1 | MODULE icedyn_adv_pra |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE icedyn_adv_pra *** |
---|
4 | !! sea-ice : advection => Prather scheme |
---|
5 | !!====================================================================== |
---|
6 | !! History : ! 2008-03 (M. Vancoppenolle) original code |
---|
7 | !! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube] |
---|
8 | !!-------------------------------------------------------------------- |
---|
9 | #if defined key_si3 |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | !! 'key_si3' SI3 sea-ice model |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! ice_dyn_adv_pra : advection of sea ice using Prather scheme |
---|
14 | !! adv_x, adv_y : Prather scheme applied in i- and j-direction, resp. |
---|
15 | !! adv_pra_init : initialisation of the Prather scheme |
---|
16 | !! adv_pra_rst : read/write Prather field in ice restart file, or initialized to zero |
---|
17 | !!---------------------------------------------------------------------- |
---|
18 | USE phycst ! physical constant |
---|
19 | USE dom_oce ! ocean domain |
---|
20 | USE ice ! sea-ice variables |
---|
21 | USE sbc_oce , ONLY : nn_fsbc ! frequency of sea-ice call |
---|
22 | USE icevar ! sea-ice: operations |
---|
23 | ! |
---|
24 | USE in_out_manager ! I/O manager |
---|
25 | USE iom ! I/O manager library |
---|
26 | USE lib_mpp ! MPP library |
---|
27 | USE lib_fortran ! fortran utilities (glob_sum + no signed zero) |
---|
28 | USE lbclnk ! lateral boundary conditions (or mpp links) |
---|
29 | |
---|
30 | IMPLICIT NONE |
---|
31 | PRIVATE |
---|
32 | |
---|
33 | PUBLIC ice_dyn_adv_pra ! called by icedyn_adv |
---|
34 | PUBLIC adv_pra_init ! called by icedyn_adv |
---|
35 | |
---|
36 | ! Moments for advection |
---|
37 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sxice, syice, sxxice, syyice, sxyice ! ice thickness |
---|
38 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sxsn , sysn , sxxsn , syysn , sxysn ! snow thickness |
---|
39 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sxa , sya , sxxa , syya , sxya ! ice concentration |
---|
40 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sxsal, sysal, sxxsal, syysal, sxysal ! ice salinity |
---|
41 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sxage, syage, sxxage, syyage, sxyage ! ice age |
---|
42 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: sxc0 , syc0 , sxxc0 , syyc0 , sxyc0 ! snow layers heat content |
---|
43 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: sxe , sye , sxxe , syye , sxye ! ice layers heat content |
---|
44 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sxap , syap , sxxap , syyap , sxyap ! melt pond fraction |
---|
45 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sxvp , syvp , sxxvp , syyvp , sxyvp ! melt pond volume |
---|
46 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sxvl , syvl , sxxvl , syyvl , sxyvl ! melt pond lid volume |
---|
47 | |
---|
48 | !! * Substitutions |
---|
49 | # include "do_loop_substitute.h90" |
---|
50 | !!---------------------------------------------------------------------- |
---|
51 | !! NEMO/ICE 4.0 , NEMO Consortium (2018) |
---|
52 | !! $Id$ |
---|
53 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
54 | !!---------------------------------------------------------------------- |
---|
55 | CONTAINS |
---|
56 | |
---|
57 | SUBROUTINE ice_dyn_adv_pra( kt, pu_ice, pv_ice, ph_i, ph_s, ph_ip, & |
---|
58 | & pato_i, pv_i, pv_s, psv_i, poa_i, pa_i, pa_ip, pv_ip, pv_il, pe_s, pe_i ) |
---|
59 | !!---------------------------------------------------------------------- |
---|
60 | !! ** routine ice_dyn_adv_pra ** |
---|
61 | !! |
---|
62 | !! ** purpose : Computes and adds the advection trend to sea-ice |
---|
63 | !! |
---|
64 | !! ** method : Uses Prather second order scheme that advects tracers |
---|
65 | !! but also their quadratic forms. The method preserves |
---|
66 | !! tracer structures by conserving second order moments. |
---|
67 | !! |
---|
68 | !! Reference: Prather, 1986, JGR, 91, D6. 6671-6681. |
---|
69 | !!---------------------------------------------------------------------- |
---|
70 | INTEGER , INTENT(in ) :: kt ! time step |
---|
71 | REAL(wp), DIMENSION(:,:) , INTENT(in ) :: pu_ice ! ice i-velocity |
---|
72 | REAL(wp), DIMENSION(:,:) , INTENT(in ) :: pv_ice ! ice j-velocity |
---|
73 | REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: ph_i ! ice thickness |
---|
74 | REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: ph_s ! snw thickness |
---|
75 | REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: ph_ip ! ice pond thickness |
---|
76 | REAL(wp), DIMENSION(:,:) , INTENT(inout) :: pato_i ! open water area |
---|
77 | REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: pv_i ! ice volume |
---|
78 | REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: pv_s ! snw volume |
---|
79 | REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: psv_i ! salt content |
---|
80 | REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: poa_i ! age content |
---|
81 | REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: pa_i ! ice concentration |
---|
82 | REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: pa_ip ! melt pond fraction |
---|
83 | REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: pv_ip ! melt pond volume |
---|
84 | REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: pv_il ! melt pond lid thickness |
---|
85 | REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) :: pe_s ! snw heat content |
---|
86 | REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) :: pe_i ! ice heat content |
---|
87 | ! |
---|
88 | INTEGER :: ji, jj, jk, jl, jt ! dummy loop indices |
---|
89 | INTEGER :: icycle ! number of sub-timestep for the advection |
---|
90 | REAL(wp) :: zdt ! - - |
---|
91 | REAL(wp), DIMENSION(1) :: zcflprv, zcflnow ! for global communication |
---|
92 | REAL(wp), DIMENSION(jpi,jpj) :: zati1, zati2 |
---|
93 | REAL(wp), DIMENSION(jpi,jpj) :: zudy, zvdx |
---|
94 | REAL(wp), DIMENSION(jpi,jpj,jpl) :: zhi_max, zhs_max, zhip_max, zs_i, zsi_max |
---|
95 | REAL(wp), DIMENSION(jpi,jpj,nlay_i,jpl) :: ze_i, zei_max |
---|
96 | REAL(wp), DIMENSION(jpi,jpj,nlay_s,jpl) :: ze_s, zes_max |
---|
97 | REAL(wp), DIMENSION(jpi,jpj,jpl) :: zarea |
---|
98 | REAL(wp), DIMENSION(jpi,jpj,jpl) :: z0ice, z0snw, z0ai, z0smi, z0oi |
---|
99 | REAL(wp), DIMENSION(jpi,jpj,jpl) :: z0ap , z0vp, z0vl |
---|
100 | REAL(wp), DIMENSION(jpi,jpj,nlay_s,jpl) :: z0es |
---|
101 | REAL(wp), DIMENSION(jpi,jpj,nlay_i,jpl) :: z0ei |
---|
102 | !!---------------------------------------------------------------------- |
---|
103 | ! |
---|
104 | IF( kt == nit000 .AND. lwp ) WRITE(numout,*) '-- ice_dyn_adv_pra: Prather advection scheme' |
---|
105 | ! |
---|
106 | ! --- Record max of the surrounding 9-pts (for call Hbig) --- ! |
---|
107 | ! thickness and salinity |
---|
108 | WHERE( pv_i(:,:,:) >= epsi10 ) ; zs_i(:,:,:) = psv_i(:,:,:) / pv_i(:,:,:) |
---|
109 | ELSEWHERE ; zs_i(:,:,:) = 0._wp |
---|
110 | END WHERE |
---|
111 | DO jl = 1, jpl |
---|
112 | DO_2D( 0, 0, 0, 0 ) |
---|
113 | zhip_max(ji,jj,jl) = MAX( epsi20, ph_ip(ji,jj,jl), ph_ip(ji+1,jj ,jl), ph_ip(ji ,jj+1,jl), & |
---|
114 | & ph_ip(ji-1,jj ,jl), ph_ip(ji ,jj-1,jl), & |
---|
115 | & ph_ip(ji+1,jj+1,jl), ph_ip(ji-1,jj-1,jl), & |
---|
116 | & ph_ip(ji+1,jj-1,jl), ph_ip(ji-1,jj+1,jl) ) |
---|
117 | zhi_max (ji,jj,jl) = MAX( epsi20, ph_i (ji,jj,jl), ph_i (ji+1,jj ,jl), ph_i (ji ,jj+1,jl), & |
---|
118 | & ph_i (ji-1,jj ,jl), ph_i (ji ,jj-1,jl), & |
---|
119 | & ph_i (ji+1,jj+1,jl), ph_i (ji-1,jj-1,jl), & |
---|
120 | & ph_i (ji+1,jj-1,jl), ph_i (ji-1,jj+1,jl) ) |
---|
121 | zhs_max (ji,jj,jl) = MAX( epsi20, ph_s (ji,jj,jl), ph_s (ji+1,jj ,jl), ph_s (ji ,jj+1,jl), & |
---|
122 | & ph_s (ji-1,jj ,jl), ph_s (ji ,jj-1,jl), & |
---|
123 | & ph_s (ji+1,jj+1,jl), ph_s (ji-1,jj-1,jl), & |
---|
124 | & ph_s (ji+1,jj-1,jl), ph_s (ji-1,jj+1,jl) ) |
---|
125 | zsi_max (ji,jj,jl) = MAX( epsi20, zs_i (ji,jj,jl), zs_i (ji+1,jj ,jl), zs_i (ji ,jj+1,jl), & |
---|
126 | & zs_i (ji-1,jj ,jl), zs_i (ji ,jj-1,jl), & |
---|
127 | & zs_i (ji+1,jj+1,jl), zs_i (ji-1,jj-1,jl), & |
---|
128 | & zs_i (ji+1,jj-1,jl), zs_i (ji-1,jj+1,jl) ) |
---|
129 | END_2D |
---|
130 | END DO |
---|
131 | CALL lbc_lnk_multi( 'icedyn_adv_pra', zhi_max, 'T', 1._wp, zhs_max, 'T', 1._wp, zhip_max, 'T', 1._wp, zsi_max, 'T', 1._wp ) |
---|
132 | ! |
---|
133 | ! enthalpies |
---|
134 | DO jk = 1, nlay_i |
---|
135 | WHERE( pv_i(:,:,:) >= epsi10 ) ; ze_i(:,:,jk,:) = pe_i(:,:,jk,:) / pv_i(:,:,:) |
---|
136 | ELSEWHERE ; ze_i(:,:,jk,:) = 0._wp |
---|
137 | END WHERE |
---|
138 | END DO |
---|
139 | DO jk = 1, nlay_s |
---|
140 | WHERE( pv_s(:,:,:) >= epsi10 ) ; ze_s(:,:,jk,:) = pe_s(:,:,jk,:) / pv_s(:,:,:) |
---|
141 | ELSEWHERE ; ze_s(:,:,jk,:) = 0._wp |
---|
142 | END WHERE |
---|
143 | END DO |
---|
144 | DO jl = 1, jpl |
---|
145 | DO_3D( 0, 0, 0, 0, 1, nlay_i ) |
---|
146 | zei_max(ji,jj,jk,jl) = MAX( epsi20, ze_i(ji,jj,jk,jl), ze_i(ji+1,jj ,jk,jl), ze_i(ji ,jj+1,jk,jl), & |
---|
147 | & ze_i(ji-1,jj ,jk,jl), ze_i(ji ,jj-1,jk,jl), & |
---|
148 | & ze_i(ji+1,jj+1,jk,jl), ze_i(ji-1,jj-1,jk,jl), & |
---|
149 | & ze_i(ji+1,jj-1,jk,jl), ze_i(ji-1,jj+1,jk,jl) ) |
---|
150 | END_3D |
---|
151 | END DO |
---|
152 | DO jl = 1, jpl |
---|
153 | DO_3D( 0, 0, 0, 0, 1, nlay_s ) |
---|
154 | zes_max(ji,jj,jk,jl) = MAX( epsi20, ze_s(ji,jj,jk,jl), ze_s(ji+1,jj ,jk,jl), ze_s(ji ,jj+1,jk,jl), & |
---|
155 | & ze_s(ji-1,jj ,jk,jl), ze_s(ji ,jj-1,jk,jl), & |
---|
156 | & ze_s(ji+1,jj+1,jk,jl), ze_s(ji-1,jj-1,jk,jl), & |
---|
157 | & ze_s(ji+1,jj-1,jk,jl), ze_s(ji-1,jj+1,jk,jl) ) |
---|
158 | END_3D |
---|
159 | END DO |
---|
160 | CALL lbc_lnk( 'icedyn_adv_pra', zei_max, 'T', 1. ) |
---|
161 | CALL lbc_lnk( 'icedyn_adv_pra', zes_max, 'T', 1. ) |
---|
162 | ! |
---|
163 | ! |
---|
164 | ! --- If ice drift is too fast, use subtime steps for advection (CFL test for stability) --- ! |
---|
165 | ! Note: the advection split is applied at the next time-step in order to avoid blocking global comm. |
---|
166 | ! this should not affect too much the stability |
---|
167 | zcflnow(1) = MAXVAL( ABS( pu_ice(:,:) ) * rDt_ice * r1_e1u(:,:) ) |
---|
168 | zcflnow(1) = MAX( zcflnow(1), MAXVAL( ABS( pv_ice(:,:) ) * rDt_ice * r1_e2v(:,:) ) ) |
---|
169 | |
---|
170 | ! non-blocking global communication send zcflnow and receive zcflprv |
---|
171 | CALL mpp_delay_max( 'icedyn_adv_pra', 'cflice', zcflnow(:), zcflprv(:), kt == nitend - nn_fsbc + 1 ) |
---|
172 | |
---|
173 | IF( zcflprv(1) > .5 ) THEN ; icycle = 2 |
---|
174 | ELSE ; icycle = 1 |
---|
175 | ENDIF |
---|
176 | zdt = rDt_ice / REAL(icycle) |
---|
177 | |
---|
178 | ! --- transport --- ! |
---|
179 | zudy(:,:) = pu_ice(:,:) * e2u(:,:) |
---|
180 | zvdx(:,:) = pv_ice(:,:) * e1v(:,:) |
---|
181 | |
---|
182 | DO jt = 1, icycle |
---|
183 | |
---|
184 | ! record at_i before advection (for open water) |
---|
185 | zati1(:,:) = SUM( pa_i(:,:,:), dim=3 ) |
---|
186 | |
---|
187 | ! --- transported fields --- ! |
---|
188 | DO jl = 1, jpl |
---|
189 | zarea(:,:,jl) = e1e2t(:,:) |
---|
190 | z0snw(:,:,jl) = pv_s (:,:,jl) * e1e2t(:,:) ! Snow volume |
---|
191 | z0ice(:,:,jl) = pv_i (:,:,jl) * e1e2t(:,:) ! Ice volume |
---|
192 | z0ai (:,:,jl) = pa_i (:,:,jl) * e1e2t(:,:) ! Ice area |
---|
193 | z0smi(:,:,jl) = psv_i(:,:,jl) * e1e2t(:,:) ! Salt content |
---|
194 | z0oi (:,:,jl) = poa_i(:,:,jl) * e1e2t(:,:) ! Age content |
---|
195 | DO jk = 1, nlay_s |
---|
196 | z0es(:,:,jk,jl) = pe_s(:,:,jk,jl) * e1e2t(:,:) ! Snow heat content |
---|
197 | END DO |
---|
198 | DO jk = 1, nlay_i |
---|
199 | z0ei(:,:,jk,jl) = pe_i(:,:,jk,jl) * e1e2t(:,:) ! Ice heat content |
---|
200 | END DO |
---|
201 | IF ( ln_pnd_LEV ) THEN |
---|
202 | z0ap(:,:,jl) = pa_ip(:,:,jl) * e1e2t(:,:) ! Melt pond fraction |
---|
203 | z0vp(:,:,jl) = pv_ip(:,:,jl) * e1e2t(:,:) ! Melt pond volume |
---|
204 | IF ( ln_pnd_lids ) THEN |
---|
205 | z0vl(:,:,jl) = pv_il(:,:,jl) * e1e2t(:,:) ! Melt pond lid volume |
---|
206 | ENDIF |
---|
207 | ENDIF |
---|
208 | END DO |
---|
209 | ! |
---|
210 | ! !--------------------------------------------! |
---|
211 | IF( MOD( (kt - 1) / nn_fsbc , 2 ) == MOD( (jt - 1) , 2 ) ) THEN !== odd ice time step: adv_x then adv_y ==! |
---|
212 | ! !--------------------------------------------! |
---|
213 | CALL adv_x( zdt , zudy , 1._wp , zarea , z0ice , sxice , sxxice , syice , syyice , sxyice ) !--- ice volume |
---|
214 | CALL adv_y( zdt , zvdx , 0._wp , zarea , z0ice , sxice , sxxice , syice , syyice , sxyice ) |
---|
215 | CALL adv_x( zdt , zudy , 1._wp , zarea , z0snw , sxsn , sxxsn , sysn , syysn , sxysn ) !--- snow volume |
---|
216 | CALL adv_y( zdt , zvdx , 0._wp , zarea , z0snw , sxsn , sxxsn , sysn , syysn , sxysn ) |
---|
217 | CALL adv_x( zdt , zudy , 1._wp , zarea , z0smi , sxsal , sxxsal , sysal , syysal , sxysal ) !--- ice salinity |
---|
218 | CALL adv_y( zdt , zvdx , 0._wp , zarea , z0smi , sxsal , sxxsal , sysal , syysal , sxysal ) |
---|
219 | CALL adv_x( zdt , zudy , 1._wp , zarea , z0ai , sxa , sxxa , sya , syya , sxya ) !--- ice concentration |
---|
220 | CALL adv_y( zdt , zvdx , 0._wp , zarea , z0ai , sxa , sxxa , sya , syya , sxya ) |
---|
221 | CALL adv_x( zdt , zudy , 1._wp , zarea , z0oi , sxage , sxxage , syage , syyage , sxyage ) !--- ice age |
---|
222 | CALL adv_y( zdt , zvdx , 0._wp , zarea , z0oi , sxage , sxxage , syage , syyage , sxyage ) |
---|
223 | ! |
---|
224 | DO jk = 1, nlay_s !--- snow heat content |
---|
225 | CALL adv_x( zdt, zudy, 1._wp, zarea, z0es (:,:,jk,:), sxc0(:,:,jk,:), & |
---|
226 | & sxxc0(:,:,jk,:), syc0(:,:,jk,:), syyc0(:,:,jk,:), sxyc0(:,:,jk,:) ) |
---|
227 | CALL adv_y( zdt, zvdx, 0._wp, zarea, z0es (:,:,jk,:), sxc0(:,:,jk,:), & |
---|
228 | & sxxc0(:,:,jk,:), syc0(:,:,jk,:), syyc0(:,:,jk,:), sxyc0(:,:,jk,:) ) |
---|
229 | END DO |
---|
230 | DO jk = 1, nlay_i !--- ice heat content |
---|
231 | CALL adv_x( zdt, zudy, 1._wp, zarea, z0ei(:,:,jk,:), sxe(:,:,jk,:), & |
---|
232 | & sxxe(:,:,jk,:), sye(:,:,jk,:), syye(:,:,jk,:), sxye(:,:,jk,:) ) |
---|
233 | CALL adv_y( zdt, zvdx, 0._wp, zarea, z0ei(:,:,jk,:), sxe(:,:,jk,:), & |
---|
234 | & sxxe(:,:,jk,:), sye(:,:,jk,:), syye(:,:,jk,:), sxye(:,:,jk,:) ) |
---|
235 | END DO |
---|
236 | ! |
---|
237 | IF ( ln_pnd_LEV ) THEN |
---|
238 | CALL adv_x( zdt , zudy , 1._wp , zarea , z0ap , sxap , sxxap , syap , syyap , sxyap ) !--- melt pond fraction |
---|
239 | CALL adv_y( zdt , zvdx , 0._wp , zarea , z0ap , sxap , sxxap , syap , syyap , sxyap ) |
---|
240 | CALL adv_x( zdt , zudy , 1._wp , zarea , z0vp , sxvp , sxxvp , syvp , syyvp , sxyvp ) !--- melt pond volume |
---|
241 | CALL adv_y( zdt , zvdx , 0._wp , zarea , z0vp , sxvp , sxxvp , syvp , syyvp , sxyvp ) |
---|
242 | IF ( ln_pnd_lids ) THEN |
---|
243 | CALL adv_x( zdt , zudy , 1._wp , zarea , z0vl , sxvl , sxxvl , syvl , syyvl , sxyvl ) !--- melt pond lid volume |
---|
244 | CALL adv_y( zdt , zvdx , 0._wp , zarea , z0vl , sxvl , sxxvl , syvl , syyvl , sxyvl ) |
---|
245 | ENDIF |
---|
246 | ENDIF |
---|
247 | ! !--------------------------------------------! |
---|
248 | ELSE !== even ice time step: adv_y then adv_x ==! |
---|
249 | ! !--------------------------------------------! |
---|
250 | CALL adv_y( zdt , zvdx , 1._wp , zarea , z0ice , sxice , sxxice , syice , syyice , sxyice ) !--- ice volume |
---|
251 | CALL adv_x( zdt , zudy , 0._wp , zarea , z0ice , sxice , sxxice , syice , syyice , sxyice ) |
---|
252 | CALL adv_y( zdt , zvdx , 1._wp , zarea , z0snw , sxsn , sxxsn , sysn , syysn , sxysn ) !--- snow volume |
---|
253 | CALL adv_x( zdt , zudy , 0._wp , zarea , z0snw , sxsn , sxxsn , sysn , syysn , sxysn ) |
---|
254 | CALL adv_y( zdt , zvdx , 1._wp , zarea , z0smi , sxsal , sxxsal , sysal , syysal , sxysal ) !--- ice salinity |
---|
255 | CALL adv_x( zdt , zudy , 0._wp , zarea , z0smi , sxsal , sxxsal , sysal , syysal , sxysal ) |
---|
256 | CALL adv_y( zdt , zvdx , 1._wp , zarea , z0ai , sxa , sxxa , sya , syya , sxya ) !--- ice concentration |
---|
257 | CALL adv_x( zdt , zudy , 0._wp , zarea , z0ai , sxa , sxxa , sya , syya , sxya ) |
---|
258 | CALL adv_y( zdt , zvdx , 1._wp , zarea , z0oi , sxage , sxxage , syage , syyage , sxyage ) !--- ice age |
---|
259 | CALL adv_x( zdt , zudy , 0._wp , zarea , z0oi , sxage , sxxage , syage , syyage , sxyage ) |
---|
260 | DO jk = 1, nlay_s !--- snow heat content |
---|
261 | CALL adv_y( zdt, zvdx, 1._wp, zarea, z0es (:,:,jk,:), sxc0(:,:,jk,:), & |
---|
262 | & sxxc0(:,:,jk,:), syc0(:,:,jk,:), syyc0(:,:,jk,:), sxyc0(:,:,jk,:) ) |
---|
263 | CALL adv_x( zdt, zudy, 0._wp, zarea, z0es (:,:,jk,:), sxc0(:,:,jk,:), & |
---|
264 | & sxxc0(:,:,jk,:), syc0(:,:,jk,:), syyc0(:,:,jk,:), sxyc0(:,:,jk,:) ) |
---|
265 | END DO |
---|
266 | DO jk = 1, nlay_i !--- ice heat content |
---|
267 | CALL adv_y( zdt, zvdx, 1._wp, zarea, z0ei(:,:,jk,:), sxe(:,:,jk,:), & |
---|
268 | & sxxe(:,:,jk,:), sye(:,:,jk,:), syye(:,:,jk,:), sxye(:,:,jk,:) ) |
---|
269 | CALL adv_x( zdt, zudy, 0._wp, zarea, z0ei(:,:,jk,:), sxe(:,:,jk,:), & |
---|
270 | & sxxe(:,:,jk,:), sye(:,:,jk,:), syye(:,:,jk,:), sxye(:,:,jk,:) ) |
---|
271 | END DO |
---|
272 | IF ( ln_pnd_LEV ) THEN |
---|
273 | CALL adv_y( zdt , zvdx , 1._wp , zarea , z0ap , sxap , sxxap , syap , syyap , sxyap ) !--- melt pond fraction |
---|
274 | CALL adv_x( zdt , zudy , 0._wp , zarea , z0ap , sxap , sxxap , syap , syyap , sxyap ) |
---|
275 | CALL adv_y( zdt , zvdx , 1._wp , zarea , z0vp , sxvp , sxxvp , syvp , syyvp , sxyvp ) !--- melt pond volume |
---|
276 | CALL adv_x( zdt , zudy , 0._wp , zarea , z0vp , sxvp , sxxvp , syvp , syyvp , sxyvp ) |
---|
277 | IF ( ln_pnd_lids ) THEN |
---|
278 | CALL adv_y( zdt , zvdx , 1._wp , zarea , z0vl , sxvl , sxxvl , syvl , syyvl , sxyvl ) !--- melt pond lid volume |
---|
279 | CALL adv_x( zdt , zudy , 0._wp , zarea , z0vl , sxvl , sxxvl , syvl , syyvl , sxyvl ) |
---|
280 | ENDIF |
---|
281 | ENDIF |
---|
282 | ! |
---|
283 | ENDIF |
---|
284 | |
---|
285 | ! --- Recover the properties from their contents --- ! |
---|
286 | DO jl = 1, jpl |
---|
287 | pv_i (:,:,jl) = z0ice(:,:,jl) * r1_e1e2t(:,:) * tmask(:,:,1) |
---|
288 | pv_s (:,:,jl) = z0snw(:,:,jl) * r1_e1e2t(:,:) * tmask(:,:,1) |
---|
289 | psv_i(:,:,jl) = z0smi(:,:,jl) * r1_e1e2t(:,:) * tmask(:,:,1) |
---|
290 | poa_i(:,:,jl) = z0oi (:,:,jl) * r1_e1e2t(:,:) * tmask(:,:,1) |
---|
291 | pa_i (:,:,jl) = z0ai (:,:,jl) * r1_e1e2t(:,:) * tmask(:,:,1) |
---|
292 | DO jk = 1, nlay_s |
---|
293 | pe_s(:,:,jk,jl) = z0es(:,:,jk,jl) * r1_e1e2t(:,:) * tmask(:,:,1) |
---|
294 | END DO |
---|
295 | DO jk = 1, nlay_i |
---|
296 | pe_i(:,:,jk,jl) = z0ei(:,:,jk,jl) * r1_e1e2t(:,:) * tmask(:,:,1) |
---|
297 | END DO |
---|
298 | IF ( ln_pnd_LEV ) THEN |
---|
299 | pa_ip(:,:,jl) = z0ap(:,:,jl) * r1_e1e2t(:,:) * tmask(:,:,1) |
---|
300 | pv_ip(:,:,jl) = z0vp(:,:,jl) * r1_e1e2t(:,:) * tmask(:,:,1) |
---|
301 | IF ( ln_pnd_lids ) THEN |
---|
302 | pv_il(:,:,jl) = z0vl(:,:,jl) * r1_e1e2t(:,:) * tmask(:,:,1) |
---|
303 | ENDIF |
---|
304 | ENDIF |
---|
305 | END DO |
---|
306 | ! |
---|
307 | ! derive open water from ice concentration |
---|
308 | zati2(:,:) = SUM( pa_i(:,:,:), dim=3 ) |
---|
309 | DO_2D( 0, 0, 0, 0 ) |
---|
310 | pato_i(ji,jj) = pato_i(ji,jj) - ( zati2(ji,jj) - zati1(ji,jj) ) & !--- open water |
---|
311 | & - ( zudy(ji,jj) - zudy(ji-1,jj) + zvdx(ji,jj) - zvdx(ji,jj-1) ) * r1_e1e2t(ji,jj) * zdt |
---|
312 | END_2D |
---|
313 | CALL lbc_lnk( 'icedyn_adv_pra', pato_i, 'T', 1.0_wp ) |
---|
314 | ! |
---|
315 | ! --- Ensure non-negative fields --- ! |
---|
316 | ! Remove negative values (conservation is ensured) |
---|
317 | ! (because advected fields are not perfectly bounded and tiny negative values can occur, e.g. -1.e-20) |
---|
318 | CALL ice_var_zapneg( zdt, pato_i, pv_i, pv_s, psv_i, poa_i, pa_i, pa_ip, pv_ip, pv_il, pe_s, pe_i ) |
---|
319 | ! |
---|
320 | ! --- Make sure ice thickness is not too big --- ! |
---|
321 | ! (because ice thickness can be too large where ice concentration is very small) |
---|
322 | CALL Hbig( zdt, zhi_max, zhs_max, zhip_max, zsi_max, zes_max, zei_max, & |
---|
323 | & pv_i, pv_s, pa_i, pa_ip, pv_ip, psv_i, pe_s, pe_i ) |
---|
324 | ! |
---|
325 | ! --- Ensure snow load is not too big --- ! |
---|
326 | CALL Hsnow( zdt, pv_i, pv_s, pa_i, pa_ip, pe_s ) |
---|
327 | ! |
---|
328 | END DO |
---|
329 | ! |
---|
330 | IF( lrst_ice ) CALL adv_pra_rst( 'WRITE', kt ) !* write Prather fields in the restart file |
---|
331 | ! |
---|
332 | END SUBROUTINE ice_dyn_adv_pra |
---|
333 | |
---|
334 | |
---|
335 | SUBROUTINE adv_x( pdt, put , pcrh, psm , ps0 , & |
---|
336 | & psx, psxx, psy , psyy, psxy ) |
---|
337 | !!---------------------------------------------------------------------- |
---|
338 | !! ** routine adv_x ** |
---|
339 | !! |
---|
340 | !! ** purpose : Computes and adds the advection trend to sea-ice |
---|
341 | !! variable on x axis |
---|
342 | !!---------------------------------------------------------------------- |
---|
343 | REAL(wp) , INTENT(in ) :: pdt ! the time step |
---|
344 | REAL(wp) , INTENT(in ) :: pcrh ! call adv_x then adv_y (=1) or the opposite (=0) |
---|
345 | REAL(wp), DIMENSION(:,:) , INTENT(in ) :: put ! i-direction ice velocity at U-point [m/s] |
---|
346 | REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: psm ! area |
---|
347 | REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: ps0 ! field to be advected |
---|
348 | REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: psx , psy ! 1st moments |
---|
349 | REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: psxx, psyy, psxy ! 2nd moments |
---|
350 | !! |
---|
351 | INTEGER :: ji, jj, jl, jcat ! dummy loop indices |
---|
352 | REAL(wp) :: zs1max, zslpmax, ztemp ! local scalars |
---|
353 | REAL(wp) :: zs1new, zalf , zalfq , zbt ! - - |
---|
354 | REAL(wp) :: zs2new, zalf1, zalf1q, zbt1 ! - - |
---|
355 | REAL(wp), DIMENSION(jpi,jpj) :: zf0 , zfx , zfy , zbet ! 2D workspace |
---|
356 | REAL(wp), DIMENSION(jpi,jpj) :: zfm , zfxx , zfyy , zfxy ! - - |
---|
357 | REAL(wp), DIMENSION(jpi,jpj) :: zalg, zalg1, zalg1q ! - - |
---|
358 | !----------------------------------------------------------------------- |
---|
359 | ! |
---|
360 | jcat = SIZE( ps0 , 3 ) ! size of input arrays |
---|
361 | ! |
---|
362 | DO jl = 1, jcat ! loop on categories |
---|
363 | ! |
---|
364 | ! Limitation of moments. |
---|
365 | DO_2D( 0, 0, 1, 1 ) |
---|
366 | ! Initialize volumes of boxes (=area if adv_x first called, =psm otherwise) |
---|
367 | psm (ji,jj,jl) = MAX( pcrh * e1e2t(ji,jj) + ( 1.0 - pcrh ) * psm(ji,jj,jl) , epsi20 ) |
---|
368 | ! |
---|
369 | zslpmax = MAX( 0._wp, ps0(ji,jj,jl) ) |
---|
370 | zs1max = 1.5 * zslpmax |
---|
371 | zs1new = MIN( zs1max, MAX( -zs1max, psx(ji,jj,jl) ) ) |
---|
372 | zs2new = MIN( 2.0 * zslpmax - 0.3334 * ABS( zs1new ), & |
---|
373 | & MAX( ABS( zs1new ) - zslpmax, psxx(ji,jj,jl) ) ) |
---|
374 | rswitch = ( 1.0 - MAX( 0._wp, SIGN( 1._wp, -zslpmax) ) ) * tmask(ji,jj,1) ! Case of empty boxes & Apply mask |
---|
375 | |
---|
376 | ps0 (ji,jj,jl) = zslpmax |
---|
377 | psx (ji,jj,jl) = zs1new * rswitch |
---|
378 | psxx(ji,jj,jl) = zs2new * rswitch |
---|
379 | psy (ji,jj,jl) = psy (ji,jj,jl) * rswitch |
---|
380 | psyy(ji,jj,jl) = psyy(ji,jj,jl) * rswitch |
---|
381 | psxy(ji,jj,jl) = MIN( zslpmax, MAX( -zslpmax, psxy(ji,jj,jl) ) ) * rswitch |
---|
382 | END_2D |
---|
383 | |
---|
384 | ! Calculate fluxes and moments between boxes i<-->i+1 |
---|
385 | DO_2D( 0, 0, 1, 1 ) ! Flux from i to i+1 WHEN u GT 0 |
---|
386 | zbet(ji,jj) = MAX( 0._wp, SIGN( 1._wp, put(ji,jj) ) ) |
---|
387 | zalf = MAX( 0._wp, put(ji,jj) ) * pdt / psm(ji,jj,jl) |
---|
388 | zalfq = zalf * zalf |
---|
389 | zalf1 = 1.0 - zalf |
---|
390 | zalf1q = zalf1 * zalf1 |
---|
391 | ! |
---|
392 | zfm (ji,jj) = zalf * psm (ji,jj,jl) |
---|
393 | zf0 (ji,jj) = zalf * ( ps0 (ji,jj,jl) + zalf1 * ( psx(ji,jj,jl) + (zalf1 - zalf) * psxx(ji,jj,jl) ) ) |
---|
394 | zfx (ji,jj) = zalfq * ( psx (ji,jj,jl) + 3.0 * zalf1 * psxx(ji,jj,jl) ) |
---|
395 | zfxx(ji,jj) = zalf * psxx(ji,jj,jl) * zalfq |
---|
396 | zfy (ji,jj) = zalf * ( psy (ji,jj,jl) + zalf1 * psxy(ji,jj,jl) ) |
---|
397 | zfxy(ji,jj) = zalfq * psxy(ji,jj,jl) |
---|
398 | zfyy(ji,jj) = zalf * psyy(ji,jj,jl) |
---|
399 | |
---|
400 | ! Readjust moments remaining in the box. |
---|
401 | psm (ji,jj,jl) = psm (ji,jj,jl) - zfm(ji,jj) |
---|
402 | ps0 (ji,jj,jl) = ps0 (ji,jj,jl) - zf0(ji,jj) |
---|
403 | psx (ji,jj,jl) = zalf1q * ( psx(ji,jj,jl) - 3.0 * zalf * psxx(ji,jj,jl) ) |
---|
404 | psxx(ji,jj,jl) = zalf1 * zalf1q * psxx(ji,jj,jl) |
---|
405 | psy (ji,jj,jl) = psy (ji,jj,jl) - zfy(ji,jj) |
---|
406 | psyy(ji,jj,jl) = psyy(ji,jj,jl) - zfyy(ji,jj) |
---|
407 | psxy(ji,jj,jl) = zalf1q * psxy(ji,jj,jl) |
---|
408 | END_2D |
---|
409 | |
---|
410 | DO_2D( 0, 0, 1, 0 ) ! Flux from i+1 to i when u LT 0. |
---|
411 | zalf = MAX( 0._wp, -put(ji,jj) ) * pdt / psm(ji+1,jj,jl) |
---|
412 | zalg (ji,jj) = zalf |
---|
413 | zalfq = zalf * zalf |
---|
414 | zalf1 = 1.0 - zalf |
---|
415 | zalg1 (ji,jj) = zalf1 |
---|
416 | zalf1q = zalf1 * zalf1 |
---|
417 | zalg1q(ji,jj) = zalf1q |
---|
418 | ! |
---|
419 | zfm (ji,jj) = zfm (ji,jj) + zalf * psm (ji+1,jj,jl) |
---|
420 | zf0 (ji,jj) = zf0 (ji,jj) + zalf * ( ps0 (ji+1,jj,jl) & |
---|
421 | & - zalf1 * ( psx(ji+1,jj,jl) - (zalf1 - zalf ) * psxx(ji+1,jj,jl) ) ) |
---|
422 | zfx (ji,jj) = zfx (ji,jj) + zalfq * ( psx (ji+1,jj,jl) - 3.0 * zalf1 * psxx(ji+1,jj,jl) ) |
---|
423 | zfxx (ji,jj) = zfxx(ji,jj) + zalf * psxx(ji+1,jj,jl) * zalfq |
---|
424 | zfy (ji,jj) = zfy (ji,jj) + zalf * ( psy (ji+1,jj,jl) - zalf1 * psxy(ji+1,jj,jl) ) |
---|
425 | zfxy (ji,jj) = zfxy(ji,jj) + zalfq * psxy(ji+1,jj,jl) |
---|
426 | zfyy (ji,jj) = zfyy(ji,jj) + zalf * psyy(ji+1,jj,jl) |
---|
427 | END_2D |
---|
428 | |
---|
429 | DO_2D( 0, 0, 0, 0 ) ! Readjust moments remaining in the box. |
---|
430 | zbt = zbet(ji-1,jj) |
---|
431 | zbt1 = 1.0 - zbet(ji-1,jj) |
---|
432 | ! |
---|
433 | psm (ji,jj,jl) = zbt * psm(ji,jj,jl) + zbt1 * ( psm(ji,jj,jl) - zfm(ji-1,jj) ) |
---|
434 | ps0 (ji,jj,jl) = zbt * ps0(ji,jj,jl) + zbt1 * ( ps0(ji,jj,jl) - zf0(ji-1,jj) ) |
---|
435 | psx (ji,jj,jl) = zalg1q(ji-1,jj) * ( psx(ji,jj,jl) + 3.0 * zalg(ji-1,jj) * psxx(ji,jj,jl) ) |
---|
436 | psxx(ji,jj,jl) = zalg1 (ji-1,jj) * zalg1q(ji-1,jj) * psxx(ji,jj,jl) |
---|
437 | psy (ji,jj,jl) = zbt * psy (ji,jj,jl) + zbt1 * ( psy (ji,jj,jl) - zfy (ji-1,jj) ) |
---|
438 | psyy(ji,jj,jl) = zbt * psyy(ji,jj,jl) + zbt1 * ( psyy(ji,jj,jl) - zfyy(ji-1,jj) ) |
---|
439 | psxy(ji,jj,jl) = zalg1q(ji-1,jj) * psxy(ji,jj,jl) |
---|
440 | END_2D |
---|
441 | |
---|
442 | ! Put the temporary moments into appropriate neighboring boxes. |
---|
443 | DO_2D( 0, 0, 0, 0 ) ! Flux from i to i+1 IF u GT 0. |
---|
444 | zbt = zbet(ji-1,jj) |
---|
445 | zbt1 = 1.0 - zbet(ji-1,jj) |
---|
446 | psm(ji,jj,jl) = zbt * ( psm(ji,jj,jl) + zfm(ji-1,jj) ) + zbt1 * psm(ji,jj,jl) |
---|
447 | zalf = zbt * zfm(ji-1,jj) / psm(ji,jj,jl) |
---|
448 | zalf1 = 1.0 - zalf |
---|
449 | ztemp = zalf * ps0(ji,jj,jl) - zalf1 * zf0(ji-1,jj) |
---|
450 | ! |
---|
451 | ps0 (ji,jj,jl) = zbt * ( ps0(ji,jj,jl) + zf0(ji-1,jj) ) + zbt1 * ps0(ji,jj,jl) |
---|
452 | psx (ji,jj,jl) = zbt * ( zalf * zfx(ji-1,jj) + zalf1 * psx(ji,jj,jl) + 3.0 * ztemp ) + zbt1 * psx(ji,jj,jl) |
---|
453 | psxx(ji,jj,jl) = zbt * ( zalf * zalf * zfxx(ji-1,jj) + zalf1 * zalf1 * psxx(ji,jj,jl) & |
---|
454 | & + 5.0 * ( zalf * zalf1 * ( psx (ji,jj,jl) - zfx(ji-1,jj) ) - ( zalf1 - zalf ) * ztemp ) ) & |
---|
455 | & + zbt1 * psxx(ji,jj,jl) |
---|
456 | psxy(ji,jj,jl) = zbt * ( zalf * zfxy(ji-1,jj) + zalf1 * psxy(ji,jj,jl) & |
---|
457 | & + 3.0 * (- zalf1*zfy(ji-1,jj) + zalf * psy(ji,jj,jl) ) ) & |
---|
458 | & + zbt1 * psxy(ji,jj,jl) |
---|
459 | psy (ji,jj,jl) = zbt * ( psy (ji,jj,jl) + zfy (ji-1,jj) ) + zbt1 * psy (ji,jj,jl) |
---|
460 | psyy(ji,jj,jl) = zbt * ( psyy(ji,jj,jl) + zfyy(ji-1,jj) ) + zbt1 * psyy(ji,jj,jl) |
---|
461 | END_2D |
---|
462 | |
---|
463 | DO_2D( 0, 0, 0, 0 ) ! Flux from i+1 to i IF u LT 0. |
---|
464 | zbt = zbet(ji,jj) |
---|
465 | zbt1 = 1.0 - zbet(ji,jj) |
---|
466 | psm(ji,jj,jl) = zbt * psm(ji,jj,jl) + zbt1 * ( psm(ji,jj,jl) + zfm(ji,jj) ) |
---|
467 | zalf = zbt1 * zfm(ji,jj) / psm(ji,jj,jl) |
---|
468 | zalf1 = 1.0 - zalf |
---|
469 | ztemp = - zalf * ps0(ji,jj,jl) + zalf1 * zf0(ji,jj) |
---|
470 | ! |
---|
471 | ps0 (ji,jj,jl) = zbt * ps0 (ji,jj,jl) + zbt1 * ( ps0(ji,jj,jl) + zf0(ji,jj) ) |
---|
472 | psx (ji,jj,jl) = zbt * psx (ji,jj,jl) + zbt1 * ( zalf * zfx(ji,jj) + zalf1 * psx(ji,jj,jl) + 3.0 * ztemp ) |
---|
473 | psxx(ji,jj,jl) = zbt * psxx(ji,jj,jl) + zbt1 * ( zalf * zalf * zfxx(ji,jj) + zalf1 * zalf1 * psxx(ji,jj,jl) & |
---|
474 | & + 5.0 * ( zalf * zalf1 * ( - psx(ji,jj,jl) + zfx(ji,jj) ) & |
---|
475 | & + ( zalf1 - zalf ) * ztemp ) ) |
---|
476 | psxy(ji,jj,jl) = zbt * psxy(ji,jj,jl) + zbt1 * ( zalf * zfxy(ji,jj) + zalf1 * psxy(ji,jj,jl) & |
---|
477 | & + 3.0 * ( zalf1 * zfy(ji,jj) - zalf * psy(ji,jj,jl) ) ) |
---|
478 | psy (ji,jj,jl) = zbt * psy (ji,jj,jl) + zbt1 * ( psy (ji,jj,jl) + zfy (ji,jj) ) |
---|
479 | psyy(ji,jj,jl) = zbt * psyy(ji,jj,jl) + zbt1 * ( psyy(ji,jj,jl) + zfyy(ji,jj) ) |
---|
480 | END_2D |
---|
481 | |
---|
482 | END DO |
---|
483 | |
---|
484 | !-- Lateral boundary conditions |
---|
485 | CALL lbc_lnk_multi( 'icedyn_adv_pra', psm(:,:,1:jcat) , 'T', 1.0_wp, ps0 , 'T', 1.0_wp & |
---|
486 | & , psx , 'T', -1.0_wp, psy , 'T', -1.0_wp & ! caution gradient ==> the sign changes |
---|
487 | & , psxx , 'T', 1.0_wp, psyy, 'T', 1.0_wp , psxy, 'T', 1.0_wp ) |
---|
488 | ! |
---|
489 | END SUBROUTINE adv_x |
---|
490 | |
---|
491 | |
---|
492 | SUBROUTINE adv_y( pdt, pvt , pcrh, psm , ps0 , & |
---|
493 | & psx, psxx, psy , psyy, psxy ) |
---|
494 | !!--------------------------------------------------------------------- |
---|
495 | !! ** routine adv_y ** |
---|
496 | !! |
---|
497 | !! ** purpose : Computes and adds the advection trend to sea-ice |
---|
498 | !! variable on y axis |
---|
499 | !!--------------------------------------------------------------------- |
---|
500 | REAL(wp) , INTENT(in ) :: pdt ! time step |
---|
501 | REAL(wp) , INTENT(in ) :: pcrh ! call adv_x then adv_y (=1) or the opposite (=0) |
---|
502 | REAL(wp), DIMENSION(:,:) , INTENT(in ) :: pvt ! j-direction ice velocity at V-point [m/s] |
---|
503 | REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: psm ! area |
---|
504 | REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: ps0 ! field to be advected |
---|
505 | REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: psx , psy ! 1st moments |
---|
506 | REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: psxx, psyy, psxy ! 2nd moments |
---|
507 | !! |
---|
508 | INTEGER :: ji, jj, jl, jcat ! dummy loop indices |
---|
509 | REAL(wp) :: zs1max, zslpmax, ztemp ! temporary scalars |
---|
510 | REAL(wp) :: zs1new, zalf , zalfq , zbt ! - - |
---|
511 | REAL(wp) :: zs2new, zalf1, zalf1q, zbt1 ! - - |
---|
512 | REAL(wp), DIMENSION(jpi,jpj) :: zf0, zfx , zfy , zbet ! 2D workspace |
---|
513 | REAL(wp), DIMENSION(jpi,jpj) :: zfm, zfxx, zfyy, zfxy ! - - |
---|
514 | REAL(wp), DIMENSION(jpi,jpj) :: zalg, zalg1, zalg1q ! - - |
---|
515 | !--------------------------------------------------------------------- |
---|
516 | ! |
---|
517 | jcat = SIZE( ps0 , 3 ) ! size of input arrays |
---|
518 | ! |
---|
519 | DO jl = 1, jcat ! loop on categories |
---|
520 | ! |
---|
521 | ! Limitation of moments. |
---|
522 | DO_2D( 1, 1, 0, 0 ) |
---|
523 | ! Initialize volumes of boxes (=area if adv_x first called, =psm otherwise) |
---|
524 | psm(ji,jj,jl) = MAX( pcrh * e1e2t(ji,jj) + ( 1.0 - pcrh ) * psm(ji,jj,jl) , epsi20 ) |
---|
525 | ! |
---|
526 | zslpmax = MAX( 0._wp, ps0(ji,jj,jl) ) |
---|
527 | zs1max = 1.5 * zslpmax |
---|
528 | zs1new = MIN( zs1max, MAX( -zs1max, psy(ji,jj,jl) ) ) |
---|
529 | zs2new = MIN( ( 2.0 * zslpmax - 0.3334 * ABS( zs1new ) ), & |
---|
530 | & MAX( ABS( zs1new )-zslpmax, psyy(ji,jj,jl) ) ) |
---|
531 | rswitch = ( 1.0 - MAX( 0._wp, SIGN( 1._wp, -zslpmax) ) ) * tmask(ji,jj,1) ! Case of empty boxes & Apply mask |
---|
532 | ! |
---|
533 | ps0 (ji,jj,jl) = zslpmax |
---|
534 | psx (ji,jj,jl) = psx (ji,jj,jl) * rswitch |
---|
535 | psxx(ji,jj,jl) = psxx(ji,jj,jl) * rswitch |
---|
536 | psy (ji,jj,jl) = zs1new * rswitch |
---|
537 | psyy(ji,jj,jl) = zs2new * rswitch |
---|
538 | psxy(ji,jj,jl) = MIN( zslpmax, MAX( -zslpmax, psxy(ji,jj,jl) ) ) * rswitch |
---|
539 | END_2D |
---|
540 | |
---|
541 | ! Calculate fluxes and moments between boxes j<-->j+1 |
---|
542 | DO_2D( 1, 1, 0, 0 ) ! Flux from j to j+1 WHEN v GT 0 |
---|
543 | zbet(ji,jj) = MAX( 0._wp, SIGN( 1._wp, pvt(ji,jj) ) ) |
---|
544 | zalf = MAX( 0._wp, pvt(ji,jj) ) * pdt / psm(ji,jj,jl) |
---|
545 | zalfq = zalf * zalf |
---|
546 | zalf1 = 1.0 - zalf |
---|
547 | zalf1q = zalf1 * zalf1 |
---|
548 | ! |
---|
549 | zfm (ji,jj) = zalf * psm(ji,jj,jl) |
---|
550 | zf0 (ji,jj) = zalf * ( ps0(ji,jj,jl) + zalf1 * ( psy(ji,jj,jl) + (zalf1-zalf) * psyy(ji,jj,jl) ) ) |
---|
551 | zfy (ji,jj) = zalfq *( psy(ji,jj,jl) + 3.0*zalf1*psyy(ji,jj,jl) ) |
---|
552 | zfyy(ji,jj) = zalf * zalfq * psyy(ji,jj,jl) |
---|
553 | zfx (ji,jj) = zalf * ( psx(ji,jj,jl) + zalf1 * psxy(ji,jj,jl) ) |
---|
554 | zfxy(ji,jj) = zalfq * psxy(ji,jj,jl) |
---|
555 | zfxx(ji,jj) = zalf * psxx(ji,jj,jl) |
---|
556 | ! |
---|
557 | ! Readjust moments remaining in the box. |
---|
558 | psm (ji,jj,jl) = psm (ji,jj,jl) - zfm(ji,jj) |
---|
559 | ps0 (ji,jj,jl) = ps0 (ji,jj,jl) - zf0(ji,jj) |
---|
560 | psy (ji,jj,jl) = zalf1q * ( psy(ji,jj,jl) -3.0 * zalf * psyy(ji,jj,jl) ) |
---|
561 | psyy(ji,jj,jl) = zalf1 * zalf1q * psyy(ji,jj,jl) |
---|
562 | psx (ji,jj,jl) = psx (ji,jj,jl) - zfx(ji,jj) |
---|
563 | psxx(ji,jj,jl) = psxx(ji,jj,jl) - zfxx(ji,jj) |
---|
564 | psxy(ji,jj,jl) = zalf1q * psxy(ji,jj,jl) |
---|
565 | END_2D |
---|
566 | ! |
---|
567 | DO_2D( 1, 0, 0, 0 ) ! Flux from j+1 to j when v LT 0. |
---|
568 | zalf = MAX( 0._wp, -pvt(ji,jj) ) * pdt / psm(ji,jj+1,jl) |
---|
569 | zalg (ji,jj) = zalf |
---|
570 | zalfq = zalf * zalf |
---|
571 | zalf1 = 1.0 - zalf |
---|
572 | zalg1 (ji,jj) = zalf1 |
---|
573 | zalf1q = zalf1 * zalf1 |
---|
574 | zalg1q(ji,jj) = zalf1q |
---|
575 | ! |
---|
576 | zfm (ji,jj) = zfm (ji,jj) + zalf * psm (ji,jj+1,jl) |
---|
577 | zf0 (ji,jj) = zf0 (ji,jj) + zalf * ( ps0 (ji,jj+1,jl) & |
---|
578 | & - zalf1 * (psy(ji,jj+1,jl) - (zalf1 - zalf ) * psyy(ji,jj+1,jl) ) ) |
---|
579 | zfy (ji,jj) = zfy (ji,jj) + zalfq * ( psy (ji,jj+1,jl) - 3.0 * zalf1 * psyy(ji,jj+1,jl) ) |
---|
580 | zfyy (ji,jj) = zfyy(ji,jj) + zalf * psyy(ji,jj+1,jl) * zalfq |
---|
581 | zfx (ji,jj) = zfx (ji,jj) + zalf * ( psx (ji,jj+1,jl) - zalf1 * psxy(ji,jj+1,jl) ) |
---|
582 | zfxy (ji,jj) = zfxy(ji,jj) + zalfq * psxy(ji,jj+1,jl) |
---|
583 | zfxx (ji,jj) = zfxx(ji,jj) + zalf * psxx(ji,jj+1,jl) |
---|
584 | END_2D |
---|
585 | |
---|
586 | ! Readjust moments remaining in the box. |
---|
587 | DO_2D( 0, 0, 0, 0 ) |
---|
588 | zbt = zbet(ji,jj-1) |
---|
589 | zbt1 = ( 1.0 - zbet(ji,jj-1) ) |
---|
590 | ! |
---|
591 | psm (ji,jj,jl) = zbt * psm(ji,jj,jl) + zbt1 * ( psm(ji,jj,jl) - zfm(ji,jj-1) ) |
---|
592 | ps0 (ji,jj,jl) = zbt * ps0(ji,jj,jl) + zbt1 * ( ps0(ji,jj,jl) - zf0(ji,jj-1) ) |
---|
593 | psy (ji,jj,jl) = zalg1q(ji,jj-1) * ( psy(ji,jj,jl) + 3.0 * zalg(ji,jj-1) * psyy(ji,jj,jl) ) |
---|
594 | psyy(ji,jj,jl) = zalg1 (ji,jj-1) * zalg1q(ji,jj-1) * psyy(ji,jj,jl) |
---|
595 | psx (ji,jj,jl) = zbt * psx (ji,jj,jl) + zbt1 * ( psx (ji,jj,jl) - zfx (ji,jj-1) ) |
---|
596 | psxx(ji,jj,jl) = zbt * psxx(ji,jj,jl) + zbt1 * ( psxx(ji,jj,jl) - zfxx(ji,jj-1) ) |
---|
597 | psxy(ji,jj,jl) = zalg1q(ji,jj-1) * psxy(ji,jj,jl) |
---|
598 | END_2D |
---|
599 | |
---|
600 | ! Put the temporary moments into appropriate neighboring boxes. |
---|
601 | DO_2D( 0, 0, 0, 0 ) ! Flux from j to j+1 IF v GT 0. |
---|
602 | zbt = zbet(ji,jj-1) |
---|
603 | zbt1 = 1.0 - zbet(ji,jj-1) |
---|
604 | psm(ji,jj,jl) = zbt * ( psm(ji,jj,jl) + zfm(ji,jj-1) ) + zbt1 * psm(ji,jj,jl) |
---|
605 | zalf = zbt * zfm(ji,jj-1) / psm(ji,jj,jl) |
---|
606 | zalf1 = 1.0 - zalf |
---|
607 | ztemp = zalf * ps0(ji,jj,jl) - zalf1 * zf0(ji,jj-1) |
---|
608 | ! |
---|
609 | ps0(ji,jj,jl) = zbt * ( ps0(ji,jj,jl) + zf0(ji,jj-1) ) + zbt1 * ps0(ji,jj,jl) |
---|
610 | psy(ji,jj,jl) = zbt * ( zalf * zfy(ji,jj-1) + zalf1 * psy(ji,jj,jl) + 3.0 * ztemp ) & |
---|
611 | & + zbt1 * psy(ji,jj,jl) |
---|
612 | psyy(ji,jj,jl) = zbt * ( zalf * zalf * zfyy(ji,jj-1) + zalf1 * zalf1 * psyy(ji,jj,jl) & |
---|
613 | & + 5.0 * ( zalf * zalf1 * ( psy(ji,jj,jl) - zfy(ji,jj-1) ) - ( zalf1 - zalf ) * ztemp ) ) & |
---|
614 | & + zbt1 * psyy(ji,jj,jl) |
---|
615 | psxy(ji,jj,jl) = zbt * ( zalf * zfxy(ji,jj-1) + zalf1 * psxy(ji,jj,jl) & |
---|
616 | & + 3.0 * (- zalf1 * zfx(ji,jj-1) + zalf * psx(ji,jj,jl) ) ) & |
---|
617 | & + zbt1 * psxy(ji,jj,jl) |
---|
618 | psx (ji,jj,jl) = zbt * ( psx (ji,jj,jl) + zfx (ji,jj-1) ) + zbt1 * psx (ji,jj,jl) |
---|
619 | psxx(ji,jj,jl) = zbt * ( psxx(ji,jj,jl) + zfxx(ji,jj-1) ) + zbt1 * psxx(ji,jj,jl) |
---|
620 | END_2D |
---|
621 | |
---|
622 | DO_2D( 0, 0, 0, 0 ) ! Flux from j+1 to j IF v LT 0. |
---|
623 | zbt = zbet(ji,jj) |
---|
624 | zbt1 = 1.0 - zbet(ji,jj) |
---|
625 | psm(ji,jj,jl) = zbt * psm(ji,jj,jl) + zbt1 * ( psm(ji,jj,jl) + zfm(ji,jj) ) |
---|
626 | zalf = zbt1 * zfm(ji,jj) / psm(ji,jj,jl) |
---|
627 | zalf1 = 1.0 - zalf |
---|
628 | ztemp = - zalf * ps0(ji,jj,jl) + zalf1 * zf0(ji,jj) |
---|
629 | ! |
---|
630 | ps0 (ji,jj,jl) = zbt * ps0 (ji,jj,jl) + zbt1 * ( ps0(ji,jj,jl) + zf0(ji,jj) ) |
---|
631 | psy (ji,jj,jl) = zbt * psy (ji,jj,jl) + zbt1 * ( zalf * zfy(ji,jj) + zalf1 * psy(ji,jj,jl) + 3.0 * ztemp ) |
---|
632 | psyy(ji,jj,jl) = zbt * psyy(ji,jj,jl) + zbt1 * ( zalf * zalf * zfyy(ji,jj) + zalf1 * zalf1 * psyy(ji,jj,jl) & |
---|
633 | & + 5.0 * ( zalf * zalf1 * ( - psy(ji,jj,jl) + zfy(ji,jj) ) & |
---|
634 | & + ( zalf1 - zalf ) * ztemp ) ) |
---|
635 | psxy(ji,jj,jl) = zbt * psxy(ji,jj,jl) + zbt1 * ( zalf * zfxy(ji,jj) + zalf1 * psxy(ji,jj,jl) & |
---|
636 | & + 3.0 * ( zalf1 * zfx(ji,jj) - zalf * psx(ji,jj,jl) ) ) |
---|
637 | psx (ji,jj,jl) = zbt * psx (ji,jj,jl) + zbt1 * ( psx (ji,jj,jl) + zfx (ji,jj) ) |
---|
638 | psxx(ji,jj,jl) = zbt * psxx(ji,jj,jl) + zbt1 * ( psxx(ji,jj,jl) + zfxx(ji,jj) ) |
---|
639 | END_2D |
---|
640 | |
---|
641 | END DO |
---|
642 | |
---|
643 | !-- Lateral boundary conditions |
---|
644 | CALL lbc_lnk_multi( 'icedyn_adv_pra', psm(:,:,1:jcat) , 'T', 1.0_wp, ps0 , 'T', 1.0_wp & |
---|
645 | & , psx , 'T', -1.0_wp, psy , 'T', -1.0_wp & ! caution gradient ==> the sign changes |
---|
646 | & , psxx , 'T', 1.0_wp, psyy, 'T', 1.0_wp , psxy, 'T', 1.0_wp ) |
---|
647 | ! |
---|
648 | END SUBROUTINE adv_y |
---|
649 | |
---|
650 | |
---|
651 | SUBROUTINE Hbig( pdt, phi_max, phs_max, phip_max, psi_max, pes_max, pei_max, & |
---|
652 | & pv_i, pv_s, pa_i, pa_ip, pv_ip, psv_i, pe_s, pe_i ) |
---|
653 | !!------------------------------------------------------------------- |
---|
654 | !! *** ROUTINE Hbig *** |
---|
655 | !! |
---|
656 | !! ** Purpose : Thickness correction in case advection scheme creates |
---|
657 | !! abnormally tick ice or snow |
---|
658 | !! |
---|
659 | !! ** Method : 1- check whether ice thickness is larger than the surrounding 9-points |
---|
660 | !! (before advection) and reduce it by adapting ice concentration |
---|
661 | !! 2- check whether snow thickness is larger than the surrounding 9-points |
---|
662 | !! (before advection) and reduce it by sending the excess in the ocean |
---|
663 | !! |
---|
664 | !! ** input : Max thickness of the surrounding 9-points |
---|
665 | !!------------------------------------------------------------------- |
---|
666 | REAL(wp) , INTENT(in ) :: pdt ! tracer time-step |
---|
667 | REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: phi_max, phs_max, phip_max, psi_max ! max ice thick from surrounding 9-pts |
---|
668 | REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pes_max |
---|
669 | REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pei_max |
---|
670 | REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: pv_i, pv_s, pa_i, pa_ip, pv_ip, psv_i |
---|
671 | REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) :: pe_s |
---|
672 | REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) :: pe_i |
---|
673 | ! |
---|
674 | INTEGER :: ji, jj, jk, jl ! dummy loop indices |
---|
675 | REAL(wp) :: z1_dt, zhip, zhi, zhs, zsi, zes, zei, zfra |
---|
676 | !!------------------------------------------------------------------- |
---|
677 | ! |
---|
678 | z1_dt = 1._wp / pdt |
---|
679 | ! |
---|
680 | DO jl = 1, jpl |
---|
681 | DO_2D( 1, 1, 1, 1 ) |
---|
682 | IF ( pv_i(ji,jj,jl) > 0._wp ) THEN |
---|
683 | ! |
---|
684 | ! ! -- check h_ip -- ! |
---|
685 | ! if h_ip is larger than the surrounding 9 pts => reduce h_ip and increase a_ip |
---|
686 | IF( ln_pnd_LEV .AND. pv_ip(ji,jj,jl) > 0._wp ) THEN |
---|
687 | zhip = pv_ip(ji,jj,jl) / MAX( epsi20, pa_ip(ji,jj,jl) ) |
---|
688 | IF( zhip > phip_max(ji,jj,jl) .AND. pa_ip(ji,jj,jl) < 0.15 ) THEN |
---|
689 | pa_ip(ji,jj,jl) = pv_ip(ji,jj,jl) / phip_max(ji,jj,jl) |
---|
690 | ENDIF |
---|
691 | ENDIF |
---|
692 | ! |
---|
693 | ! ! -- check h_i -- ! |
---|
694 | ! if h_i is larger than the surrounding 9 pts => reduce h_i and increase a_i |
---|
695 | zhi = pv_i(ji,jj,jl) / pa_i(ji,jj,jl) |
---|
696 | IF( zhi > phi_max(ji,jj,jl) .AND. pa_i(ji,jj,jl) < 0.15 ) THEN |
---|
697 | pa_i(ji,jj,jl) = pv_i(ji,jj,jl) / MIN( phi_max(ji,jj,jl), hi_max(jpl) ) !-- bound h_i to hi_max (99 m) |
---|
698 | ENDIF |
---|
699 | ! |
---|
700 | ! ! -- check h_s -- ! |
---|
701 | ! if h_s is larger than the surrounding 9 pts => put the snow excess in the ocean |
---|
702 | zhs = pv_s(ji,jj,jl) / pa_i(ji,jj,jl) |
---|
703 | IF( pv_s(ji,jj,jl) > 0._wp .AND. zhs > phs_max(ji,jj,jl) .AND. pa_i(ji,jj,jl) < 0.15 ) THEN |
---|
704 | zfra = phs_max(ji,jj,jl) / MAX( zhs, epsi20 ) |
---|
705 | ! |
---|
706 | wfx_res(ji,jj) = wfx_res(ji,jj) + ( pv_s(ji,jj,jl) - pa_i(ji,jj,jl) * phs_max(ji,jj,jl) ) * rhos * z1_dt |
---|
707 | hfx_res(ji,jj) = hfx_res(ji,jj) - SUM( pe_s(ji,jj,1:nlay_s,jl) ) * ( 1._wp - zfra ) * z1_dt ! W.m-2 <0 |
---|
708 | ! |
---|
709 | pe_s(ji,jj,1:nlay_s,jl) = pe_s(ji,jj,1:nlay_s,jl) * zfra |
---|
710 | pv_s(ji,jj,jl) = pa_i(ji,jj,jl) * phs_max(ji,jj,jl) |
---|
711 | ENDIF |
---|
712 | ! |
---|
713 | ! ! -- check s_i -- ! |
---|
714 | ! if s_i is larger than the surrounding 9 pts => put salt excess in the ocean |
---|
715 | zsi = psv_i(ji,jj,jl) / pv_i(ji,jj,jl) |
---|
716 | IF( zsi > psi_max(ji,jj,jl) .AND. pa_i(ji,jj,jl) < 0.15 ) THEN |
---|
717 | zfra = psi_max(ji,jj,jl) / zsi |
---|
718 | sfx_res(ji,jj) = sfx_res(ji,jj) + psv_i(ji,jj,jl) * ( 1._wp - zfra ) * rhoi * z1_dt |
---|
719 | psv_i(ji,jj,jl) = psv_i(ji,jj,jl) * zfra |
---|
720 | ENDIF |
---|
721 | ! |
---|
722 | ENDIF |
---|
723 | END_2D |
---|
724 | END DO |
---|
725 | ! |
---|
726 | ! ! -- check e_i/v_i -- ! |
---|
727 | DO jl = 1, jpl |
---|
728 | DO_3D( 1, 1, 1, 1, 1, nlay_i ) |
---|
729 | IF ( pv_i(ji,jj,jl) > 0._wp ) THEN |
---|
730 | ! if e_i/v_i is larger than the surrounding 9 pts => put the heat excess in the ocean |
---|
731 | zei = pe_i(ji,jj,jk,jl) / pv_i(ji,jj,jl) |
---|
732 | IF( zei > pei_max(ji,jj,jk,jl) .AND. pa_i(ji,jj,jl) < 0.15 ) THEN |
---|
733 | zfra = pei_max(ji,jj,jk,jl) / zei |
---|
734 | hfx_res(ji,jj) = hfx_res(ji,jj) - pe_i(ji,jj,jk,jl) * ( 1._wp - zfra ) * z1_dt ! W.m-2 <0 |
---|
735 | pe_i(ji,jj,jk,jl) = pe_i(ji,jj,jk,jl) * zfra |
---|
736 | ENDIF |
---|
737 | ENDIF |
---|
738 | END_3D |
---|
739 | END DO |
---|
740 | ! ! -- check e_s/v_s -- ! |
---|
741 | DO jl = 1, jpl |
---|
742 | DO_3D( 1, 1, 1, 1, 1, nlay_s ) |
---|
743 | IF ( pv_s(ji,jj,jl) > 0._wp ) THEN |
---|
744 | ! if e_s/v_s is larger than the surrounding 9 pts => put the heat excess in the ocean |
---|
745 | zes = pe_s(ji,jj,jk,jl) / pv_s(ji,jj,jl) |
---|
746 | IF( zes > pes_max(ji,jj,jk,jl) .AND. pa_i(ji,jj,jl) < 0.15 ) THEN |
---|
747 | zfra = pes_max(ji,jj,jk,jl) / zes |
---|
748 | hfx_res(ji,jj) = hfx_res(ji,jj) - pe_s(ji,jj,jk,jl) * ( 1._wp - zfra ) * z1_dt ! W.m-2 <0 |
---|
749 | pe_s(ji,jj,jk,jl) = pe_s(ji,jj,jk,jl) * zfra |
---|
750 | ENDIF |
---|
751 | ENDIF |
---|
752 | END_3D |
---|
753 | END DO |
---|
754 | ! |
---|
755 | END SUBROUTINE Hbig |
---|
756 | |
---|
757 | |
---|
758 | SUBROUTINE Hsnow( pdt, pv_i, pv_s, pa_i, pa_ip, pe_s ) |
---|
759 | !!------------------------------------------------------------------- |
---|
760 | !! *** ROUTINE Hsnow *** |
---|
761 | !! |
---|
762 | !! ** Purpose : 1- Check snow load after advection |
---|
763 | !! 2- Correct pond concentration to avoid a_ip > a_i |
---|
764 | !! |
---|
765 | !! ** Method : If snow load makes snow-ice interface to deplet below the ocean surface |
---|
766 | !! then put the snow excess in the ocean |
---|
767 | !! |
---|
768 | !! ** Notes : This correction is crucial because of the call to routine icecor afterwards |
---|
769 | !! which imposes a mini of ice thick. (rn_himin). This imposed mini can artificially |
---|
770 | !! make the snow very thick (if concentration decreases drastically) |
---|
771 | !! This behavior has been seen in Ultimate-Macho and supposedly it can also be true for Prather |
---|
772 | !!------------------------------------------------------------------- |
---|
773 | REAL(wp) , INTENT(in ) :: pdt ! tracer time-step |
---|
774 | REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: pv_i, pv_s, pa_i, pa_ip |
---|
775 | REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) :: pe_s |
---|
776 | ! |
---|
777 | INTEGER :: ji, jj, jl ! dummy loop indices |
---|
778 | REAL(wp) :: z1_dt, zvs_excess, zfra |
---|
779 | !!------------------------------------------------------------------- |
---|
780 | ! |
---|
781 | z1_dt = 1._wp / pdt |
---|
782 | ! |
---|
783 | ! -- check snow load -- ! |
---|
784 | DO jl = 1, jpl |
---|
785 | DO_2D( 1, 1, 1, 1 ) |
---|
786 | IF ( pv_i(ji,jj,jl) > 0._wp ) THEN |
---|
787 | ! |
---|
788 | zvs_excess = MAX( 0._wp, pv_s(ji,jj,jl) - pv_i(ji,jj,jl) * (rho0-rhoi) * r1_rhos ) |
---|
789 | ! |
---|
790 | IF( zvs_excess > 0._wp ) THEN ! snow-ice interface deplets below the ocean surface |
---|
791 | ! put snow excess in the ocean |
---|
792 | zfra = ( pv_s(ji,jj,jl) - zvs_excess ) / MAX( pv_s(ji,jj,jl), epsi20 ) |
---|
793 | wfx_res(ji,jj) = wfx_res(ji,jj) + zvs_excess * rhos * z1_dt |
---|
794 | hfx_res(ji,jj) = hfx_res(ji,jj) - SUM( pe_s(ji,jj,1:nlay_s,jl) ) * ( 1._wp - zfra ) * z1_dt ! W.m-2 <0 |
---|
795 | ! correct snow volume and heat content |
---|
796 | pe_s(ji,jj,1:nlay_s,jl) = pe_s(ji,jj,1:nlay_s,jl) * zfra |
---|
797 | pv_s(ji,jj,jl) = pv_s(ji,jj,jl) - zvs_excess |
---|
798 | ENDIF |
---|
799 | ! |
---|
800 | ENDIF |
---|
801 | END_2D |
---|
802 | END DO |
---|
803 | ! |
---|
804 | !-- correct pond concentration to avoid a_ip > a_i -- ! |
---|
805 | WHERE( pa_ip(:,:,:) > pa_i(:,:,:) ) pa_ip(:,:,:) = pa_i(:,:,:) |
---|
806 | ! |
---|
807 | END SUBROUTINE Hsnow |
---|
808 | |
---|
809 | |
---|
810 | SUBROUTINE adv_pra_init |
---|
811 | !!------------------------------------------------------------------- |
---|
812 | !! *** ROUTINE adv_pra_init *** |
---|
813 | !! |
---|
814 | !! ** Purpose : allocate and initialize arrays for Prather advection |
---|
815 | !!------------------------------------------------------------------- |
---|
816 | INTEGER :: ierr |
---|
817 | !!------------------------------------------------------------------- |
---|
818 | ! |
---|
819 | ! !* allocate prather fields |
---|
820 | ALLOCATE( sxice(jpi,jpj,jpl) , syice(jpi,jpj,jpl) , sxxice(jpi,jpj,jpl) , syyice(jpi,jpj,jpl) , sxyice(jpi,jpj,jpl) , & |
---|
821 | & sxsn (jpi,jpj,jpl) , sysn (jpi,jpj,jpl) , sxxsn (jpi,jpj,jpl) , syysn (jpi,jpj,jpl) , sxysn (jpi,jpj,jpl) , & |
---|
822 | & sxa (jpi,jpj,jpl) , sya (jpi,jpj,jpl) , sxxa (jpi,jpj,jpl) , syya (jpi,jpj,jpl) , sxya (jpi,jpj,jpl) , & |
---|
823 | & sxsal(jpi,jpj,jpl) , sysal(jpi,jpj,jpl) , sxxsal(jpi,jpj,jpl) , syysal(jpi,jpj,jpl) , sxysal(jpi,jpj,jpl) , & |
---|
824 | & sxage(jpi,jpj,jpl) , syage(jpi,jpj,jpl) , sxxage(jpi,jpj,jpl) , syyage(jpi,jpj,jpl) , sxyage(jpi,jpj,jpl) , & |
---|
825 | & sxap (jpi,jpj,jpl) , syap (jpi,jpj,jpl) , sxxap (jpi,jpj,jpl) , syyap (jpi,jpj,jpl) , sxyap (jpi,jpj,jpl) , & |
---|
826 | & sxvp (jpi,jpj,jpl) , syvp (jpi,jpj,jpl) , sxxvp (jpi,jpj,jpl) , syyvp (jpi,jpj,jpl) , sxyvp (jpi,jpj,jpl) , & |
---|
827 | & sxvl (jpi,jpj,jpl) , syvl (jpi,jpj,jpl) , sxxvl (jpi,jpj,jpl) , syyvl (jpi,jpj,jpl) , sxyvl (jpi,jpj,jpl) , & |
---|
828 | ! |
---|
829 | & sxc0 (jpi,jpj,nlay_s,jpl) , syc0 (jpi,jpj,nlay_s,jpl) , sxxc0(jpi,jpj,nlay_s,jpl) , & |
---|
830 | & syyc0(jpi,jpj,nlay_s,jpl) , sxyc0(jpi,jpj,nlay_s,jpl) , & |
---|
831 | ! |
---|
832 | & sxe (jpi,jpj,nlay_i,jpl) , sye (jpi,jpj,nlay_i,jpl) , sxxe (jpi,jpj,nlay_i,jpl) , & |
---|
833 | & syye (jpi,jpj,nlay_i,jpl) , sxye (jpi,jpj,nlay_i,jpl) , & |
---|
834 | & STAT = ierr ) |
---|
835 | ! |
---|
836 | CALL mpp_sum( 'icedyn_adv_pra', ierr ) |
---|
837 | IF( ierr /= 0 ) CALL ctl_stop('STOP', 'adv_pra_init : unable to allocate ice arrays for Prather advection scheme') |
---|
838 | ! |
---|
839 | CALL adv_pra_rst( 'READ' ) !* read or initialize all required files |
---|
840 | ! |
---|
841 | END SUBROUTINE adv_pra_init |
---|
842 | |
---|
843 | |
---|
844 | SUBROUTINE adv_pra_rst( cdrw, kt ) |
---|
845 | !!--------------------------------------------------------------------- |
---|
846 | !! *** ROUTINE adv_pra_rst *** |
---|
847 | !! |
---|
848 | !! ** Purpose : Read or write file in restart file |
---|
849 | !! |
---|
850 | !! ** Method : use of IOM library |
---|
851 | !!---------------------------------------------------------------------- |
---|
852 | CHARACTER(len=*) , INTENT(in) :: cdrw ! "READ"/"WRITE" flag |
---|
853 | INTEGER, OPTIONAL, INTENT(in) :: kt ! ice time-step |
---|
854 | ! |
---|
855 | INTEGER :: jk, jl ! dummy loop indices |
---|
856 | INTEGER :: iter ! local integer |
---|
857 | INTEGER :: id1 ! local integer |
---|
858 | CHARACTER(len=25) :: znam |
---|
859 | CHARACTER(len=2) :: zchar, zchar1 |
---|
860 | REAL(wp), DIMENSION(jpi,jpj,jpl) :: z3d ! 3D workspace |
---|
861 | !!---------------------------------------------------------------------- |
---|
862 | ! |
---|
863 | ! !==========================! |
---|
864 | IF( TRIM(cdrw) == 'READ' ) THEN !== Read or initialize ==! |
---|
865 | ! !==========================! |
---|
866 | ! |
---|
867 | IF( ln_rstart ) THEN ; id1 = iom_varid( numrir, 'sxice' , ldstop = .FALSE. ) ! file exist: id1>0 |
---|
868 | ELSE ; id1 = 0 ! no restart: id1=0 |
---|
869 | ENDIF |
---|
870 | ! |
---|
871 | IF( id1 > 0 ) THEN !** Read the restart file **! |
---|
872 | ! |
---|
873 | ! ! ice thickness |
---|
874 | CALL iom_get( numrir, jpdom_auto, 'sxice' , sxice ) |
---|
875 | CALL iom_get( numrir, jpdom_auto, 'syice' , syice ) |
---|
876 | CALL iom_get( numrir, jpdom_auto, 'sxxice', sxxice ) |
---|
877 | CALL iom_get( numrir, jpdom_auto, 'syyice', syyice ) |
---|
878 | CALL iom_get( numrir, jpdom_auto, 'sxyice', sxyice ) |
---|
879 | ! ! snow thickness |
---|
880 | CALL iom_get( numrir, jpdom_auto, 'sxsn' , sxsn ) |
---|
881 | CALL iom_get( numrir, jpdom_auto, 'sysn' , sysn ) |
---|
882 | CALL iom_get( numrir, jpdom_auto, 'sxxsn' , sxxsn ) |
---|
883 | CALL iom_get( numrir, jpdom_auto, 'syysn' , syysn ) |
---|
884 | CALL iom_get( numrir, jpdom_auto, 'sxysn' , sxysn ) |
---|
885 | ! ! ice concentration |
---|
886 | CALL iom_get( numrir, jpdom_auto, 'sxa' , sxa ) |
---|
887 | CALL iom_get( numrir, jpdom_auto, 'sya' , sya ) |
---|
888 | CALL iom_get( numrir, jpdom_auto, 'sxxa' , sxxa ) |
---|
889 | CALL iom_get( numrir, jpdom_auto, 'syya' , syya ) |
---|
890 | CALL iom_get( numrir, jpdom_auto, 'sxya' , sxya ) |
---|
891 | ! ! ice salinity |
---|
892 | CALL iom_get( numrir, jpdom_auto, 'sxsal' , sxsal ) |
---|
893 | CALL iom_get( numrir, jpdom_auto, 'sysal' , sysal ) |
---|
894 | CALL iom_get( numrir, jpdom_auto, 'sxxsal', sxxsal ) |
---|
895 | CALL iom_get( numrir, jpdom_auto, 'syysal', syysal ) |
---|
896 | CALL iom_get( numrir, jpdom_auto, 'sxysal', sxysal ) |
---|
897 | ! ! ice age |
---|
898 | CALL iom_get( numrir, jpdom_auto, 'sxage' , sxage ) |
---|
899 | CALL iom_get( numrir, jpdom_auto, 'syage' , syage ) |
---|
900 | CALL iom_get( numrir, jpdom_auto, 'sxxage', sxxage ) |
---|
901 | CALL iom_get( numrir, jpdom_auto, 'syyage', syyage ) |
---|
902 | CALL iom_get( numrir, jpdom_auto, 'sxyage', sxyage ) |
---|
903 | ! ! snow layers heat content |
---|
904 | DO jk = 1, nlay_s |
---|
905 | WRITE(zchar1,'(I2.2)') jk |
---|
906 | znam = 'sxc0'//'_l'//zchar1 ; CALL iom_get( numrir, jpdom_auto, znam , z3d ) ; sxc0 (:,:,jk,:) = z3d(:,:,:) |
---|
907 | znam = 'syc0'//'_l'//zchar1 ; CALL iom_get( numrir, jpdom_auto, znam , z3d ) ; syc0 (:,:,jk,:) = z3d(:,:,:) |
---|
908 | znam = 'sxxc0'//'_l'//zchar1 ; CALL iom_get( numrir, jpdom_auto, znam , z3d ) ; sxxc0(:,:,jk,:) = z3d(:,:,:) |
---|
909 | znam = 'syyc0'//'_l'//zchar1 ; CALL iom_get( numrir, jpdom_auto, znam , z3d ) ; syyc0(:,:,jk,:) = z3d(:,:,:) |
---|
910 | znam = 'sxyc0'//'_l'//zchar1 ; CALL iom_get( numrir, jpdom_auto, znam , z3d ) ; sxyc0(:,:,jk,:) = z3d(:,:,:) |
---|
911 | END DO |
---|
912 | ! ! ice layers heat content |
---|
913 | DO jk = 1, nlay_i |
---|
914 | WRITE(zchar1,'(I2.2)') jk |
---|
915 | znam = 'sxe'//'_l'//zchar1 ; CALL iom_get( numrir, jpdom_auto, znam , z3d ) ; sxe (:,:,jk,:) = z3d(:,:,:) |
---|
916 | znam = 'sye'//'_l'//zchar1 ; CALL iom_get( numrir, jpdom_auto, znam , z3d ) ; sye (:,:,jk,:) = z3d(:,:,:) |
---|
917 | znam = 'sxxe'//'_l'//zchar1 ; CALL iom_get( numrir, jpdom_auto, znam , z3d ) ; sxxe(:,:,jk,:) = z3d(:,:,:) |
---|
918 | znam = 'syye'//'_l'//zchar1 ; CALL iom_get( numrir, jpdom_auto, znam , z3d ) ; syye(:,:,jk,:) = z3d(:,:,:) |
---|
919 | znam = 'sxye'//'_l'//zchar1 ; CALL iom_get( numrir, jpdom_auto, znam , z3d ) ; sxye(:,:,jk,:) = z3d(:,:,:) |
---|
920 | END DO |
---|
921 | ! |
---|
922 | IF( ln_pnd_LEV ) THEN ! melt pond fraction |
---|
923 | IF( iom_varid( numror, 'sxap', ldstop = .FALSE. ) > 0 ) THEN |
---|
924 | CALL iom_get( numrir, jpdom_auto, 'sxap' , sxap ) |
---|
925 | CALL iom_get( numrir, jpdom_auto, 'syap' , syap ) |
---|
926 | CALL iom_get( numrir, jpdom_auto, 'sxxap', sxxap ) |
---|
927 | CALL iom_get( numrir, jpdom_auto, 'syyap', syyap ) |
---|
928 | CALL iom_get( numrir, jpdom_auto, 'sxyap', sxyap ) |
---|
929 | ! ! melt pond volume |
---|
930 | CALL iom_get( numrir, jpdom_auto, 'sxvp' , sxvp ) |
---|
931 | CALL iom_get( numrir, jpdom_auto, 'syvp' , syvp ) |
---|
932 | CALL iom_get( numrir, jpdom_auto, 'sxxvp', sxxvp ) |
---|
933 | CALL iom_get( numrir, jpdom_auto, 'syyvp', syyvp ) |
---|
934 | CALL iom_get( numrir, jpdom_auto, 'sxyvp', sxyvp ) |
---|
935 | ELSE |
---|
936 | sxap = 0._wp ; syap = 0._wp ; sxxap = 0._wp ; syyap = 0._wp ; sxyap = 0._wp ! melt pond fraction |
---|
937 | sxvp = 0._wp ; syvp = 0._wp ; sxxvp = 0._wp ; syyvp = 0._wp ; sxyvp = 0._wp ! melt pond volume |
---|
938 | ENDIF |
---|
939 | ! |
---|
940 | IF ( ln_pnd_lids ) THEN ! melt pond lid volume |
---|
941 | IF( iom_varid( numror, 'sxvl', ldstop = .FALSE. ) > 0 ) THEN |
---|
942 | CALL iom_get( numrir, jpdom_auto, 'sxvl' , sxvl ) |
---|
943 | CALL iom_get( numrir, jpdom_auto, 'syvl' , syvl ) |
---|
944 | CALL iom_get( numrir, jpdom_auto, 'sxxvl', sxxvl ) |
---|
945 | CALL iom_get( numrir, jpdom_auto, 'syyvl', syyvl ) |
---|
946 | CALL iom_get( numrir, jpdom_auto, 'sxyvl', sxyvl ) |
---|
947 | ELSE |
---|
948 | sxvl = 0._wp; syvl = 0._wp ; sxxvl = 0._wp ; syyvl = 0._wp ; sxyvl = 0._wp ! melt pond lid volume |
---|
949 | ENDIF |
---|
950 | ENDIF |
---|
951 | ENDIF |
---|
952 | ! |
---|
953 | ELSE !** start rheology from rest **! |
---|
954 | ! |
---|
955 | IF(lwp) WRITE(numout,*) ' ==>> start from rest OR previous run without Prather, set moments to 0' |
---|
956 | ! |
---|
957 | sxice = 0._wp ; syice = 0._wp ; sxxice = 0._wp ; syyice = 0._wp ; sxyice = 0._wp ! ice thickness |
---|
958 | sxsn = 0._wp ; sysn = 0._wp ; sxxsn = 0._wp ; syysn = 0._wp ; sxysn = 0._wp ! snow thickness |
---|
959 | sxa = 0._wp ; sya = 0._wp ; sxxa = 0._wp ; syya = 0._wp ; sxya = 0._wp ! ice concentration |
---|
960 | sxsal = 0._wp ; sysal = 0._wp ; sxxsal = 0._wp ; syysal = 0._wp ; sxysal = 0._wp ! ice salinity |
---|
961 | sxage = 0._wp ; syage = 0._wp ; sxxage = 0._wp ; syyage = 0._wp ; sxyage = 0._wp ! ice age |
---|
962 | sxc0 = 0._wp ; syc0 = 0._wp ; sxxc0 = 0._wp ; syyc0 = 0._wp ; sxyc0 = 0._wp ! snow layers heat content |
---|
963 | sxe = 0._wp ; sye = 0._wp ; sxxe = 0._wp ; syye = 0._wp ; sxye = 0._wp ! ice layers heat content |
---|
964 | IF( ln_pnd_LEV ) THEN |
---|
965 | sxap = 0._wp ; syap = 0._wp ; sxxap = 0._wp ; syyap = 0._wp ; sxyap = 0._wp ! melt pond fraction |
---|
966 | sxvp = 0._wp ; syvp = 0._wp ; sxxvp = 0._wp ; syyvp = 0._wp ; sxyvp = 0._wp ! melt pond volume |
---|
967 | IF ( ln_pnd_lids ) THEN |
---|
968 | sxvl = 0._wp; syvl = 0._wp ; sxxvl = 0._wp ; syyvl = 0._wp ; sxyvl = 0._wp ! melt pond lid volume |
---|
969 | ENDIF |
---|
970 | ENDIF |
---|
971 | ENDIF |
---|
972 | ! |
---|
973 | ! !=====================================! |
---|
974 | ELSEIF( TRIM(cdrw) == 'WRITE' ) THEN !== write in the ice restart file ==! |
---|
975 | ! !=====================================! |
---|
976 | IF(lwp) WRITE(numout,*) '---- ice-adv-rst ----' |
---|
977 | iter = kt + nn_fsbc - 1 ! ice restarts are written at kt == nitrst - nn_fsbc + 1 |
---|
978 | ! |
---|
979 | ! |
---|
980 | ! In case Prather scheme is used for advection, write second order moments |
---|
981 | ! ------------------------------------------------------------------------ |
---|
982 | ! |
---|
983 | ! ! ice thickness |
---|
984 | CALL iom_rstput( iter, nitrst, numriw, 'sxice' , sxice ) |
---|
985 | CALL iom_rstput( iter, nitrst, numriw, 'syice' , syice ) |
---|
986 | CALL iom_rstput( iter, nitrst, numriw, 'sxxice', sxxice ) |
---|
987 | CALL iom_rstput( iter, nitrst, numriw, 'syyice', syyice ) |
---|
988 | CALL iom_rstput( iter, nitrst, numriw, 'sxyice', sxyice ) |
---|
989 | ! ! snow thickness |
---|
990 | CALL iom_rstput( iter, nitrst, numriw, 'sxsn' , sxsn ) |
---|
991 | CALL iom_rstput( iter, nitrst, numriw, 'sysn' , sysn ) |
---|
992 | CALL iom_rstput( iter, nitrst, numriw, 'sxxsn' , sxxsn ) |
---|
993 | CALL iom_rstput( iter, nitrst, numriw, 'syysn' , syysn ) |
---|
994 | CALL iom_rstput( iter, nitrst, numriw, 'sxysn' , sxysn ) |
---|
995 | ! ! ice concentration |
---|
996 | CALL iom_rstput( iter, nitrst, numriw, 'sxa' , sxa ) |
---|
997 | CALL iom_rstput( iter, nitrst, numriw, 'sya' , sya ) |
---|
998 | CALL iom_rstput( iter, nitrst, numriw, 'sxxa' , sxxa ) |
---|
999 | CALL iom_rstput( iter, nitrst, numriw, 'syya' , syya ) |
---|
1000 | CALL iom_rstput( iter, nitrst, numriw, 'sxya' , sxya ) |
---|
1001 | ! ! ice salinity |
---|
1002 | CALL iom_rstput( iter, nitrst, numriw, 'sxsal' , sxsal ) |
---|
1003 | CALL iom_rstput( iter, nitrst, numriw, 'sysal' , sysal ) |
---|
1004 | CALL iom_rstput( iter, nitrst, numriw, 'sxxsal', sxxsal ) |
---|
1005 | CALL iom_rstput( iter, nitrst, numriw, 'syysal', syysal ) |
---|
1006 | CALL iom_rstput( iter, nitrst, numriw, 'sxysal', sxysal ) |
---|
1007 | ! ! ice age |
---|
1008 | CALL iom_rstput( iter, nitrst, numriw, 'sxage' , sxage ) |
---|
1009 | CALL iom_rstput( iter, nitrst, numriw, 'syage' , syage ) |
---|
1010 | CALL iom_rstput( iter, nitrst, numriw, 'sxxage', sxxage ) |
---|
1011 | CALL iom_rstput( iter, nitrst, numriw, 'syyage', syyage ) |
---|
1012 | CALL iom_rstput( iter, nitrst, numriw, 'sxyage', sxyage ) |
---|
1013 | ! ! snow layers heat content |
---|
1014 | DO jk = 1, nlay_s |
---|
1015 | WRITE(zchar1,'(I2.2)') jk |
---|
1016 | znam = 'sxc0'//'_l'//zchar1 ; z3d(:,:,:) = sxc0 (:,:,jk,:) ; CALL iom_rstput( iter, nitrst, numriw, znam , z3d ) |
---|
1017 | znam = 'syc0'//'_l'//zchar1 ; z3d(:,:,:) = syc0 (:,:,jk,:) ; CALL iom_rstput( iter, nitrst, numriw, znam , z3d ) |
---|
1018 | znam = 'sxxc0'//'_l'//zchar1 ; z3d(:,:,:) = sxxc0(:,:,jk,:) ; CALL iom_rstput( iter, nitrst, numriw, znam , z3d ) |
---|
1019 | znam = 'syyc0'//'_l'//zchar1 ; z3d(:,:,:) = syyc0(:,:,jk,:) ; CALL iom_rstput( iter, nitrst, numriw, znam , z3d ) |
---|
1020 | znam = 'sxyc0'//'_l'//zchar1 ; z3d(:,:,:) = sxyc0(:,:,jk,:) ; CALL iom_rstput( iter, nitrst, numriw, znam , z3d ) |
---|
1021 | END DO |
---|
1022 | ! ! ice layers heat content |
---|
1023 | DO jk = 1, nlay_i |
---|
1024 | WRITE(zchar1,'(I2.2)') jk |
---|
1025 | znam = 'sxe'//'_l'//zchar1 ; z3d(:,:,:) = sxe (:,:,jk,:) ; CALL iom_rstput( iter, nitrst, numriw, znam , z3d ) |
---|
1026 | znam = 'sye'//'_l'//zchar1 ; z3d(:,:,:) = sye (:,:,jk,:) ; CALL iom_rstput( iter, nitrst, numriw, znam , z3d ) |
---|
1027 | znam = 'sxxe'//'_l'//zchar1 ; z3d(:,:,:) = sxxe(:,:,jk,:) ; CALL iom_rstput( iter, nitrst, numriw, znam , z3d ) |
---|
1028 | znam = 'syye'//'_l'//zchar1 ; z3d(:,:,:) = syye(:,:,jk,:) ; CALL iom_rstput( iter, nitrst, numriw, znam , z3d ) |
---|
1029 | znam = 'sxye'//'_l'//zchar1 ; z3d(:,:,:) = sxye(:,:,jk,:) ; CALL iom_rstput( iter, nitrst, numriw, znam , z3d ) |
---|
1030 | END DO |
---|
1031 | ! |
---|
1032 | IF( ln_pnd_LEV ) THEN ! melt pond fraction |
---|
1033 | CALL iom_rstput( iter, nitrst, numriw, 'sxap' , sxap ) |
---|
1034 | CALL iom_rstput( iter, nitrst, numriw, 'syap' , syap ) |
---|
1035 | CALL iom_rstput( iter, nitrst, numriw, 'sxxap', sxxap ) |
---|
1036 | CALL iom_rstput( iter, nitrst, numriw, 'syyap', syyap ) |
---|
1037 | CALL iom_rstput( iter, nitrst, numriw, 'sxyap', sxyap ) |
---|
1038 | ! ! melt pond volume |
---|
1039 | CALL iom_rstput( iter, nitrst, numriw, 'sxvp' , sxvp ) |
---|
1040 | CALL iom_rstput( iter, nitrst, numriw, 'syvp' , syvp ) |
---|
1041 | CALL iom_rstput( iter, nitrst, numriw, 'sxxvp', sxxvp ) |
---|
1042 | CALL iom_rstput( iter, nitrst, numriw, 'syyvp', syyvp ) |
---|
1043 | CALL iom_rstput( iter, nitrst, numriw, 'sxyvp', sxyvp ) |
---|
1044 | ! |
---|
1045 | IF ( ln_pnd_lids ) THEN ! melt pond lid volume |
---|
1046 | CALL iom_rstput( iter, nitrst, numriw, 'sxvl' , sxvl ) |
---|
1047 | CALL iom_rstput( iter, nitrst, numriw, 'syvl' , syvl ) |
---|
1048 | CALL iom_rstput( iter, nitrst, numriw, 'sxxvl', sxxvl ) |
---|
1049 | CALL iom_rstput( iter, nitrst, numriw, 'syyvl', syyvl ) |
---|
1050 | CALL iom_rstput( iter, nitrst, numriw, 'sxyvl', sxyvl ) |
---|
1051 | ENDIF |
---|
1052 | ENDIF |
---|
1053 | ! |
---|
1054 | ENDIF |
---|
1055 | ! |
---|
1056 | END SUBROUTINE adv_pra_rst |
---|
1057 | |
---|
1058 | #else |
---|
1059 | !!---------------------------------------------------------------------- |
---|
1060 | !! Default option Dummy module NO SI3 sea-ice model |
---|
1061 | !!---------------------------------------------------------------------- |
---|
1062 | #endif |
---|
1063 | |
---|
1064 | !!====================================================================== |
---|
1065 | END MODULE icedyn_adv_pra |
---|