\partial k} \\ |
---|
535 | \qquad \qquad \quad |
---|
536 | +\frac{1}{e_1 e_2 } \left( |
---|
537 | -u \left( \frac{\partial \left( {e_1 v } \right)}{\partial j} |
---|
538 | -v\,\frac{\partial e_1 }{\partial j} \right) |
---|
539 | -u \frac{\partial \left( {e_2 u } \right)}{\partial i} |
---|
540 | \right) |
---|
541 | -\frac{1}{e_3 } \frac{\partial w}{\partial k} u |
---|
542 | +\frac{1}{e_1 e_2 }\left( -v^2\frac{\partial e_2 }{\partial i} \right) |
---|
543 | \end{array} |
---|
544 | } & |
---|
545 | \end{flalign*} |
---|
546 | \begin{flalign*} |
---|
547 | &{ |
---|
548 | \begin{array}{*{20}l} |
---|
549 | \qquad = \nabla \cdot \left( {{\rm {\bf U}}\,u} \right) |
---|
550 | - \left( \nabla \cdot {\rm {\bf U}} \right) \ u |
---|
551 | +\frac{1}{e_1 e_2 }\left( |
---|
552 | -v^2 \frac{\partial e_2 }{\partial i} |
---|
553 | +uv \, \frac{\partial e_1 }{\partial j} \right) \\ |
---|
554 | \end{array} |
---|
555 | } & |
---|
556 | \end{flalign*} |
---|
557 | as $\nabla \cdot {\rm {\bf U}}\;=0$ (incompressibility) it comes: |
---|
558 | \begin{flalign*} |
---|
559 | &{ |
---|
560 | \begin{array}{*{20}l} |
---|
561 | \qquad = \nabla \cdot \left( {{\rm {\bf U}}\,u} \right) |
---|
562 | + \frac{1}{e_1 e_2 } \left( v \; \frac{\partial e_2}{\partial i} |
---|
563 | -u \; \frac{\partial e_1}{\partial j} \right) \left( -v \right) |
---|
564 | \end{array} |
---|
565 | } & |
---|
566 | \end{flalign*} |
---|
567 | |
---|
568 | The flux form of the momentum advection term is therefore given by: |
---|
569 | \begin{multline} |
---|
570 | \label{eq:PE_flux_form} |
---|
571 | \left[ |
---|
572 | \left( {\nabla \times {\rm {\bf U}}} \right) \times {\rm {\bf U}} |
---|
573 | +\frac{1}{2} \nabla \left( {{\rm {\bf U}}^2} \right) |
---|
574 | \right]_h \\ |
---|
575 | = \nabla \cdot \left( {{ |
---|
576 | \begin{array}{*{20}c} |
---|
577 | {\rm {\bf U}} \, u \hfill \\ |
---|
578 | {\rm {\bf U}} \, v \hfill \\ |
---|
579 | \end{array} |
---|
580 | }} |
---|
581 | \right) |
---|
582 | +\frac{1}{e_1 e_2 } \left( |
---|
583 | v\frac{\partial e_2}{\partial i} |
---|
584 | -u\frac{\partial e_1}{\partial j} |
---|
585 | \right) {\rm {\bf k}} \times {\rm {\bf U}}_h |
---|
586 | \end{multline} |
---|
587 | |
---|
588 | The flux form has two terms, |
---|
589 | the first one is expressed as the divergence of momentum fluxes (hence the flux form name given to this formulation) |
---|
590 | and the second one is due to the curvilinear nature of the coordinate system used. |
---|
591 | The latter is called the \emph{metric} term and can be viewed as a modification of the Coriolis parameter: |
---|
592 | \[ |
---|
593 | % \label{eq:PE_cor+metric} |
---|
594 | f \to f + \frac{1}{e_1\;e_2} \left( v \frac{\partial e_2}{\partial i} |
---|
595 | -u \frac{\partial e_1}{\partial j} \right) |
---|
596 | \] |
---|
597 | |
---|
598 | Note that in the case of geographical coordinate, |
---|
599 | \ie when $(i,j) \to (\lambda ,\varphi )$ and $(e_1 ,e_2) \to (a \,\cos \varphi ,a)$, |
---|
600 | we recover the commonly used modification of the Coriolis parameter $f \to f+(u/a) \tan \varphi$. |
---|
601 | |
---|
602 | To sum up, the curvilinear $z$-coordinate equations solved by the ocean model can be written in |
---|
603 | the following tensorial formalism: |
---|
604 | |
---|
605 | \vspace{+10pt} |
---|
606 | $\bullet$ \textbf{Vector invariant form of the momentum equations} : |
---|
607 | |
---|
608 | \begin{subequations} |
---|
609 | \label{eq:PE_dyn_vect} |
---|
610 | \[ |
---|
611 | % \label{eq:PE_dyn_vect_u} |
---|
612 | \begin{split} |
---|
613 | \frac{\partial u}{\partial t} |
---|
614 | = + \left( {\zeta +f} \right)\,v |
---|
615 | - \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left( u^2+v^2 \right) |
---|
616 | - \frac{1}{e_3 } w \frac{\partial u}{\partial k} & \\ |
---|
617 | - \frac{1}{e_1 } \frac{\partial}{\partial i} \left( \frac{p_s+p_h }{\rho_o} \right) |
---|
618 | &+ D_u^{\vect{U}} + F_u^{\vect{U}} \\ \\ |
---|
619 | \frac{\partial v}{\partial t} = |
---|
620 | - \left( {\zeta +f} \right)\,u |
---|
621 | - \frac{1}{2\,e_2 } \frac{\partial }{\partial j}\left( u^2+v^2 \right) |
---|
622 | - \frac{1}{e_3 } w \frac{\partial v}{\partial k} & \\ |
---|
623 | - \frac{1}{e_2 } \frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o} \right) |
---|
624 | &+ D_v^{\vect{U}} + F_v^{\vect{U}} |
---|
625 | \end{split} |
---|
626 | \] |
---|
627 | \end{subequations} |
---|
628 | |
---|
629 | |
---|
630 | \vspace{+10pt} |
---|
631 | $\bullet$ \textbf{flux form of the momentum equations} : |
---|
632 | \begin{subequations} |
---|
633 | % \label{eq:PE_dyn_flux} |
---|
634 | \begin{multline*} |
---|
635 | % \label{eq:PE_dyn_flux_u} |
---|
636 | \frac{\partial u}{\partial t}= |
---|
637 | + \left( { f + \frac{1}{e_1 \; e_2} |
---|
638 | \left( v \frac{\partial e_2}{\partial i} |
---|
639 | -u \frac{\partial e_1}{\partial j} \right)} \right) \, v \\ |
---|
640 | - \frac{1}{e_1 \; e_2} \left( |
---|
641 | \frac{\partial \left( {e_2 \,u\,u} \right)}{\partial i} |
---|
642 | + \frac{\partial \left( {e_1 \,v\,u} \right)}{\partial j} \right) |
---|
643 | - \frac{1}{e_3 }\frac{\partial \left( { w\,u} \right)}{\partial k} \\ |
---|
644 | - \frac{1}{e_1 }\frac{\partial}{\partial i}\left( \frac{p_s+p_h }{\rho_o} \right) |
---|
645 | + D_u^{\vect{U}} + F_u^{\vect{U}} |
---|
646 | \end{multline*} |
---|
647 | \begin{multline*} |
---|
648 | % \label{eq:PE_dyn_flux_v} |
---|
649 | \frac{\partial v}{\partial t}= |
---|
650 | - \left( { f + \frac{1}{e_1 \; e_2} |
---|
651 | \left( v \frac{\partial e_2}{\partial i} |
---|
652 | -u \frac{\partial e_1}{\partial j} \right)} \right) \, u \\ |
---|
653 | \frac{1}{e_1 \; e_2} \left( |
---|
654 | \frac{\partial \left( {e_2 \,u\,v} \right)}{\partial i} |
---|
655 | + \frac{\partial \left( {e_1 \,v\,v} \right)}{\partial j} \right) |
---|
656 | - \frac{1}{e_3 } \frac{\partial \left( { w\,v} \right)}{\partial k} \\ |
---|
657 | - \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o} \right) |
---|
658 | + D_v^{\vect{U}} + F_v^{\vect{U}} |
---|
659 | \end{multline*} |
---|
660 | \end{subequations} |
---|
661 | where $\zeta$, the relative vorticity, is given by \autoref{eq:PE_curl_Uh} and |
---|
662 | $p_s $, the surface pressure, is given by: |
---|
663 | \[ |
---|
664 | % \label{eq:PE_spg} |
---|
665 | p_s = \rho \,g \,\eta |
---|
666 | \] |
---|
667 | with $\eta$ is solution of \autoref{eq:PE_ssh}. |
---|
668 | |
---|
669 | The vertical velocity and the hydrostatic pressure are diagnosed from the following equations: |
---|
670 | \[ |
---|
671 | % \label{eq:w_diag} |
---|
672 | \frac{\partial w}{\partial k}=-\chi \;e_3 |
---|
673 | \] |
---|
674 | \[ |
---|
675 | % \label{eq:hp_diag} |
---|
676 | \frac{\partial p_h }{\partial k}=-\rho \;g\;e_3 |
---|
677 | \] |
---|
678 | where the divergence of the horizontal velocity, $\chi$ is given by \autoref{eq:PE_div_Uh}. |
---|
679 | |
---|
680 | \vspace{+10pt} |
---|
681 | $\bullet$ \textit{tracer equations} : |
---|
682 | \[ |
---|
683 | % \label{eq:S} |
---|
684 | \frac{\partial T}{\partial t} = |
---|
685 | -\frac{1}{e_1 e_2 }\left[ { \frac{\partial \left( {e_2 T\,u} \right)}{\partial i} |
---|
686 | +\frac{\partial \left( {e_1 T\,v} \right)}{\partial j}} \right] |
---|
687 | -\frac{1}{e_3 }\frac{\partial \left( {T\,w} \right)}{\partial k} + D^T + F^T |
---|
688 | \] |
---|
689 | \[ |
---|
690 | % \label{eq:T} |
---|
691 | \frac{\partial S}{\partial t} = |
---|
692 | -\frac{1}{e_1 e_2 }\left[ {\frac{\partial \left( {e_2 S\,u} \right)}{\partial i} |
---|
693 | +\frac{\partial \left( {e_1 S\,v} \right)}{\partial j}} \right] |
---|
694 | -\frac{1}{e_3 }\frac{\partial \left( {S\,w} \right)}{\partial k} + D^S + F^S |
---|
695 | \] |
---|
696 | \[ |
---|
697 | % \label{eq:rho} |
---|
698 | \rho =\rho \left( {T,S,z(k)} \right) |
---|
699 | \] |
---|
700 | |
---|
701 | The expression of \textbf{D}$^{U}$, $D^{S}$ and $D^{T}$ depends on the subgrid scale parameterisation used. |
---|
702 | It will be defined in \autoref{eq:PE_zdf}. |
---|
703 | The nature and formulation of ${\rm {\bf F}}^{\rm {\bf U}}$, $F^T$ and $F^S$, the surface forcing terms, |
---|
704 | are discussed in \autoref{chap:SBC}. |
---|
705 | |
---|
706 | |
---|
707 | \newpage |
---|
708 | |
---|
709 | % ================================================================ |
---|
710 | % Curvilinear generalised vertical coordinate System |
---|
711 | % ================================================================ |
---|
712 | \section{Curvilinear generalised vertical coordinate system} |
---|
713 | \label{sec:PE_gco} |
---|
714 | |
---|
715 | The ocean domain presents a huge diversity of situation in the vertical. |
---|
716 | First the ocean surface is a time dependent surface (moving surface). |
---|
717 | Second the ocean floor depends on the geographical position, |
---|
718 | varying from more than 6,000 meters in abyssal trenches to zero at the coast. |
---|
719 | Last but not least, the ocean stratification exerts a strong barrier to vertical motions and mixing. |
---|
720 | Therefore, in order to represent the ocean with respect to |
---|
721 | the first point a space and time dependent vertical coordinate that follows the variation of the sea surface height |
---|
722 | \eg an \zstar-coordinate; |
---|
723 | for the second point, a space variation to fit the change of bottom topography |
---|
724 | \eg a terrain-following or $\sigma$-coordinate; |
---|
725 | and for the third point, one will be tempted to use a space and time dependent coordinate that |
---|
726 | follows the isopycnal surfaces, \eg an isopycnic coordinate. |
---|
727 | |
---|
728 | In order to satisfy two or more constrains one can even be tempted to mixed these coordinate systems, as in |
---|
729 | HYCOM (mixture of $z$-coordinate at the surface, isopycnic coordinate in the ocean interior and $\sigma$ at |
---|
730 | the ocean bottom) \citep{Chassignet_al_JPO03} or |
---|
731 | OPA (mixture of $z$-coordinate in vicinity the surface and steep topography areas and $\sigma$-coordinate elsewhere) |
---|
732 | \citep{Madec_al_JPO96} among others. |
---|
733 | |
---|
734 | In fact one is totally free to choose any space and time vertical coordinate by |
---|
735 | introducing an arbitrary vertical coordinate : |
---|
736 | \begin{equation} |
---|
737 | \label{eq:PE_s} |
---|
738 | s=s(i,j,k,t) |
---|
739 | \end{equation} |
---|
740 | with the restriction that the above equation gives a single-valued monotonic relationship between $s$ and $k$, |
---|
741 | when $i$, $j$ and $t$ are held fixed. |
---|
742 | \autoref{eq:PE_s} is a transformation from the $(i,j,k,t)$ coordinate system with independent variables into |
---|
743 | the $(i,j,s,t)$ generalised coordinate system with $s$ depending on the other three variables through |
---|
744 | \autoref{eq:PE_s}. |
---|
745 | This so-called \textit{generalised vertical coordinate} \citep{Kasahara_MWR74} is in fact |
---|
746 | an Arbitrary Lagrangian--Eulerian (ALE) coordinate. |
---|
747 | Indeed, choosing an expression for $s$ is an arbitrary choice that determines |
---|
748 | which part of the vertical velocity (defined from a fixed referential) will cross the levels (Eulerian part) and |
---|
749 | which part will be used to move them (Lagrangian part). |
---|
750 | The coordinate is also sometime referenced as an adaptive coordinate \citep{Hofmeister_al_OM09}, |
---|
751 | since the coordinate system is adapted in the course of the simulation. |
---|
752 | Its most often used implementation is via an ALE algorithm, |
---|
753 | in which a pure lagrangian step is followed by regridding and remapping steps, |
---|
754 | the later step implicitly embedding the vertical advection |
---|
755 | \citep{Hirt_al_JCP74, Chassignet_al_JPO03, White_al_JCP09}. |
---|
756 | Here we follow the \citep{Kasahara_MWR74} strategy: |
---|
757 | a regridding step (an update of the vertical coordinate) followed by an eulerian step with |
---|
758 | an explicit computation of vertical advection relative to the moving s-surfaces. |
---|
759 | |
---|
760 | %\gmcomment{ |
---|
761 | |
---|
762 | %A key point here is that the $s$-coordinate depends on $(i,j)$ ==> horizontal pressure gradient... |
---|
763 | |
---|
764 | the generalized vertical coordinates used in ocean modelling are not orthogonal, |
---|
765 | which contrasts with many other applications in mathematical physics. |
---|
766 | Hence, it is useful to keep in mind the following properties that may seem odd on initial encounter. |
---|
767 | |
---|
768 | The horizontal velocity in ocean models measures motions in the horizontal plane, |
---|
769 | perpendicular to the local gravitational field. |
---|
770 | That is, horizontal velocity is mathematically the same regardless the vertical coordinate, be it geopotential, |
---|
771 | isopycnal, pressure, or terrain following. |
---|
772 | The key motivation for maintaining the same horizontal velocity component is that |
---|
773 | the hydrostatic and geostrophic balances are dominant in the large-scale ocean. |
---|
774 | Use of an alternative quasi-horizontal velocity, for example one oriented parallel to the generalized surface, |
---|
775 | would lead to unacceptable numerical errors. |
---|
776 | Correspondingly, the vertical direction is anti-parallel to the gravitational force in |
---|
777 | all of the coordinate systems. |
---|
778 | We do not choose the alternative of a quasi-vertical direction oriented normal to |
---|
779 | the surface of a constant generalized vertical coordinate. |
---|
780 | |
---|
781 | It is the method used to measure transport across the generalized vertical coordinate surfaces which differs between |
---|
782 | the vertical coordinate choices. |
---|
783 | That is, computation of the dia-surface velocity component represents the fundamental distinction between |
---|
784 | the various coordinates. |
---|
785 | In some models, such as geopotential, pressure, and terrain following, this transport is typically diagnosed from |
---|
786 | volume or mass conservation. |
---|
787 | In other models, such as isopycnal layered models, this transport is prescribed based on assumptions about |
---|
788 | the physical processes producing a flux across the layer interfaces. |
---|
789 | |
---|
790 | |
---|
791 | In this section we first establish the PE in the generalised vertical $s$-coordinate, |
---|
792 | then we discuss the particular cases available in \NEMO, namely $z$, \zstar, $s$, and \ztilde. |
---|
793 | %} |
---|
794 | |
---|
795 | % ------------------------------------------------------------------------------------------------------------- |
---|
796 | % The s-coordinate Formulation |
---|
797 | % ------------------------------------------------------------------------------------------------------------- |
---|
798 | \subsection{\textit{S-}coordinate formulation} |
---|
799 | |
---|
800 | Starting from the set of equations established in \autoref{sec:PE_zco} for the special case $k=z$ and thus $e_3=1$, |
---|
801 | we introduce an arbitrary vertical coordinate $s=s(i,j,k,t)$, |
---|
802 | which includes $z$-, \zstar- and $\sigma-$coordinates as special cases |
---|
803 | ($s=z$, $s=\zstar$, and $s=\sigma=z/H$ or $=z/\left(H+\eta \right)$, resp.). |
---|
804 | A formal derivation of the transformed equations is given in \autoref{apdx:A}. |
---|
805 | Let us define the vertical scale factor by $e_3=\partial_s z$ ($e_3$ is now a function of $(i,j,k,t)$ ), |
---|
806 | and the slopes in the (\textbf{i},\textbf{j}) directions between $s-$ and $z-$surfaces by: |
---|
807 | \begin{equation} |
---|
808 | \label{eq:PE_sco_slope} |
---|
809 | \sigma_1 =\frac{1}{e_1 }\;\left. {\frac{\partial z}{\partial i}} \right|_s |
---|
810 | \quad \text{, and } \quad |
---|
811 | \sigma_2 =\frac{1}{e_2 }\;\left. {\frac{\partial z}{\partial j}} \right|_s |
---|
812 | \end{equation} |
---|
813 | We also introduce $\omega $, a dia-surface velocity component, defined as the velocity |
---|
814 | relative to the moving $s$-surfaces and normal to them: |
---|
815 | \[ |
---|
816 | % \label{eq:PE_sco_w} |
---|
817 | \omega = w - e_3 \, \frac{\partial s}{\partial t} - \sigma_1 \,u - \sigma_2 \,v \\ |
---|
818 | \] |
---|
819 | |
---|
820 | The equations solved by the ocean model \autoref{eq:PE} in $s-$coordinate can be written as follows |
---|
821 | (see \autoref{sec:A_momentum}): |
---|
822 | |
---|
823 | \vspace{0.5cm} |
---|
824 | $\bullet$ Vector invariant form of the momentum equation : |
---|
825 | \begin{multline*} |
---|
826 | % \label{eq:PE_sco_u_vector} |
---|
827 | \frac{\partial u }{\partial t}= |
---|
828 | + \left( {\zeta +f} \right)\,v |
---|
829 | - \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left( u^2+v^2 \right) |
---|
830 | - \frac{1}{e_3} \omega \frac{\partial u}{\partial k} \\ |
---|
831 | - \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho_o} \right) |
---|
832 | + g\frac{\rho }{\rho_o}\sigma_1 |
---|
833 | + D_u^{\vect{U}} + F_u^{\vect{U}} \quad |
---|
834 | \end{multline*} |
---|
835 | \begin{multline*} |
---|
836 | % \label{eq:PE_sco_v_vector} |
---|
837 | \frac{\partial v }{\partial t}= |
---|
838 | - \left( {\zeta +f} \right)\,u |
---|
839 | - \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left( u^2+v^2 \right) |
---|
840 | - \frac{1}{e_3 } \omega \frac{\partial v}{\partial k} \\ |
---|
841 | - \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o} \right) |
---|
842 | + g\frac{\rho }{\rho_o }\sigma_2 |
---|
843 | + D_v^{\vect{U}} + F_v^{\vect{U}} \quad |
---|
844 | \end{multline*} |
---|
845 | |
---|
846 | \vspace{0.5cm} |
---|
847 | $\bullet$ Flux form of the momentum equation : |
---|
848 | \begin{multline*} |
---|
849 | % \label{eq:PE_sco_u_flux} |
---|
850 | \frac{1}{e_3} \frac{\partial \left( e_3\,u \right) }{\partial t}= |
---|
851 | + \left( { f + \frac{1}{e_1 \; e_2 } |
---|
852 | \left( v \frac{\partial e_2}{\partial i} |
---|
853 | -u \frac{\partial e_1}{\partial j} \right)} \right) \, v \\ |
---|
854 | - \frac{1}{e_1 \; e_2 \; e_3 } \left( |
---|
855 | \frac{\partial \left( {e_2 \, e_3 \, u\,u} \right)}{\partial i} |
---|
856 | + \frac{\partial \left( {e_1 \, e_3 \, v\,u} \right)}{\partial j} \right) |
---|
857 | - \frac{1}{e_3 }\frac{\partial \left( { \omega\,u} \right)}{\partial k} \\ |
---|
858 | - \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho_o} \right) |
---|
859 | + g\frac{\rho }{\rho_o}\sigma_1 |
---|
860 | + D_u^{\vect{U}} + F_u^{\vect{U}} \quad |
---|
861 | \end{multline*} |
---|
862 | \begin{multline*} |
---|
863 | % \label{eq:PE_sco_v_flux} |
---|
864 | \frac{1}{e_3} \frac{\partial \left( e_3\,v \right) }{\partial t}= |
---|
865 | - \left( { f + \frac{1}{e_1 \; e_2} |
---|
866 | \left( v \frac{\partial e_2}{\partial i} |
---|
867 | -u \frac{\partial e_1}{\partial j} \right)} \right) \, u \\ |
---|
868 | - \frac{1}{e_1 \; e_2 \; e_3 } \left( |
---|
869 | \frac{\partial \left( {e_2 \; e_3 \,u\,v} \right)}{\partial i} |
---|
870 | + \frac{\partial \left( {e_1 \; e_3 \,v\,v} \right)}{\partial j} \right) |
---|
871 | - \frac{1}{e_3 } \frac{\partial \left( { \omega\,v} \right)}{\partial k} \\ |
---|
872 | - \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o} \right) |
---|
873 | + g\frac{\rho }{\rho_o }\sigma_2 |
---|
874 | + D_v^{\vect{U}} + F_v^{\vect{U}} \quad |
---|
875 | \end{multline*} |
---|
876 | |
---|
877 | where the relative vorticity, \textit{$\zeta $}, the surface pressure gradient, |
---|
878 | and the hydrostatic pressure have the same expressions as in $z$-coordinates although |
---|
879 | they do not represent exactly the same quantities. |
---|
880 | $\omega$ is provided by the continuity equation (see \autoref{apdx:A}): |
---|
881 | \[ |
---|
882 | % \label{eq:PE_sco_continuity} |
---|
883 | \frac{\partial e_3}{\partial t} + e_3 \; \chi + \frac{\partial \omega }{\partial s} = 0 |
---|
884 | \qquad \text{with }\;\; |
---|
885 | \chi =\frac{1}{e_1 e_2 e_3 }\left[ {\frac{\partial \left( {e_2 e_3 \,u} |
---|
886 | \right)}{\partial i}+\frac{\partial \left( {e_1 e_3 \,v} \right)}{\partial |
---|
887 | j}} \right] |
---|
888 | \] |
---|
889 | |
---|
890 | \vspace{0.5cm} |
---|
891 | $\bullet$ tracer equations: |
---|
892 | \begin{multline*} |
---|
893 | % \label{eq:PE_sco_t} |
---|
894 | \frac{1}{e_3} \frac{\partial \left( e_3\,T \right) }{\partial t}= |
---|
895 | -\frac{1}{e_1 e_2 e_3 }\left[ {\frac{\partial \left( {e_2 e_3\,u\,T} \right)}{\partial i} |
---|
896 | +\frac{\partial \left( {e_1 e_3\,v\,T} \right)}{\partial j}} \right] \\ |
---|
897 | -\frac{1}{e_3 }\frac{\partial \left( {T\,\omega } \right)}{\partial k} + D^T + F^S \qquad |
---|
898 | \end{multline*} |
---|
899 | |
---|
900 | \begin{multline*} |
---|
901 | % \label{eq:PE_sco_s} |
---|
902 | \frac{1}{e_3} \frac{\partial \left( e_3\,S \right) }{\partial t}= |
---|
903 | -\frac{1}{e_1 e_2 e_3 }\left[ {\frac{\partial \left( {e_2 e_3\,u\,S} \right)}{\partial i} |
---|
904 | +\frac{\partial \left( {e_1 e_3\,v\,S} \right)}{\partial j}} \right] \\ |
---|
905 | -\frac{1}{e_3 }\frac{\partial \left( {S\,\omega } \right)}{\partial k} + D^S + F^S \qquad |
---|
906 | \end{multline*} |
---|
907 | |
---|
908 | The equation of state has the same expression as in $z$-coordinate, |
---|
909 | and similar expressions are used for mixing and forcing terms. |
---|
910 | |
---|
911 | \gmcomment{ |
---|
912 | \colorbox{yellow}{ to be updated $= = >$} |
---|
913 | Add a few works on z and zps and s and underlies the differences between all of them |
---|
914 | \colorbox{yellow}{ $< = =$ end update} } |
---|
915 | |
---|
916 | |
---|
917 | |
---|
918 | % ------------------------------------------------------------------------------------------------------------- |
---|
919 | % Curvilinear \zstar-coordinate System |
---|
920 | % ------------------------------------------------------------------------------------------------------------- |
---|
921 | \subsection{Curvilinear \zstar--coordinate system} |
---|
922 | \label{subsec:PE_zco_star} |
---|
923 | |
---|
924 | %>>>>>>>>>>>>>>>>>>>>>>>>>>>> |
---|
925 | \begin{figure}[!b] |
---|
926 | \begin{center} |
---|
927 | \includegraphics[width=1.0\textwidth]{Fig_z_zstar} |
---|
928 | \caption{ \protect\label{fig:z_zstar} |
---|
929 | (a) $z$-coordinate in linear free-surface case ; |
---|
930 | (b) $z-$coordinate in non-linear free surface case ; |
---|
931 | (c) re-scaled height coordinate (become popular as the \zstar-coordinate |
---|
932 | \citep{Adcroft_Campin_OM04} ). |
---|
933 | } |
---|
934 | \end{center} |
---|
935 | \end{figure} |
---|
936 | %>>>>>>>>>>>>>>>>>>>>>>>>>>>> |
---|
937 | |
---|
938 | |
---|
939 | In that case, the free surface equation is nonlinear, and the variations of volume are fully taken into account. |
---|
940 | These coordinates systems is presented in a report \citep{Levier2007} available on the \NEMO web site. |
---|
941 | |
---|
942 | %\gmcomment{ |
---|
943 | The \zstar coordinate approach is an unapproximated, non-linear free surface implementation which allows one to |
---|
944 | deal with large amplitude free-surface variations relative to the vertical resolution \citep{Adcroft_Campin_OM04}. |
---|
945 | In the \zstar formulation, |
---|
946 | the variation of the column thickness due to sea-surface undulations is not concentrated in the surface level, |
---|
947 | as in the $z$-coordinate formulation, but is equally distributed over the full water column. |
---|
948 | Thus vertical levels naturally follow sea-surface variations, with a linear attenuation with depth, |
---|
949 | as illustrated by figure fig.1c. |
---|
950 | Note that with a flat bottom, such as in fig.1c, the bottom-following $z$ coordinate and \zstar are equivalent. |
---|
951 | The definition and modified oceanic equations for the rescaled vertical coordinate \zstar, |
---|
952 | including the treatment of fresh-water flux at the surface, are detailed in Adcroft and Campin (2004). |
---|
953 | The major points are summarized here. |
---|
954 | The position ( \zstar) and vertical discretization (\zstar) are expressed as: |
---|
955 | \[ |
---|
956 | % \label{eq:z-star} |
---|
957 | H + \zstar = (H + z) / r \quad \text{and} \ \delta \zstar = \delta z / r \quad \text{with} \ r = \frac{H+\eta} {H} |
---|
958 | \] |
---|
959 | Since the vertical displacement of the free surface is incorporated in the vertical coordinate \zstar, |
---|
960 | the upper and lower boundaries are at fixed \zstar position, |
---|
961 | $\zstar = 0$ and $\zstar = -H$ respectively. |
---|
962 | Also the divergence of the flow field is no longer zero as shown by the continuity equation: |
---|
963 | \[ |
---|
964 | \frac{\partial r}{\partial t} = \nabla_{\zstar} \cdot \left( r \; \rm{\bf U}_h \right) |
---|
965 | \left( r \; w\textit{*} \right) = 0 |
---|
966 | \] |
---|
967 | %} |
---|
968 | |
---|
969 | |
---|
970 | % from MOM4p1 documentation |
---|
971 | |
---|
972 | To overcome problems with vanishing surface and/or bottom cells, we consider the zstar coordinate |
---|
973 | \[ |
---|
974 | % \label{eq:PE_} |
---|
975 | z^\star = H \left( \frac{z-\eta}{H+\eta} \right) |
---|
976 | \] |
---|
977 | |
---|
978 | This coordinate is closely related to the "eta" coordinate used in many atmospheric models |
---|
979 | (see Black (1994) for a review of eta coordinate atmospheric models). |
---|
980 | It was originally used in ocean models by Stacey et al. (1995) for studies of tides next to shelves, |
---|
981 | and it has been recently promoted by Adcroft and Campin (2004) for global climate modelling. |
---|
982 | |
---|
983 | The surfaces of constant $z^\star$ are quasi-horizontal. |
---|
984 | Indeed, the $z^\star$ coordinate reduces to $z$ when $\eta$ is zero. |
---|
985 | In general, when noting the large differences between |
---|
986 | undulations of the bottom topography versus undulations in the surface height, |
---|
987 | it is clear that surfaces constant $z^\star$ are very similar to the depth surfaces. |
---|
988 | These properties greatly reduce difficulties of computing the horizontal pressure gradient relative to |
---|
989 | terrain following sigma models discussed in \autoref{subsec:PE_sco}. |
---|
990 | Additionally, since $z^\star$ when $\eta = 0$, |
---|
991 | no flow is spontaneously generated in an unforced ocean starting from rest, regardless the bottom topography. |
---|
992 | This behaviour is in contrast to the case with "s"-models, where pressure gradient errors in the presence of |
---|
993 | nontrivial topographic variations can generate nontrivial spontaneous flow from a resting state, |
---|
994 | depending on the sophistication of the pressure gradient solver. |
---|
995 | The quasi-horizontal nature of the coordinate surfaces also facilitates the implementation of |
---|
996 | neutral physics parameterizations in $z^\star$ models using the same techniques as in $z$-models |
---|
997 | (see Chapters 13-16 of \cite{Griffies_Bk04}) for a discussion of neutral physics in $z$-models, |
---|
998 | as well as \autoref{sec:LDF_slp} in this document for treatment in \NEMO). |
---|
999 | |
---|
1000 | The range over which $z^\star$ varies is time independent $-H \leq z^\star \leq 0$. |
---|
1001 | Hence, all cells remain nonvanishing, so long as the surface height maintains $\eta > ?H$. |
---|
1002 | This is a minor constraint relative to that encountered on the surface height when using $s = z$ or $s = z - \eta$. |
---|
1003 | |
---|
1004 | Because $z^\star$ has a time independent range, all grid cells have static increments ds, |
---|
1005 | and the sum of the ver tical increments yields the time independent ocean depth. %k ds = H. |
---|
1006 | The $z^\star$ coordinate is therefore invisible to undulations of the free surface, |
---|
1007 | since it moves along with the free surface. |
---|
1008 | This proper ty means that no spurious vertical transport is induced across surfaces of constant $z^\star$ by |
---|
1009 | the motion of external gravity waves. |
---|
1010 | Such spurious transpor t can be a problem in z-models, especially those with tidal forcing. |
---|
1011 | Quite generally, the time independent range for the $z^\star$ coordinate is a very convenient property that |
---|
1012 | allows for a nearly arbitrary ver tical resolution even in the presence of large amplitude fluctuations of |
---|
1013 | the surface height, again so long as $\eta > -H$. |
---|
1014 | |
---|
1015 | %end MOM doc %%% |
---|
1016 | |
---|
1017 | |
---|
1018 | |
---|
1019 | \newpage |
---|
1020 | |
---|
1021 | % ------------------------------------------------------------------------------------------------------------- |
---|
1022 | % Terrain following coordinate System |
---|
1023 | % ------------------------------------------------------------------------------------------------------------- |
---|
1024 | \subsection{Curvilinear terrain-following \textit{s}--coordinate} |
---|
1025 | \label{subsec:PE_sco} |
---|
1026 | |
---|
1027 | % ------------------------------------------------------------------------------------------------------------- |
---|
1028 | % Introduction |
---|
1029 | % ------------------------------------------------------------------------------------------------------------- |
---|
1030 | \subsubsection{Introduction} |
---|
1031 | |
---|
1032 | Several important aspects of the ocean circulation are influenced by bottom topography. |
---|
1033 | Of course, the most important is that bottom topography determines deep ocean sub-basins, barriers, sills and |
---|
1034 | channels that strongly constrain the path of water masses, but more subtle effects exist. |
---|
1035 | For example, the topographic $\beta$-effect is usually larger than the planetary one along continental slopes. |
---|
1036 | Topographic Rossby waves can be excited and can interact with the mean current. |
---|
1037 | In the $z-$coordinate system presented in the previous section (\autoref{sec:PE_zco}), |
---|
1038 | $z-$surfaces are geopotential surfaces. |
---|
1039 | The bottom topography is discretised by steps. |
---|
1040 | This often leads to a misrepresentation of a gradually sloping bottom and to |
---|
1041 | large localized depth gradients associated with large localized vertical velocities. |
---|
1042 | The response to such a velocity field often leads to numerical dispersion effects. |
---|
1043 | One solution to strongly reduce this error is to use a partial step representation of bottom topography instead of |
---|
1044 | a full step one \cite{Pacanowski_Gnanadesikan_MWR98}. |
---|
1045 | Another solution is to introduce a terrain-following coordinate system (hereafter $s-$coordinate). |
---|
1046 | |
---|
1047 | The $s$-coordinate avoids the discretisation error in the depth field since the layers of |
---|
1048 | computation are gradually adjusted with depth to the ocean bottom. |
---|
1049 | Relatively small topographic features as well as gentle, large-scale slopes of the sea floor in the deep ocean, |
---|
1050 | which would be ignored in typical $z$-model applications with the largest grid spacing at greatest depths, |
---|
1051 | can easily be represented (with relatively low vertical resolution). |
---|
1052 | A terrain-following model (hereafter $s-$model) also facilitates the modelling of the boundary layer flows over |
---|
1053 | a large depth range, which in the framework of the $z$-model would require high vertical resolution over |
---|
1054 | the whole depth range. |
---|
1055 | Moreover, with a $s$-coordinate it is possible, at least in principle, to have the bottom and the sea surface as |
---|
1056 | the only boundaries of the domain (no more lateral boundary condition to specify). |
---|
1057 | Nevertheless, a $s$-coordinate also has its drawbacks. Perfectly adapted to a homogeneous ocean, |
---|
1058 | it has strong limitations as soon as stratification is introduced. |
---|
1059 | The main two problems come from the truncation error in the horizontal pressure gradient and |
---|
1060 | a possibly increased diapycnal diffusion. |
---|
1061 | The horizontal pressure force in $s$-coordinate consists of two terms (see \autoref{apdx:A}), |
---|
1062 | |
---|
1063 | \begin{equation} |
---|
1064 | \label{eq:PE_p_sco} |
---|
1065 | \left. {\nabla p} \right|_z =\left. {\nabla p} \right|_s -\frac{\partial |
---|
1066 | p}{\partial s}\left. {\nabla z} \right|_s |
---|
1067 | \end{equation} |
---|
1068 | |
---|
1069 | The second term in \autoref{eq:PE_p_sco} depends on the tilt of the coordinate surface and |
---|
1070 | introduces a truncation error that is not present in a $z$-model. |
---|
1071 | In the special case of a $\sigma-$coordinate (\ie depth-normalised coordinate system $\sigma = z/H$), |
---|
1072 | \citet{Haney1991} and \citet{Beckmann1993} have given estimates of the magnitude of this truncation error. |
---|
1073 | It depends on topographic slope, stratification, horizontal and vertical resolution, the equation of state, |
---|
1074 | and the finite difference scheme. |
---|
1075 | This error limits the possible topographic slopes that a model can handle at |
---|
1076 | a given horizontal and vertical resolution. |
---|
1077 | This is a severe restriction for large-scale applications using realistic bottom topography. |
---|
1078 | The large-scale slopes require high horizontal resolution, and the computational cost becomes prohibitive. |
---|
1079 | This problem can be at least partially overcome by mixing $s$-coordinate and |
---|
1080 | step-like representation of bottom topography \citep{Gerdes1993a,Gerdes1993b,Madec_al_JPO96}. |
---|
1081 | However, the definition of the model domain vertical coordinate becomes then a non-trivial thing for |
---|
1082 | a realistic bottom topography: |
---|
1083 | a envelope topography is defined in $s$-coordinate on which a full or |
---|
1084 | partial step bottom topography is then applied in order to adjust the model depth to the observed one |
---|
1085 | (see \autoref{sec:DOM_zgr}. |
---|
1086 | |
---|
1087 | For numerical reasons a minimum of diffusion is required along the coordinate surfaces of any finite difference model. |
---|
1088 | It causes spurious diapycnal mixing when coordinate surfaces do not coincide with isoneutral surfaces. |
---|
1089 | This is the case for a $z$-model as well as for a $s$-model. |
---|
1090 | However, density varies more strongly on $s-$surfaces than on horizontal surfaces in regions of |
---|
1091 | large topographic slopes, implying larger diapycnal diffusion in a $s$-model than in a $z$-model. |
---|
1092 | Whereas such a diapycnal diffusion in a $z$-model tends to weaken horizontal density (pressure) gradients and thus |
---|
1093 | the horizontal circulation, it usually reinforces these gradients in a $s$-model, creating spurious circulation. |
---|
1094 | For example, imagine an isolated bump of topography in an ocean at rest with a horizontally uniform stratification. |
---|
1095 | Spurious diffusion along $s$-surfaces will induce a bump of isoneutral surfaces over the topography, |
---|
1096 | and thus will generate there a baroclinic eddy. |
---|
1097 | In contrast, the ocean will stay at rest in a $z$-model. |
---|
1098 | As for the truncation error, the problem can be reduced by introducing the terrain-following coordinate below |
---|
1099 | the strongly stratified portion of the water column (\ie the main thermocline) \citep{Madec_al_JPO96}. |
---|
1100 | An alternate solution consists of rotating the lateral diffusive tensor to geopotential or to isoneutral surfaces |
---|
1101 | (see \autoref{subsec:PE_ldf}). |
---|
1102 | Unfortunately, the slope of isoneutral surfaces relative to the $s$-surfaces can very large, |
---|
1103 | strongly exceeding the stability limit of such a operator when it is discretized (see \autoref{chap:LDF}). |
---|
1104 | |
---|
1105 | The $s-$coordinates introduced here \citep{Lott_al_OM90,Madec_al_JPO96} differ mainly in two aspects from |
---|
1106 | similar models: |
---|
1107 | it allows a representation of bottom topography with mixed full or partial step-like/terrain following topography; |
---|
1108 | It also offers a completely general transformation, $s=s(i,j,z)$ for the vertical coordinate. |
---|
1109 | |
---|
1110 | |
---|
1111 | \newpage |
---|
1112 | |
---|
1113 | % ------------------------------------------------------------------------------------------------------------- |
---|
1114 | % Curvilinear z-tilde coordinate System |
---|
1115 | % ------------------------------------------------------------------------------------------------------------- |
---|
1116 | \subsection{\texorpdfstring{Curvilinear \ztilde--coordinate}{}} |
---|
1117 | \label{subsec:PE_zco_tilde} |
---|
1118 | |
---|
1119 | The \ztilde-coordinate has been developed by \citet{Leclair_Madec_OM11}. |
---|
1120 | It is available in \NEMO since the version 3.4. |
---|
1121 | Nevertheless, it is currently not robust enough to be used in all possible configurations. |
---|
1122 | Its use is therefore not recommended. |
---|
1123 | |
---|
1124 | |
---|
1125 | \newpage |
---|
1126 | |
---|
1127 | % ================================================================ |
---|
1128 | % Subgrid Scale Physics |
---|
1129 | % ================================================================ |
---|
1130 | \section{Subgrid scale physics} |
---|
1131 | \label{sec:PE_zdf_ldf} |
---|
1132 | |
---|
1133 | The primitive equations describe the behaviour of a geophysical fluid at space and time scales larger than |
---|
1134 | a few kilometres in the horizontal, a few meters in the vertical and a few minutes. |
---|
1135 | They are usually solved at larger scales: the specified grid spacing and time step of the numerical model. |
---|
1136 | The effects of smaller scale motions (coming from the advective terms in the Navier-Stokes equations) must be represented entirely in terms of large-scale patterns to close the equations. |
---|
1137 | These effects appear in the equations as the divergence of turbulent fluxes |
---|
1138 | (\ie fluxes associated with the mean correlation of small scale perturbations). |
---|
1139 | Assuming a turbulent closure hypothesis is equivalent to choose a formulation for these fluxes. |
---|
1140 | It is usually called the subgrid scale physics. |
---|
1141 | It must be emphasized that this is the weakest part of the primitive equations, |
---|
1142 | but also one of the most important for long-term simulations as |
---|
1143 | small scale processes \textit{in fine} balance the surface input of kinetic energy and heat. |
---|
1144 | |
---|
1145 | The control exerted by gravity on the flow induces a strong anisotropy between the lateral and vertical motions. |
---|
1146 | Therefore subgrid-scale physics \textbf{D}$^{\vect{U}}$, $D^{S}$ and $D^{T}$ in |
---|
1147 | \autoref{eq:PE_dyn}, \autoref{eq:PE_tra_T} and \autoref{eq:PE_tra_S} are divided into |
---|
1148 | a lateral part \textbf{D}$^{l \vect{U}}$, $D^{lS}$ and $D^{lT}$ and |
---|
1149 | a vertical part \textbf{D}$^{vU}$, $D^{vS}$ and $D^{vT}$. |
---|
1150 | The formulation of these terms and their underlying physics are briefly discussed in the next two subsections. |
---|
1151 | |
---|
1152 | % ------------------------------------------------------------------------------------------------------------- |
---|
1153 | % Vertical Subgrid Scale Physics |
---|
1154 | % ------------------------------------------------------------------------------------------------------------- |
---|
1155 | \subsection{Vertical subgrid scale physics} |
---|
1156 | \label{subsec:PE_zdf} |
---|
1157 | |
---|
1158 | The model resolution is always larger than the scale at which the major sources of vertical turbulence occur |
---|
1159 | (shear instability, internal wave breaking...). |
---|
1160 | Turbulent motions are thus never explicitly solved, even partially, but always parameterized. |
---|
1161 | The vertical turbulent fluxes are assumed to depend linearly on the gradients of large-scale quantities |
---|
1162 | (for example, the turbulent heat flux is given by $\overline{T'w'}=-A^{vT} \partial_z \overline T$, |
---|
1163 | where $A^{vT}$ is an eddy coefficient). |
---|
1164 | This formulation is analogous to that of molecular diffusion and dissipation. |
---|
1165 | This is quite clearly a necessary compromise: considering only the molecular viscosity acting on |
---|
1166 | large scale severely underestimates the role of turbulent diffusion and dissipation, |
---|
1167 | while an accurate consideration of the details of turbulent motions is simply impractical. |
---|
1168 | The resulting vertical momentum and tracer diffusive operators are of second order: |
---|
1169 | \begin{equation} |
---|
1170 | \label{eq:PE_zdf} |
---|
1171 | \begin{split} |
---|
1172 | {\vect{D}}^{v \vect{U}} &=\frac{\partial }{\partial z}\left( {A^{vm}\frac{\partial {\vect{U}}_h }{\partial z}} \right) \ , \\ |
---|
1173 | D^{vT} &= \frac{\partial }{\partial z}\left( {A^{vT}\frac{\partial T}{\partial z}} \right) \ , |
---|
1174 | \quad |
---|
1175 | D^{vS}=\frac{\partial }{\partial z}\left( {A^{vT}\frac{\partial S}{\partial z}} \right) |
---|
1176 | \end{split} |
---|
1177 | \end{equation} |
---|
1178 | where $A^{vm}$ and $A^{vT}$ are the vertical eddy viscosity and diffusivity coefficients, respectively. |
---|
1179 | At the sea surface and at the bottom, turbulent fluxes of momentum, heat and salt must be specified |
---|
1180 | (see \autoref{chap:SBC} and \autoref{chap:ZDF} and \autoref{sec:TRA_bbl}). |
---|
1181 | All the vertical physics is embedded in the specification of the eddy coefficients. |
---|
1182 | They can be assumed to be either constant, or function of the local fluid properties |
---|
1183 | (\eg Richardson number, Brunt-Vais\"{a}l\"{a} frequency...), |
---|
1184 | or computed from a turbulent closure model. |
---|
1185 | The choices available in \NEMO are discussed in \autoref{chap:ZDF}). |
---|
1186 | |
---|
1187 | % ------------------------------------------------------------------------------------------------------------- |
---|
1188 | % Lateral Diffusive and Viscous Operators Formulation |
---|
1189 | % ------------------------------------------------------------------------------------------------------------- |
---|
1190 | \subsection{Formulation of the lateral diffusive and viscous operators} |
---|
1191 | \label{subsec:PE_ldf} |
---|
1192 | |
---|
1193 | Lateral turbulence can be roughly divided into a mesoscale turbulence associated with eddies |
---|
1194 | (which can be solved explicitly if the resolution is sufficient since |
---|
1195 | their underlying physics are included in the primitive equations), |
---|
1196 | and a sub mesoscale turbulence which is never explicitly solved even partially, but always parameterized. |
---|
1197 | The formulation of lateral eddy fluxes depends on whether the mesoscale is below or above the grid-spacing |
---|
1198 | (\ie the model is eddy-resolving or not). |
---|
1199 | |
---|
1200 | In non-eddy-resolving configurations, the closure is similar to that used for the vertical physics. |
---|
1201 | The lateral turbulent fluxes are assumed to depend linearly on the lateral gradients of large-scale quantities. |
---|
1202 | The resulting lateral diffusive and dissipative operators are of second order. |
---|
1203 | Observations show that lateral mixing induced by mesoscale turbulence tends to be along isopycnal surfaces |
---|
1204 | (or more precisely neutral surfaces \cite{McDougall1987}) rather than across them. |
---|
1205 | As the slope of neutral surfaces is small in the ocean, a common approximation is to assume that |
---|
1206 | the `lateral' direction is the horizontal, \ie the lateral mixing is performed along geopotential surfaces. |
---|
1207 | This leads to a geopotential second order operator for lateral subgrid scale physics. |
---|
1208 | This assumption can be relaxed: the eddy-induced turbulent fluxes can be better approached by assuming that |
---|
1209 | they depend linearly on the gradients of large-scale quantities computed along neutral surfaces. |
---|
1210 | In such a case, the diffusive operator is an isoneutral second order operator and |
---|
1211 | it has components in the three space directions. |
---|
1212 | However, |
---|
1213 | both horizontal and isoneutral operators have no effect on mean (\ie large scale) potential energy whereas |
---|
1214 | potential energy is a main source of turbulence (through baroclinic instabilities). |
---|
1215 | \citet{Gent1990} have proposed a parameterisation of mesoscale eddy-induced turbulence which |
---|
1216 | associates an eddy-induced velocity to the isoneutral diffusion. |
---|
1217 | Its mean effect is to reduce the mean potential energy of the ocean. |
---|
1218 | This leads to a formulation of lateral subgrid-scale physics made up of an isoneutral second order operator and |
---|
1219 | an eddy induced advective part. |
---|
1220 | In all these lateral diffusive formulations, |
---|
1221 | the specification of the lateral eddy coefficients remains the problematic point as |
---|
1222 | there is no really satisfactory formulation of these coefficients as a function of large-scale features. |
---|
1223 | |
---|
1224 | In eddy-resolving configurations, a second order operator can be used, |
---|
1225 | but usually the more scale selective biharmonic operator is preferred as |
---|
1226 | the grid-spacing is usually not small enough compared to the scale of the eddies. |
---|
1227 | The role devoted to the subgrid-scale physics is to dissipate the energy that |
---|
1228 | cascades toward the grid scale and thus to ensure the stability of the model while |
---|
1229 | not interfering with the resolved mesoscale activity. |
---|
1230 | Another approach is becoming more and more popular: |
---|
1231 | instead of specifying explicitly a sub-grid scale term in the momentum and tracer time evolution equations, |
---|
1232 | one uses a advective scheme which is diffusive enough to maintain the model stability. |
---|
1233 | It must be emphasised that then, all the sub-grid scale physics is included in the formulation of |
---|
1234 | the advection scheme. |
---|
1235 | |
---|
1236 | All these parameterisations of subgrid scale physics have advantages and drawbacks. |
---|
1237 | There are not all available in \NEMO. For active tracers (temperature and salinity) the main ones are: |
---|
1238 | Laplacian and bilaplacian operators acting along geopotential or iso-neutral surfaces, |
---|
1239 | \citet{Gent1990} parameterisation, and various slightly diffusive advection schemes. |
---|
1240 | For momentum, the main ones are: Laplacian and bilaplacian operators acting along geopotential surfaces, |
---|
1241 | and UBS advection schemes when flux form is chosen for the momentum advection. |
---|
1242 | |
---|
1243 | \subsubsection{Lateral laplacian tracer diffusive operator} |
---|
1244 | |
---|
1245 | The lateral Laplacian tracer diffusive operator is defined by (see \autoref{apdx:B}): |
---|
1246 | \begin{equation} |
---|
1247 | \label{eq:PE_iso_tensor} |
---|
1248 | D^{lT}=\nabla {\rm {\bf .}}\left( {A^{lT}\;\Re \;\nabla T} \right) \qquad |
---|
1249 | \mbox{with}\quad \;\;\Re =\left( {{ |
---|
1250 | \begin{array}{*{20}c} |
---|
1251 | 1 \hfill & 0 \hfill & {-r_1 } \hfill \\ |
---|
1252 | 0 \hfill & 1 \hfill & {-r_2 } \hfill \\ |
---|
1253 | {-r_1 } \hfill & {-r_2 } \hfill & {r_1 ^2+r_2 ^2} \hfill \\ |
---|
1254 | \end{array} |
---|
1255 | }} \right) |
---|
1256 | \end{equation} |
---|
1257 | where $r_1 \;\mbox{and}\;r_2 $ are the slopes between the surface along which the diffusive operator acts and |
---|
1258 | the model level ($e. g.$ $z$- or $s$-surfaces). |
---|
1259 | Note that the formulation \autoref{eq:PE_iso_tensor} is exact for |
---|
1260 | the rotation between geopotential and $s$-surfaces, |
---|
1261 | while it is only an approximation for the rotation between isoneutral and $z$- or $s$-surfaces. |
---|
1262 | Indeed, in the latter case, two assumptions are made to simplify \autoref{eq:PE_iso_tensor} \citep{Cox1987}. |
---|
1263 | First, the horizontal contribution of the dianeutral mixing is neglected since the ratio between iso and |
---|
1264 | dia-neutral diffusive coefficients is known to be several orders of magnitude smaller than unity. |
---|
1265 | Second, the two isoneutral directions of diffusion are assumed to be independent since |
---|
1266 | the slopes are generally less than $10^{-2}$ in the ocean (see \autoref{apdx:B}). |
---|
1267 | |
---|
1268 | For \textit{iso-level} diffusion, $r_1$ and $r_2 $ are zero. |
---|
1269 | $\Re $ reduces to the identity in the horizontal direction, no rotation is applied. |
---|
1270 | |
---|
1271 | For \textit{geopotential} diffusion, |
---|
1272 | $r_1$ and $r_2 $ are the slopes between the geopotential and computational surfaces: |
---|
1273 | they are equal to $\sigma_1$ and $\sigma_2$, respectively (see \autoref{eq:PE_sco_slope}). |
---|
1274 | |
---|
1275 | For \textit{isoneutral} diffusion $r_1$ and $r_2$ are the slopes between the isoneutral and computational surfaces. |
---|
1276 | Therefore, they are different quantities, but have similar expressions in $z$- and $s$-coordinates. |
---|
1277 | In $z$-coordinates: |
---|
1278 | \begin{equation} |
---|
1279 | \label{eq:PE_iso_slopes} |
---|
1280 | r_1 =\frac{e_3 }{e_1 } \left( \pd[\rho]{i} \right) \left( \pd[\rho]{k} \right)^{-1} \, \quad |
---|
1281 | r_2 =\frac{e_3 }{e_2 } \left( \pd[\rho]{j} \right) \left( \pd[\rho]{k} \right)^{-1} \, |
---|
1282 | \end{equation} |
---|
1283 | while in $s$-coordinates $\pd[]{k}$ is replaced by $\pd[]{s}$. |
---|
1284 | |
---|
1285 | \subsubsection{Eddy induced velocity} |
---|
1286 | When the \textit{eddy induced velocity} parametrisation (eiv) \citep{Gent1990} is used, |
---|
1287 | an additional tracer advection is introduced in combination with the isoneutral diffusion of tracers: |
---|
1288 | \[ |
---|
1289 | % \label{eq:PE_iso+eiv} |
---|
1290 | D^{lT}=\nabla \cdot \left( {A^{lT}\;\Re \;\nabla T} \right) |
---|
1291 | +\nabla \cdot \left( {{\vect{U}}^\ast \,T} \right) |
---|
1292 | \] |
---|
1293 | where ${\vect{U}}^\ast =\left( {u^\ast ,v^\ast ,w^\ast } \right)$ is a non-divergent, |
---|
1294 | eddy-induced transport velocity. This velocity field is defined by: |
---|
1295 | \[ |
---|
1296 | % \label{eq:PE_eiv} |
---|
1297 | \begin{split} |
---|
1298 | u^\ast &= +\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A^{eiv}\;\tilde{r}_1 } \right] \\ |
---|
1299 | v^\ast &= +\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A^{eiv}\;\tilde{r}_2 } \right] \\ |
---|
1300 | w^\ast &= -\frac{1}{e_1 e_2 }\left[ |
---|
1301 | \frac{\partial }{\partial i}\left( {A^{eiv}\;e_2\,\tilde{r}_1 } \right) |
---|
1302 | +\frac{\partial }{\partial j}\left( {A^{eiv}\;e_1\,\tilde{r}_2 } \right) \right] |
---|
1303 | \end{split} |
---|
1304 | \] |
---|
1305 | where $A^{eiv}$ is the eddy induced velocity coefficient |
---|
1306 | (or equivalently the isoneutral thickness diffusivity coefficient), |
---|
1307 | and $\tilde{r}_1$ and $\tilde{r}_2$ are the slopes between isoneutral and \emph{geopotential} surfaces. |
---|
1308 | Their values are thus independent of the vertical coordinate, but their expression depends on the coordinate: |
---|
1309 | \begin{align} |
---|
1310 | \label{eq:PE_slopes_eiv} |
---|
1311 | \tilde{r}_n = |
---|
1312 | \begin{cases} |
---|
1313 | r_n & \text{in $z$-coordinate} \\ |
---|
1314 | r_n + \sigma_n & \text{in \zstar and $s$-coordinates} |
---|
1315 | \end{cases} |
---|
1316 | \quad \text{where } n=1,2 |
---|
1317 | \end{align} |
---|
1318 | |
---|
1319 | The normal component of the eddy induced velocity is zero at all the boundaries. |
---|
1320 | This can be achieved in a model by tapering either the eddy coefficient or |
---|
1321 | the slopes to zero in the vicinity of the boundaries. |
---|
1322 | The latter strategy is used in \NEMO (cf. \autoref{chap:LDF}). |
---|
1323 | |
---|
1324 | \subsubsection{Lateral bilaplacian tracer diffusive operator} |
---|
1325 | |
---|
1326 | The lateral bilaplacian tracer diffusive operator is defined by: |
---|
1327 | \[ |
---|
1328 | % \label{eq:PE_bilapT} |
---|
1329 | D^{lT}= - \Delta \left( \;\Delta T \right) |
---|
1330 | \qquad \text{where} \;\; \Delta \bullet = \nabla \left( {\sqrt{B^{lT}\,}\;\Re \;\nabla \bullet} \right) |
---|
1331 | \] |
---|
1332 | It is the Laplacian operator given by \autoref{eq:PE_iso_tensor} applied twice with |
---|
1333 | the harmonic eddy diffusion coefficient set to the square root of the biharmonic one. |
---|
1334 | |
---|
1335 | |
---|
1336 | \subsubsection{Lateral Laplacian momentum diffusive operator} |
---|
1337 | |
---|
1338 | The Laplacian momentum diffusive operator along $z$- or $s$-surfaces is found by |
---|
1339 | applying \autoref{eq:PE_lap_vector} to the horizontal velocity vector (see \autoref{apdx:B}): |
---|
1340 | \[ |
---|
1341 | % \label{eq:PE_lapU} |
---|
1342 | \begin{split} |
---|
1343 | {\rm {\bf D}}^{l{\rm {\bf U}}} |
---|
1344 | &= \quad \ \nabla _h \left( {A^{lm}\chi } \right) |
---|
1345 | \ - \ \nabla _h \times \left( {A^{lm}\,\zeta \;{\rm {\bf k}}} \right) \\ |
---|
1346 | &= \left( |
---|
1347 | \begin{aligned} |
---|
1348 | \frac{1}{e_1 } \frac{\partial \left( A^{lm} \chi \right)}{\partial i} |
---|
1349 | &-\frac{1}{e_2 e_3}\frac{\partial \left( {A^{lm} \;e_3 \zeta} \right)}{\partial j} \\ |
---|
1350 | \frac{1}{e_2 }\frac{\partial \left( {A^{lm} \chi } \right)}{\partial j} |
---|
1351 | &+\frac{1}{e_1 e_3}\frac{\partial \left( {A^{lm} \;e_3 \zeta} \right)}{\partial i} |
---|
1352 | \end{aligned} |
---|
1353 | \right) |
---|
1354 | \end{split} |
---|
1355 | \] |
---|
1356 | |
---|
1357 | Such a formulation ensures a complete separation between the vorticity and horizontal divergence fields |
---|
1358 | (see \autoref{apdx:C}). |
---|
1359 | Unfortunately, it is only available in \textit{iso-level} direction. |
---|
1360 | When a rotation is required |
---|
1361 | (\ie geopotential diffusion in $s-$coordinates or isoneutral diffusion in both $z$- and $s$-coordinates), |
---|
1362 | the $u$ and $v-$fields are considered as independent scalar fields, so that the diffusive operator is given by: |
---|
1363 | \[ |
---|
1364 | % \label{eq:PE_lapU_iso} |
---|
1365 | \begin{split} |
---|
1366 | D_u^{l{\rm {\bf U}}} &= \nabla .\left( {A^{lm} \;\Re \;\nabla u} \right) \\ |
---|
1367 | D_v^{l{\rm {\bf U}}} &= \nabla .\left( {A^{lm} \;\Re \;\nabla v} \right) |
---|
1368 | \end{split} |
---|
1369 | \] |
---|
1370 | where $\Re$ is given by \autoref{eq:PE_iso_tensor}. |
---|
1371 | It is the same expression as those used for diffusive operator on tracers. |
---|
1372 | It must be emphasised that such a formulation is only exact in a Cartesian coordinate system, |
---|
1373 | \ie on a $f-$ or $\beta-$plane, not on the sphere. |
---|
1374 | It is also a very good approximation in vicinity of the Equator in |
---|
1375 | a geographical coordinate system \citep{Lengaigne_al_JGR03}. |
---|
1376 | |
---|
1377 | \subsubsection{lateral bilaplacian momentum diffusive operator} |
---|
1378 | |
---|
1379 | As for tracers, the bilaplacian order momentum diffusive operator is a re-entering Laplacian operator with |
---|
1380 | the harmonic eddy diffusion coefficient set to the square root of the biharmonic one. |
---|
1381 | Nevertheless it is currently not available in the iso-neutral case. |
---|
1382 | |
---|
1383 | \biblio |
---|
1384 | |
---|
1385 | \pindex |
---|
1386 | |
---|
1387 | \end{document} |
---|
1388 | |
---|