1 | MODULE icethd_dh |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE icethd_dh *** |
---|
4 | !! seaice : thermodynamic growth and melt |
---|
5 | !!====================================================================== |
---|
6 | !! History : ! 2003-05 (M. Vancoppenolle) Original code in 1D |
---|
7 | !! ! 2005-06 (M. Vancoppenolle) 3D version |
---|
8 | !! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube] |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | #if defined key_si3 |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! 'key_si3' SI3 sea-ice model |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | !! ice_thd_dh : vertical sea-ice growth and melt |
---|
15 | !! ice_thd_snwblow : distribute snow fall between ice and ocean |
---|
16 | !!---------------------------------------------------------------------- |
---|
17 | USE dom_oce ! ocean space and time domain |
---|
18 | USE phycst ! physical constants |
---|
19 | USE ice ! sea-ice: variables |
---|
20 | USE ice1D ! sea-ice: thermodynamics variables |
---|
21 | USE icethd_sal ! sea-ice: salinity profiles |
---|
22 | ! |
---|
23 | USE in_out_manager ! I/O manager |
---|
24 | USE lib_mpp ! MPP library |
---|
25 | USE lib_fortran ! fortran utilities (glob_sum + no signed zero) |
---|
26 | |
---|
27 | IMPLICIT NONE |
---|
28 | PRIVATE |
---|
29 | |
---|
30 | PUBLIC ice_thd_dh ! called by ice_thd |
---|
31 | PUBLIC ice_thd_snwblow ! called in sbcblk/sbccpl and here |
---|
32 | |
---|
33 | INTERFACE ice_thd_snwblow |
---|
34 | MODULE PROCEDURE ice_thd_snwblow_1d, ice_thd_snwblow_2d |
---|
35 | END INTERFACE |
---|
36 | |
---|
37 | !!---------------------------------------------------------------------- |
---|
38 | !! NEMO/ICE 4.0 , NEMO Consortium (2018) |
---|
39 | !! $Id: icethd_dh.F90 8420 2017-08-08 12:18:46Z clem $ |
---|
40 | !! Software governed by the CeCILL licence (./LICENSE) |
---|
41 | !!---------------------------------------------------------------------- |
---|
42 | CONTAINS |
---|
43 | |
---|
44 | SUBROUTINE ice_thd_dh |
---|
45 | !!------------------------------------------------------------------ |
---|
46 | !! *** ROUTINE ice_thd_dh *** |
---|
47 | !! |
---|
48 | !! ** Purpose : compute ice and snow thickness changes due to growth/melting |
---|
49 | !! |
---|
50 | !! ** Method : Ice/Snow surface melting arises from imbalance in surface fluxes |
---|
51 | !! Bottom accretion/ablation arises from flux budget |
---|
52 | !! Snow thickness can increase by precipitation and decrease by sublimation |
---|
53 | !! If snow load excesses Archmiede limit, snow-ice is formed by |
---|
54 | !! the flooding of sea-water in the snow |
---|
55 | !! |
---|
56 | !! - Compute available flux of heat for surface ablation |
---|
57 | !! - Compute snow and sea ice enthalpies |
---|
58 | !! - Surface ablation and sublimation |
---|
59 | !! - Bottom accretion/ablation |
---|
60 | !! - Snow ice formation |
---|
61 | !! |
---|
62 | !! References : Bitz and Lipscomb, 1999, J. Geophys. Res. |
---|
63 | !! Fichefet T. and M. Maqueda 1997, J. Geophys. Res., 102(C6), 12609-12646 |
---|
64 | !! Vancoppenolle, Fichefet and Bitz, 2005, Geophys. Res. Let. |
---|
65 | !! Vancoppenolle et al.,2009, Ocean Modelling |
---|
66 | !!------------------------------------------------------------------ |
---|
67 | INTEGER :: ji, jk ! dummy loop indices |
---|
68 | INTEGER :: iter ! local integer |
---|
69 | |
---|
70 | REAL(wp) :: ztmelts ! local scalar |
---|
71 | REAL(wp) :: zdum |
---|
72 | REAL(wp) :: zfracs ! fractionation coefficient for bottom salt entrapment |
---|
73 | REAL(wp) :: zswi1 ! switch for computation of bottom salinity |
---|
74 | REAL(wp) :: zswi12 ! switch for computation of bottom salinity |
---|
75 | REAL(wp) :: zswi2 ! switch for computation of bottom salinity |
---|
76 | REAL(wp) :: zgrr ! bottom growth rate |
---|
77 | REAL(wp) :: zt_i_new ! bottom formation temperature |
---|
78 | REAL(wp) :: z1_rho ! 1/(rhosn+rau0-rhoic) |
---|
79 | |
---|
80 | REAL(wp) :: zQm ! enthalpy exchanged with the ocean (J/m2), >0 towards the ocean |
---|
81 | REAL(wp) :: zEi ! specific enthalpy of sea ice (J/kg) |
---|
82 | REAL(wp) :: zEw ! specific enthalpy of exchanged water (J/kg) |
---|
83 | REAL(wp) :: zdE ! specific enthalpy difference (J/kg) |
---|
84 | REAL(wp) :: zfmdt ! exchange mass flux x time step (J/m2), >0 towards the ocean |
---|
85 | |
---|
86 | REAL(wp), DIMENSION(jpij) :: zqprec ! energy of fallen snow (J.m-3) |
---|
87 | REAL(wp), DIMENSION(jpij) :: zq_top ! heat for surface ablation (J.m-2) |
---|
88 | REAL(wp), DIMENSION(jpij) :: zq_bot ! heat for bottom ablation (J.m-2) |
---|
89 | REAL(wp), DIMENSION(jpij) :: zq_rema ! remaining heat at the end of the routine (J.m-2) |
---|
90 | REAL(wp), DIMENSION(jpij) :: zf_tt ! Heat budget to determine melting or freezing(W.m-2) |
---|
91 | REAL(wp), DIMENSION(jpij) :: zevap_rema ! remaining mass flux from sublimation (kg.m-2) |
---|
92 | |
---|
93 | REAL(wp), DIMENSION(jpij) :: zdh_s_mel ! snow melt |
---|
94 | REAL(wp), DIMENSION(jpij) :: zdh_s_pre ! snow precipitation |
---|
95 | REAL(wp), DIMENSION(jpij) :: zdh_s_sub ! snow sublimation |
---|
96 | |
---|
97 | REAL(wp), DIMENSION(jpij,nlay_s) :: zh_s ! snw layer thickness |
---|
98 | REAL(wp), DIMENSION(jpij,nlay_i) :: zh_i ! ice layer thickness |
---|
99 | REAL(wp), DIMENSION(jpij,nlay_i) :: zdeltah |
---|
100 | INTEGER , DIMENSION(jpij,nlay_i) :: icount ! number of layers vanished by melting |
---|
101 | |
---|
102 | REAL(wp), DIMENSION(jpij) :: zsnw ! distribution of snow after wind blowing |
---|
103 | |
---|
104 | REAL(wp) :: zswitch_sal |
---|
105 | |
---|
106 | INTEGER :: num_iter_max ! Heat conservation |
---|
107 | !!------------------------------------------------------------------ |
---|
108 | |
---|
109 | ! Discriminate between time varying salinity and constant |
---|
110 | SELECT CASE( nn_icesal ) ! varying salinity or not |
---|
111 | CASE( 1 , 3 ) ; zswitch_sal = 0._wp ! prescribed salinity profile |
---|
112 | CASE( 2 ) ; zswitch_sal = 1._wp ! varying salinity profile |
---|
113 | END SELECT |
---|
114 | |
---|
115 | ! initialize layer thicknesses and enthalpies |
---|
116 | h_i_old (1:npti,0:nlay_i+1) = 0._wp |
---|
117 | eh_i_old(1:npti,0:nlay_i+1) = 0._wp |
---|
118 | DO jk = 1, nlay_i |
---|
119 | DO ji = 1, npti |
---|
120 | h_i_old (ji,jk) = h_i_1d(ji) * r1_nlay_i |
---|
121 | eh_i_old(ji,jk) = e_i_1d(ji,jk) * h_i_old(ji,jk) |
---|
122 | END DO |
---|
123 | END DO |
---|
124 | ! |
---|
125 | ! ! ============================================== ! |
---|
126 | ! ! Available heat for surface and bottom ablation ! |
---|
127 | ! ! ============================================== ! |
---|
128 | SELECT CASE( nice_jules ) |
---|
129 | ! |
---|
130 | CASE( np_jules_ACTIVE ) |
---|
131 | ! |
---|
132 | DO ji = 1, npti |
---|
133 | zq_top(ji) = MAX( 0._wp, qml_ice_1d(ji) * rdt_ice ) |
---|
134 | END DO |
---|
135 | ! |
---|
136 | CASE( np_jules_OFF , np_jules_EMULE ) |
---|
137 | ! |
---|
138 | DO ji = 1, npti |
---|
139 | zdum = qns_ice_1d(ji) + qsr_ice_1d(ji) - qtr_ice_top_1d(ji) - qcn_ice_top_1d(ji) |
---|
140 | qml_ice_1d(ji) = zdum * MAX( 0._wp , SIGN( 1._wp, t_su_1d(ji) - rt0 ) ) |
---|
141 | zq_top(ji) = MAX( 0._wp, qml_ice_1d(ji) * rdt_ice ) |
---|
142 | END DO |
---|
143 | ! |
---|
144 | END SELECT |
---|
145 | ! |
---|
146 | DO ji = 1, npti |
---|
147 | zf_tt(ji) = qcn_ice_bot_1d(ji) + qsb_ice_bot_1d(ji) + fhld_1d(ji) |
---|
148 | zq_bot(ji) = MAX( 0._wp, zf_tt(ji) * rdt_ice ) |
---|
149 | END DO |
---|
150 | |
---|
151 | ! Ice and snow layer thicknesses |
---|
152 | !------------------------------- |
---|
153 | DO jk = 1, nlay_i |
---|
154 | DO ji = 1, npti |
---|
155 | zh_i(ji,jk) = h_i_1d(ji) * r1_nlay_i |
---|
156 | END DO |
---|
157 | END DO |
---|
158 | |
---|
159 | DO jk = 1, nlay_s |
---|
160 | DO ji = 1, npti |
---|
161 | zh_s(ji,jk) = h_s_1d(ji) * r1_nlay_s |
---|
162 | END DO |
---|
163 | END DO |
---|
164 | |
---|
165 | ! ! ============ ! |
---|
166 | ! ! Snow ! |
---|
167 | ! ! ============ ! |
---|
168 | ! |
---|
169 | ! Internal melting |
---|
170 | ! ---------------- |
---|
171 | ! IF snow temperature is above freezing point, THEN snow melts (should not happen but sometimes it does) |
---|
172 | DO jk = 1, nlay_s |
---|
173 | DO ji = 1, npti |
---|
174 | IF( t_s_1d(ji,jk) > rt0 ) THEN |
---|
175 | hfx_res_1d (ji) = hfx_res_1d (ji) + e_s_1d(ji,jk) * zh_s(ji,jk) * a_i_1d(ji) * r1_rdtice ! heat flux to the ocean [W.m-2], < 0 |
---|
176 | wfx_snw_sum_1d(ji) = wfx_snw_sum_1d(ji) + rhosn * zh_s(ji,jk) * a_i_1d(ji) * r1_rdtice ! mass flux |
---|
177 | ! updates |
---|
178 | dh_s_mlt(ji) = dh_s_mlt(ji) - zh_s(ji,jk) |
---|
179 | h_s_1d (ji) = h_s_1d(ji) - zh_s(ji,jk) |
---|
180 | zh_s (ji,jk) = 0._wp |
---|
181 | e_s_1d (ji,jk) = 0._wp |
---|
182 | t_s_1d (ji,jk) = rt0 |
---|
183 | END IF |
---|
184 | END DO |
---|
185 | END DO |
---|
186 | |
---|
187 | ! Snow precipitation |
---|
188 | !------------------- |
---|
189 | CALL ice_thd_snwblow( 1. - at_i_1d(1:npti), zsnw(1:npti) ) ! snow distribution over ice after wind blowing |
---|
190 | |
---|
191 | zdeltah(1:npti,:) = 0._wp |
---|
192 | DO ji = 1, npti |
---|
193 | IF( sprecip_1d(ji) > 0._wp ) THEN |
---|
194 | ! |
---|
195 | ! --- precipitation --- |
---|
196 | zdh_s_pre (ji) = zsnw(ji) * sprecip_1d(ji) * rdt_ice * r1_rhosn / at_i_1d(ji) ! thickness change |
---|
197 | zqprec (ji) = - qprec_ice_1d(ji) ! enthalpy of the precip (>0, J.m-3) |
---|
198 | ! |
---|
199 | hfx_spr_1d(ji) = hfx_spr_1d(ji) + zdh_s_pre(ji) * a_i_1d(ji) * zqprec(ji) * r1_rdtice ! heat flux from snow precip (>0, W.m-2) |
---|
200 | wfx_spr_1d(ji) = wfx_spr_1d(ji) - rhosn * a_i_1d(ji) * zdh_s_pre(ji) * r1_rdtice ! mass flux, <0 |
---|
201 | |
---|
202 | ! --- melt of falling snow --- |
---|
203 | rswitch = MAX( 0._wp , SIGN( 1._wp , zqprec(ji) - epsi20 ) ) |
---|
204 | zdeltah (ji,1) = - rswitch * zq_top(ji) / MAX( zqprec(ji) , epsi20 ) ! thickness change |
---|
205 | zdeltah (ji,1) = MAX( - zdh_s_pre(ji), zdeltah(ji,1) ) ! bound melting |
---|
206 | hfx_snw_1d (ji) = hfx_snw_1d (ji) - zdeltah(ji,1) * a_i_1d(ji) * zqprec(ji) * r1_rdtice ! heat used to melt snow (W.m-2, >0) |
---|
207 | wfx_snw_sum_1d(ji) = wfx_snw_sum_1d(ji) - rhosn * a_i_1d(ji) * zdeltah(ji,1) * r1_rdtice ! snow melting only = water into the ocean (then without snow precip), >0 |
---|
208 | |
---|
209 | ! updates available heat + precipitations after melting |
---|
210 | dh_s_mlt (ji) = dh_s_mlt(ji) + zdeltah(ji,1) |
---|
211 | zq_top (ji) = MAX( 0._wp , zq_top (ji) + zdeltah(ji,1) * zqprec(ji) ) |
---|
212 | zdh_s_pre(ji) = zdh_s_pre(ji) + zdeltah(ji,1) |
---|
213 | |
---|
214 | ! update thickness |
---|
215 | h_s_1d(ji) = MAX( 0._wp , h_s_1d(ji) + zdh_s_pre(ji) ) |
---|
216 | ! |
---|
217 | ELSE |
---|
218 | ! |
---|
219 | zdh_s_pre(ji) = 0._wp |
---|
220 | zqprec (ji) = 0._wp |
---|
221 | ! |
---|
222 | ENDIF |
---|
223 | END DO |
---|
224 | |
---|
225 | ! recalculate snow layers |
---|
226 | DO jk = 1, nlay_s |
---|
227 | DO ji = 1, npti |
---|
228 | zh_s(ji,jk) = h_s_1d(ji) * r1_nlay_s |
---|
229 | END DO |
---|
230 | END DO |
---|
231 | |
---|
232 | ! Snow melting |
---|
233 | ! ------------ |
---|
234 | ! If heat still available (zq_top > 0), then melt more snow |
---|
235 | zdeltah(1:npti,:) = 0._wp |
---|
236 | zdh_s_mel(1:npti) = 0._wp |
---|
237 | DO jk = 1, nlay_s |
---|
238 | DO ji = 1, npti |
---|
239 | IF( zh_s(ji,jk) > 0._wp .AND. zq_top(ji) > 0._wp ) THEN |
---|
240 | ! |
---|
241 | rswitch = MAX( 0._wp, SIGN( 1._wp, e_s_1d(ji,jk) - epsi20 ) ) |
---|
242 | zdeltah (ji,jk) = - rswitch * zq_top(ji) / MAX( e_s_1d(ji,jk), epsi20 ) ! thickness change |
---|
243 | zdeltah (ji,jk) = MAX( zdeltah(ji,jk) , - zh_s(ji,jk) ) ! bound melting |
---|
244 | zdh_s_mel(ji) = zdh_s_mel(ji) + zdeltah(ji,jk) |
---|
245 | |
---|
246 | hfx_snw_1d(ji) = hfx_snw_1d(ji) - zdeltah(ji,jk) * a_i_1d(ji) * e_s_1d (ji,jk) * r1_rdtice ! heat used to melt snow(W.m-2, >0) |
---|
247 | wfx_snw_sum_1d(ji) = wfx_snw_sum_1d(ji) - rhosn * a_i_1d(ji) * zdeltah(ji,jk) * r1_rdtice ! snow melting only = water into the ocean (then without snow precip) |
---|
248 | |
---|
249 | ! updates available heat + thickness |
---|
250 | dh_s_mlt(ji) = dh_s_mlt(ji) + zdeltah(ji,jk) |
---|
251 | zq_top (ji) = MAX( 0._wp , zq_top(ji) + zdeltah(ji,jk) * e_s_1d(ji,jk) ) |
---|
252 | h_s_1d (ji) = MAX( 0._wp , h_s_1d(ji) + zdeltah(ji,jk) ) |
---|
253 | zh_s (ji,jk) = MAX( 0._wp , zh_s(ji,jk) + zdeltah(ji,jk) ) |
---|
254 | ! |
---|
255 | ENDIF |
---|
256 | END DO |
---|
257 | END DO |
---|
258 | |
---|
259 | ! Snow sublimation |
---|
260 | !----------------- |
---|
261 | ! qla_ice is always >=0 (upwards), heat goes to the atmosphere, therefore snow sublimates |
---|
262 | ! comment: not counted in mass/heat exchange in iceupdate.F90 since this is an exchange with atm. (not ocean) |
---|
263 | zdeltah(1:npti,:) = 0._wp |
---|
264 | DO ji = 1, npti |
---|
265 | IF( evap_ice_1d(ji) > 0._wp ) THEN |
---|
266 | ! |
---|
267 | zdh_s_sub (ji) = MAX( - h_s_1d(ji) , - evap_ice_1d(ji) * r1_rhosn * rdt_ice ) |
---|
268 | zevap_rema(ji) = evap_ice_1d(ji) * rdt_ice + zdh_s_sub(ji) * rhosn ! remaining evap in kg.m-2 (used for ice melting later on) |
---|
269 | zdeltah (ji,1) = MAX( zdh_s_sub(ji), - zdh_s_pre(ji) ) |
---|
270 | |
---|
271 | hfx_sub_1d (ji) = hfx_sub_1d(ji) + & ! Heat flux by sublimation [W.m-2], < 0 (sublimate snow that had fallen, then pre-existing snow) |
---|
272 | & ( zdeltah(ji,1) * zqprec(ji) + ( zdh_s_sub(ji) - zdeltah(ji,1) ) * e_s_1d(ji,1) ) & |
---|
273 | & * a_i_1d(ji) * r1_rdtice |
---|
274 | wfx_snw_sub_1d(ji) = wfx_snw_sub_1d(ji) - rhosn * a_i_1d(ji) * zdh_s_sub(ji) * r1_rdtice ! Mass flux by sublimation |
---|
275 | |
---|
276 | ! new snow thickness |
---|
277 | h_s_1d(ji) = MAX( 0._wp , h_s_1d(ji) + zdh_s_sub(ji) ) |
---|
278 | ! update precipitations after sublimation and correct sublimation |
---|
279 | zdh_s_pre(ji) = zdh_s_pre(ji) + zdeltah(ji,1) |
---|
280 | zdh_s_sub(ji) = zdh_s_sub(ji) - zdeltah(ji,1) |
---|
281 | ! |
---|
282 | ELSE |
---|
283 | ! |
---|
284 | zdh_s_sub (ji) = 0._wp |
---|
285 | zevap_rema(ji) = 0._wp |
---|
286 | ! |
---|
287 | ENDIF |
---|
288 | END DO |
---|
289 | |
---|
290 | ! --- Update snow diags --- ! |
---|
291 | DO ji = 1, npti |
---|
292 | dh_s_tot(ji) = zdh_s_mel(ji) + zdh_s_pre(ji) + zdh_s_sub(ji) |
---|
293 | END DO |
---|
294 | |
---|
295 | ! Update temperature, energy |
---|
296 | !--------------------------- |
---|
297 | ! new temp and enthalpy of the snow (remaining snow precip + remaining pre-existing snow) |
---|
298 | DO jk = 1, nlay_s |
---|
299 | DO ji = 1,npti |
---|
300 | rswitch = MAX( 0._wp , SIGN( 1._wp, h_s_1d(ji) - epsi20 ) ) |
---|
301 | e_s_1d(ji,jk) = rswitch / MAX( h_s_1d(ji), epsi20 ) * & |
---|
302 | & ( ( zdh_s_pre(ji) ) * zqprec(ji) + & |
---|
303 | & ( h_s_1d(ji) - zdh_s_pre(ji) ) * rhosn * ( cpic * ( rt0 - t_s_1d(ji,jk) ) + lfus ) ) |
---|
304 | END DO |
---|
305 | END DO |
---|
306 | |
---|
307 | ! ! ============ ! |
---|
308 | ! ! Ice ! |
---|
309 | ! ! ============ ! |
---|
310 | |
---|
311 | ! Surface ice melting |
---|
312 | !-------------------- |
---|
313 | zdeltah(1:npti,:) = 0._wp ! important |
---|
314 | DO jk = 1, nlay_i |
---|
315 | DO ji = 1, npti |
---|
316 | ztmelts = - tmut * sz_i_1d(ji,jk) ! Melting point of layer k [C] |
---|
317 | |
---|
318 | IF( t_i_1d(ji,jk) >= (ztmelts+rt0) ) THEN !-- Internal melting |
---|
319 | |
---|
320 | zEi = - e_i_1d(ji,jk) * r1_rhoic ! Specific enthalpy of layer k [J/kg, <0] |
---|
321 | zdE = 0._wp ! Specific enthalpy difference (J/kg, <0) |
---|
322 | ! set up at 0 since no energy is needed to melt water...(it is already melted) |
---|
323 | zdeltah(ji,jk) = MIN( 0._wp , - zh_i(ji,jk) ) ! internal melting occurs when the internal temperature is above freezing |
---|
324 | ! this should normally not happen, but sometimes, heat diffusion leads to this |
---|
325 | zfmdt = - zdeltah(ji,jk) * rhoic ! Mass flux x time step > 0 |
---|
326 | |
---|
327 | dh_i_itm(ji) = dh_i_itm(ji) + zdeltah(ji,jk) ! Cumulate internal melting |
---|
328 | |
---|
329 | zfmdt = - rhoic * zdeltah(ji,jk) ! Recompute mass flux [kg/m2, >0] |
---|
330 | |
---|
331 | hfx_res_1d(ji) = hfx_res_1d(ji) + zfmdt * a_i_1d(ji) * zEi * r1_rdtice ! Heat flux to the ocean [W.m-2], <0 |
---|
332 | ! ice enthalpy zEi is "sent" to the ocean |
---|
333 | sfx_res_1d(ji) = sfx_res_1d(ji) - rhoic * a_i_1d(ji) * zdeltah(ji,jk) * s_i_1d(ji) * r1_rdtice ! Salt flux |
---|
334 | ! using s_i_1d and not sz_i_1d(jk) is ok |
---|
335 | wfx_res_1d(ji) = wfx_res_1d(ji) - rhoic * a_i_1d(ji) * zdeltah(ji,jk) * r1_rdtice ! Mass flux |
---|
336 | |
---|
337 | ELSE !-- Surface melting |
---|
338 | |
---|
339 | zEi = - e_i_1d(ji,jk) * r1_rhoic ! Specific enthalpy of layer k [J/kg, <0] |
---|
340 | zEw = rcp * ztmelts ! Specific enthalpy of resulting meltwater [J/kg, <0] |
---|
341 | zdE = zEi - zEw ! Specific enthalpy difference < 0 |
---|
342 | |
---|
343 | zfmdt = - zq_top(ji) / zdE ! Mass flux to the ocean [kg/m2, >0] |
---|
344 | |
---|
345 | zdeltah(ji,jk) = - zfmdt * r1_rhoic ! Melt of layer jk [m, <0] |
---|
346 | |
---|
347 | zdeltah(ji,jk) = MIN( 0._wp , MAX( zdeltah(ji,jk) , - zh_i(ji,jk) ) ) ! Melt of layer jk cannot exceed the layer thickness [m, <0] |
---|
348 | |
---|
349 | zq_top(ji) = MAX( 0._wp , zq_top(ji) - zdeltah(ji,jk) * rhoic * zdE ) ! update available heat |
---|
350 | |
---|
351 | dh_i_sum(ji) = dh_i_sum(ji) + zdeltah(ji,jk) ! Cumulate surface melt |
---|
352 | |
---|
353 | zfmdt = - rhoic * zdeltah(ji,jk) ! Recompute mass flux [kg/m2, >0] |
---|
354 | |
---|
355 | zQm = zfmdt * zEw ! Energy of the melt water sent to the ocean [J/m2, <0] |
---|
356 | |
---|
357 | sfx_sum_1d(ji) = sfx_sum_1d(ji) - rhoic * a_i_1d(ji) * zdeltah(ji,jk) * s_i_1d(ji) * r1_rdtice ! Salt flux >0 |
---|
358 | ! using s_i_1d and not sz_i_1d(jk) is ok) |
---|
359 | hfx_thd_1d(ji) = hfx_thd_1d(ji) + zfmdt * a_i_1d(ji) * zEw * r1_rdtice ! Heat flux [W.m-2], < 0 |
---|
360 | hfx_sum_1d(ji) = hfx_sum_1d(ji) - zfmdt * a_i_1d(ji) * zdE * r1_rdtice ! Heat flux used in this process [W.m-2], > 0 |
---|
361 | ! |
---|
362 | wfx_sum_1d(ji) = wfx_sum_1d(ji) - rhoic * a_i_1d(ji) * zdeltah(ji,jk) * r1_rdtice ! Mass flux |
---|
363 | |
---|
364 | END IF |
---|
365 | |
---|
366 | ! Ice sublimation |
---|
367 | ! --------------- |
---|
368 | zdum = MAX( - ( zh_i(ji,jk) + zdeltah(ji,jk) ) , - zevap_rema(ji) * r1_rhoic ) |
---|
369 | zdeltah (ji,jk) = zdeltah (ji,jk) + zdum |
---|
370 | dh_i_sub(ji) = dh_i_sub(ji) + zdum |
---|
371 | |
---|
372 | sfx_sub_1d(ji) = sfx_sub_1d(ji) - rhoic * a_i_1d(ji) * zdum * s_i_1d(ji) * r1_rdtice ! Salt flux >0 |
---|
373 | ! clem: flux is sent to the ocean for simplicity |
---|
374 | ! but salt should remain in the ice except |
---|
375 | ! if all ice is melted. => must be corrected |
---|
376 | hfx_sub_1d(ji) = hfx_sub_1d(ji) + zdum * e_i_1d(ji,jk) * a_i_1d(ji) * r1_rdtice ! Heat flux [W.m-2], < 0 |
---|
377 | |
---|
378 | wfx_ice_sub_1d(ji) = wfx_ice_sub_1d(ji) - rhoic * a_i_1d(ji) * zdum * r1_rdtice ! Mass flux > 0 |
---|
379 | |
---|
380 | ! update remaining mass flux |
---|
381 | zevap_rema(ji) = zevap_rema(ji) + zdum * rhoic |
---|
382 | |
---|
383 | ! record which layers have disappeared (for bottom melting) |
---|
384 | ! => icount=0 : no layer has vanished |
---|
385 | ! => icount=5 : 5 layers have vanished |
---|
386 | rswitch = MAX( 0._wp , SIGN( 1._wp , - ( zh_i(ji,jk) + zdeltah(ji,jk) ) ) ) |
---|
387 | icount(ji,jk) = NINT( rswitch ) |
---|
388 | zh_i(ji,jk) = MAX( 0._wp , zh_i(ji,jk) + zdeltah(ji,jk) ) |
---|
389 | |
---|
390 | ! update heat content (J.m-2) and layer thickness |
---|
391 | eh_i_old(ji,jk) = eh_i_old(ji,jk) + zdeltah(ji,jk) * e_i_1d(ji,jk) |
---|
392 | h_i_old (ji,jk) = h_i_old (ji,jk) + zdeltah(ji,jk) |
---|
393 | END DO |
---|
394 | END DO |
---|
395 | |
---|
396 | ! update ice thickness |
---|
397 | DO ji = 1, npti |
---|
398 | h_i_1d(ji) = MAX( 0._wp , h_i_1d(ji) + dh_i_sum(ji) + dh_i_itm(ji) + dh_i_sub(ji) ) |
---|
399 | END DO |
---|
400 | |
---|
401 | ! remaining "potential" evap is sent to ocean |
---|
402 | DO ji = 1, npti |
---|
403 | wfx_err_sub_1d(ji) = wfx_err_sub_1d(ji) - zevap_rema(ji) * a_i_1d(ji) * r1_rdtice ! <=0 (net evap for the ocean in kg.m-2.s-1) |
---|
404 | END DO |
---|
405 | |
---|
406 | |
---|
407 | ! Ice Basal growth |
---|
408 | !------------------ |
---|
409 | ! Basal growth is driven by heat imbalance at the ice-ocean interface, |
---|
410 | ! between the inner conductive flux (qcn_ice_bot), from the open water heat flux |
---|
411 | ! (fhld) and the sensible ice-ocean flux (qsb_ice_bot). |
---|
412 | ! qcn_ice_bot is positive downwards. qsb_ice_bot and fhld are positive to the ice |
---|
413 | |
---|
414 | ! If salinity varies in time, an iterative procedure is required, because |
---|
415 | ! the involved quantities are inter-dependent. |
---|
416 | ! Basal growth (dh_i_bog) depends upon new ice specific enthalpy (zEi), |
---|
417 | ! which depends on forming ice salinity (s_i_new), which depends on dh/dt (dh_i_bog) |
---|
418 | ! -> need for an iterative procedure, which converges quickly |
---|
419 | |
---|
420 | num_iter_max = 1 |
---|
421 | IF( nn_icesal == 2 ) num_iter_max = 5 ! salinity varying in time |
---|
422 | |
---|
423 | DO ji = 1, npti |
---|
424 | IF( zf_tt(ji) < 0._wp ) THEN |
---|
425 | DO iter = 1, num_iter_max ! iterations |
---|
426 | |
---|
427 | ! New bottom ice salinity (Cox & Weeks, JGR88 ) |
---|
428 | !--- zswi1 if dh/dt < 2.0e-8 |
---|
429 | !--- zswi12 if 2.0e-8 < dh/dt < 3.6e-7 |
---|
430 | !--- zswi2 if dh/dt > 3.6e-7 |
---|
431 | zgrr = MIN( 1.0e-3, MAX ( dh_i_bog(ji) * r1_rdtice , epsi10 ) ) |
---|
432 | zswi2 = MAX( 0._wp , SIGN( 1._wp , zgrr - 3.6e-7 ) ) |
---|
433 | zswi12 = MAX( 0._wp , SIGN( 1._wp , zgrr - 2.0e-8 ) ) * ( 1.0 - zswi2 ) |
---|
434 | zswi1 = 1. - zswi2 * zswi12 |
---|
435 | zfracs = MIN( zswi1 * 0.12 + zswi12 * ( 0.8925 + 0.0568 * LOG( 100.0 * zgrr ) ) & |
---|
436 | & + zswi2 * 0.26 / ( 0.26 + 0.74 * EXP ( - 724300.0 * zgrr ) ) , 0.5 ) |
---|
437 | |
---|
438 | s_i_new(ji) = zswitch_sal * zfracs * sss_1d(ji) + ( 1. - zswitch_sal ) * s_i_1d(ji) ! New ice salinity |
---|
439 | |
---|
440 | ztmelts = - tmut * s_i_new(ji) ! New ice melting point (C) |
---|
441 | |
---|
442 | zt_i_new = zswitch_sal * t_bo_1d(ji) + ( 1. - zswitch_sal) * t_i_1d(ji, nlay_i) |
---|
443 | |
---|
444 | zEi = cpic * ( zt_i_new - (ztmelts+rt0) ) & ! Specific enthalpy of forming ice (J/kg, <0) |
---|
445 | & - lfus * ( 1.0 - ztmelts / ( zt_i_new - rt0 ) ) + rcp * ztmelts |
---|
446 | |
---|
447 | zEw = rcp * ( t_bo_1d(ji) - rt0 ) ! Specific enthalpy of seawater (J/kg, < 0) |
---|
448 | |
---|
449 | zdE = zEi - zEw ! Specific enthalpy difference (J/kg, <0) |
---|
450 | |
---|
451 | dh_i_bog(ji) = rdt_ice * MAX( 0._wp , zf_tt(ji) / ( zdE * rhoic ) ) |
---|
452 | |
---|
453 | END DO |
---|
454 | ! Contribution to Energy and Salt Fluxes |
---|
455 | zfmdt = - rhoic * dh_i_bog(ji) ! Mass flux x time step (kg/m2, < 0) |
---|
456 | |
---|
457 | hfx_thd_1d(ji) = hfx_thd_1d(ji) + zfmdt * a_i_1d(ji) * zEw * r1_rdtice ! Heat flux to the ocean [W.m-2], >0 |
---|
458 | hfx_bog_1d(ji) = hfx_bog_1d(ji) - zfmdt * a_i_1d(ji) * zdE * r1_rdtice ! Heat flux used in this process [W.m-2], <0 |
---|
459 | |
---|
460 | sfx_bog_1d(ji) = sfx_bog_1d(ji) - rhoic * a_i_1d(ji) * dh_i_bog(ji) * s_i_new(ji) * r1_rdtice ! Salt flux, <0 |
---|
461 | |
---|
462 | wfx_bog_1d(ji) = wfx_bog_1d(ji) - rhoic * a_i_1d(ji) * dh_i_bog(ji) * r1_rdtice ! Mass flux, <0 |
---|
463 | |
---|
464 | ! update heat content (J.m-2) and layer thickness |
---|
465 | eh_i_old(ji,nlay_i+1) = eh_i_old(ji,nlay_i+1) + dh_i_bog(ji) * (-zEi * rhoic) |
---|
466 | h_i_old (ji,nlay_i+1) = h_i_old (ji,nlay_i+1) + dh_i_bog(ji) |
---|
467 | |
---|
468 | ENDIF |
---|
469 | |
---|
470 | END DO |
---|
471 | |
---|
472 | ! Ice Basal melt |
---|
473 | !--------------- |
---|
474 | zdeltah(1:npti,:) = 0._wp ! important |
---|
475 | DO jk = nlay_i, 1, -1 |
---|
476 | DO ji = 1, npti |
---|
477 | IF( zf_tt(ji) > 0._wp .AND. jk > icount(ji,jk) ) THEN ! do not calculate where layer has already disappeared by surface melting |
---|
478 | |
---|
479 | ztmelts = - tmut * sz_i_1d(ji,jk) ! Melting point of layer jk (C) |
---|
480 | |
---|
481 | IF( t_i_1d(ji,jk) >= (ztmelts+rt0) ) THEN !-- Internal melting |
---|
482 | |
---|
483 | zEi = - e_i_1d(ji,jk) * r1_rhoic ! Specific enthalpy of melting ice (J/kg, <0) |
---|
484 | zdE = 0._wp ! Specific enthalpy difference (J/kg, <0) |
---|
485 | ! set up at 0 since no energy is needed to melt water...(it is already melted) |
---|
486 | zdeltah (ji,jk) = MIN( 0._wp , - zh_i(ji,jk) ) ! internal melting occurs when the internal temperature is above freezing |
---|
487 | ! this should normally not happen, but sometimes, heat diffusion leads to this |
---|
488 | |
---|
489 | dh_i_itm (ji) = dh_i_itm(ji) + zdeltah(ji,jk) |
---|
490 | |
---|
491 | zfmdt = - zdeltah(ji,jk) * rhoic ! Mass flux x time step > 0 |
---|
492 | |
---|
493 | hfx_res_1d(ji) = hfx_res_1d(ji) + zfmdt * a_i_1d(ji) * zEi * r1_rdtice ! Heat flux to the ocean [W.m-2], <0 |
---|
494 | ! ice enthalpy zEi is "sent" to the ocean |
---|
495 | sfx_res_1d(ji) = sfx_res_1d(ji) - rhoic * a_i_1d(ji) * zdeltah(ji,jk) * s_i_1d(ji) * r1_rdtice ! Salt flux |
---|
496 | ! using s_i_1d and not sz_i_1d(jk) is ok |
---|
497 | wfx_res_1d(ji) = wfx_res_1d(ji) - rhoic * a_i_1d(ji) * zdeltah(ji,jk) * r1_rdtice ! Mass flux |
---|
498 | |
---|
499 | ! update heat content (J.m-2) and layer thickness |
---|
500 | eh_i_old(ji,jk) = eh_i_old(ji,jk) + zdeltah(ji,jk) * e_i_1d(ji,jk) |
---|
501 | h_i_old (ji,jk) = h_i_old (ji,jk) + zdeltah(ji,jk) |
---|
502 | |
---|
503 | ELSE !-- Basal melting |
---|
504 | |
---|
505 | zEi = - e_i_1d(ji,jk) * r1_rhoic ! Specific enthalpy of melting ice (J/kg, <0) |
---|
506 | zEw = rcp * ztmelts ! Specific enthalpy of meltwater (J/kg, <0) |
---|
507 | zdE = zEi - zEw ! Specific enthalpy difference (J/kg, <0) |
---|
508 | |
---|
509 | zfmdt = - zq_bot(ji) / zdE ! Mass flux x time step (kg/m2, >0) |
---|
510 | |
---|
511 | zdeltah(ji,jk) = - zfmdt * r1_rhoic ! Gross thickness change |
---|
512 | |
---|
513 | zdeltah(ji,jk) = MIN( 0._wp , MAX( zdeltah(ji,jk), - zh_i(ji,jk) ) ) ! bound thickness change |
---|
514 | |
---|
515 | zq_bot(ji) = MAX( 0._wp , zq_bot(ji) - zdeltah(ji,jk) * rhoic * zdE ) ! update available heat. MAX is necessary for roundup errors |
---|
516 | |
---|
517 | dh_i_bom(ji) = dh_i_bom(ji) + zdeltah(ji,jk) ! Update basal melt |
---|
518 | |
---|
519 | zfmdt = - zdeltah(ji,jk) * rhoic ! Mass flux x time step > 0 |
---|
520 | |
---|
521 | zQm = zfmdt * zEw ! Heat exchanged with ocean |
---|
522 | |
---|
523 | hfx_thd_1d(ji) = hfx_thd_1d(ji) + zfmdt * a_i_1d(ji) * zEw * r1_rdtice ! Heat flux to the ocean [W.m-2], <0 |
---|
524 | hfx_bom_1d(ji) = hfx_bom_1d(ji) - zfmdt * a_i_1d(ji) * zdE * r1_rdtice ! Heat used in this process [W.m-2], >0 |
---|
525 | |
---|
526 | sfx_bom_1d(ji) = sfx_bom_1d(ji) - rhoic * a_i_1d(ji) * zdeltah(ji,jk) * s_i_1d(ji) * r1_rdtice ! Salt flux |
---|
527 | ! using s_i_1d and not sz_i_1d(jk) is ok |
---|
528 | |
---|
529 | wfx_bom_1d(ji) = wfx_bom_1d(ji) - rhoic * a_i_1d(ji) * zdeltah(ji,jk) * r1_rdtice ! Mass flux |
---|
530 | |
---|
531 | ! update heat content (J.m-2) and layer thickness |
---|
532 | eh_i_old(ji,jk) = eh_i_old(ji,jk) + zdeltah(ji,jk) * e_i_1d(ji,jk) |
---|
533 | h_i_old (ji,jk) = h_i_old (ji,jk) + zdeltah(ji,jk) |
---|
534 | ENDIF |
---|
535 | |
---|
536 | ENDIF |
---|
537 | END DO |
---|
538 | END DO |
---|
539 | |
---|
540 | ! Update temperature, energy |
---|
541 | ! -------------------------- |
---|
542 | DO ji = 1, npti |
---|
543 | h_i_1d(ji) = MAX( 0._wp , h_i_1d(ji) + dh_i_bog(ji) + dh_i_bom(ji) ) |
---|
544 | END DO |
---|
545 | |
---|
546 | ! If heat still available then melt more snow |
---|
547 | !------------------------------------------- |
---|
548 | zdeltah(1:npti,:) = 0._wp ! important |
---|
549 | DO ji = 1, npti |
---|
550 | zq_rema (ji) = zq_top(ji) + zq_bot(ji) |
---|
551 | rswitch = 1._wp - MAX( 0._wp, SIGN( 1._wp, - h_s_1d(ji) ) ) ! =1 if snow |
---|
552 | rswitch = rswitch * MAX( 0._wp, SIGN( 1._wp, e_s_1d(ji,1) - epsi20 ) ) |
---|
553 | zdeltah (ji,1) = - rswitch * zq_rema(ji) / MAX( e_s_1d(ji,1), epsi20 ) |
---|
554 | zdeltah (ji,1) = MIN( 0._wp , MAX( zdeltah(ji,1) , - h_s_1d(ji) ) ) ! bound melting |
---|
555 | dh_s_tot(ji) = dh_s_tot(ji) + zdeltah(ji,1) |
---|
556 | h_s_1d (ji) = h_s_1d (ji) + zdeltah(ji,1) |
---|
557 | |
---|
558 | zq_rema(ji) = zq_rema(ji) + zdeltah(ji,1) * e_s_1d(ji,1) ! update available heat (J.m-2) |
---|
559 | hfx_snw_1d(ji) = hfx_snw_1d(ji) - zdeltah(ji,1) * a_i_1d(ji) * e_s_1d(ji,1) * r1_rdtice ! Heat used to melt snow, W.m-2 (>0) |
---|
560 | wfx_snw_sum_1d(ji) = wfx_snw_sum_1d(ji) - rhosn * a_i_1d(ji) * zdeltah(ji,1) * r1_rdtice ! Mass flux |
---|
561 | dh_s_mlt(ji) = dh_s_mlt(ji) + zdeltah(ji,1) |
---|
562 | ! |
---|
563 | ! Remaining heat flux (W.m-2) is sent to the ocean heat budget |
---|
564 | qt_oce_ai_1d(ji) = qt_oce_ai_1d(ji) + ( zq_rema(ji) * a_i_1d(ji) ) * r1_rdtice |
---|
565 | |
---|
566 | IF( ln_icectl .AND. zq_rema(ji) < 0. .AND. lwp ) WRITE(numout,*) 'ALERTE zq_rema <0 = ', zq_rema(ji) |
---|
567 | END DO |
---|
568 | |
---|
569 | ! |
---|
570 | ! Snow-Ice formation |
---|
571 | ! ------------------ |
---|
572 | ! When snow load excesses Archimede's limit, snow-ice interface goes down under sea-level, |
---|
573 | ! flooding of seawater transforms snow into ice dh_snowice is positive for the ice |
---|
574 | z1_rho = 1._wp / ( rhosn+rau0-rhoic ) |
---|
575 | DO ji = 1, npti |
---|
576 | ! |
---|
577 | dh_snowice(ji) = MAX( 0._wp , ( rhosn * h_s_1d(ji) + (rhoic-rau0) * h_i_1d(ji) ) * z1_rho ) |
---|
578 | |
---|
579 | h_i_1d(ji) = h_i_1d(ji) + dh_snowice(ji) |
---|
580 | h_s_1d(ji) = h_s_1d(ji) - dh_snowice(ji) |
---|
581 | |
---|
582 | ! Contribution to energy flux to the ocean [J/m2], >0 (if sst<0) |
---|
583 | zfmdt = ( rhosn - rhoic ) * dh_snowice(ji) ! <0 |
---|
584 | zEw = rcp * sst_1d(ji) |
---|
585 | zQm = zfmdt * zEw |
---|
586 | |
---|
587 | hfx_thd_1d(ji) = hfx_thd_1d(ji) + zfmdt * a_i_1d(ji) * zEw * r1_rdtice ! Heat flux |
---|
588 | |
---|
589 | sfx_sni_1d(ji) = sfx_sni_1d(ji) + sss_1d(ji) * a_i_1d(ji) * zfmdt * r1_rdtice ! Salt flux |
---|
590 | |
---|
591 | ! Case constant salinity in time: virtual salt flux to keep salinity constant |
---|
592 | IF( nn_icesal /= 2 ) THEN |
---|
593 | sfx_bri_1d(ji) = sfx_bri_1d(ji) - sss_1d (ji) * a_i_1d(ji) * zfmdt * r1_rdtice & ! put back sss_m into the ocean |
---|
594 | & - s_i_1d(ji) * a_i_1d(ji) * dh_snowice(ji) * rhoic * r1_rdtice ! and get rn_icesal from the ocean |
---|
595 | ENDIF |
---|
596 | |
---|
597 | ! Mass flux: All snow is thrown in the ocean, and seawater is taken to replace the volume |
---|
598 | wfx_sni_1d(ji) = wfx_sni_1d(ji) - a_i_1d(ji) * dh_snowice(ji) * rhoic * r1_rdtice |
---|
599 | wfx_snw_sni_1d(ji) = wfx_snw_sni_1d(ji) + a_i_1d(ji) * dh_snowice(ji) * rhosn * r1_rdtice |
---|
600 | |
---|
601 | ! update heat content (J.m-2) and layer thickness |
---|
602 | eh_i_old(ji,0) = eh_i_old(ji,0) + dh_snowice(ji) * e_s_1d(ji,1) + zfmdt * zEw |
---|
603 | h_i_old (ji,0) = h_i_old (ji,0) + dh_snowice(ji) |
---|
604 | |
---|
605 | END DO |
---|
606 | |
---|
607 | ! |
---|
608 | ! Update temperature, energy |
---|
609 | ! -------------------------- |
---|
610 | DO ji = 1, npti |
---|
611 | rswitch = 1._wp - MAX( 0._wp , SIGN( 1._wp , - h_i_1d(ji) ) ) |
---|
612 | t_su_1d(ji) = rswitch * t_su_1d(ji) + ( 1._wp - rswitch ) * rt0 |
---|
613 | END DO |
---|
614 | |
---|
615 | DO jk = 1, nlay_s |
---|
616 | DO ji = 1,npti |
---|
617 | ! mask enthalpy |
---|
618 | rswitch = 1._wp - MAX( 0._wp , SIGN( 1._wp, - h_s_1d(ji) ) ) |
---|
619 | e_s_1d(ji,jk) = rswitch * e_s_1d(ji,jk) |
---|
620 | ! recalculate t_s_1d from e_s_1d |
---|
621 | t_s_1d(ji,jk) = rt0 + rswitch * ( - e_s_1d(ji,jk) * r1_rhosn * r1_cpic + lfus * r1_cpic ) |
---|
622 | END DO |
---|
623 | END DO |
---|
624 | |
---|
625 | ! --- ensure that a_i = 0 where h_i = 0 --- |
---|
626 | WHERE( h_i_1d(1:npti) == 0._wp ) a_i_1d(1:npti) = 0._wp |
---|
627 | ! |
---|
628 | END SUBROUTINE ice_thd_dh |
---|
629 | |
---|
630 | |
---|
631 | !!-------------------------------------------------------------------------- |
---|
632 | !! INTERFACE ice_thd_snwblow |
---|
633 | !! |
---|
634 | !! ** Purpose : Compute distribution of precip over the ice |
---|
635 | !! |
---|
636 | !! Snow accumulation in one thermodynamic time step |
---|
637 | !! snowfall is partitionned between leads and ice. |
---|
638 | !! If snow fall was uniform, a fraction (1-at_i) would fall into leads |
---|
639 | !! but because of the winds, more snow falls on leads than on sea ice |
---|
640 | !! and a greater fraction (1-at_i)^beta of the total mass of snow |
---|
641 | !! (beta < 1) falls in leads. |
---|
642 | !! In reality, beta depends on wind speed, |
---|
643 | !! and should decrease with increasing wind speed but here, it is |
---|
644 | !! considered as a constant. an average value is 0.66 |
---|
645 | !!-------------------------------------------------------------------------- |
---|
646 | !!gm I think it can be usefull to set this as a FUNCTION, not a SUBROUTINE.... |
---|
647 | SUBROUTINE ice_thd_snwblow_2d( pin, pout ) |
---|
648 | REAL(wp), DIMENSION(:,:), INTENT(in ) :: pin ! previous fraction lead ( 1. - a_i_b ) |
---|
649 | REAL(wp), DIMENSION(:,:), INTENT(inout) :: pout |
---|
650 | pout = ( 1._wp - ( pin )**rn_blow_s ) |
---|
651 | END SUBROUTINE ice_thd_snwblow_2d |
---|
652 | |
---|
653 | SUBROUTINE ice_thd_snwblow_1d( pin, pout ) |
---|
654 | REAL(wp), DIMENSION(:), INTENT(in ) :: pin |
---|
655 | REAL(wp), DIMENSION(:), INTENT(inout) :: pout |
---|
656 | pout = ( 1._wp - ( pin )**rn_blow_s ) |
---|
657 | END SUBROUTINE ice_thd_snwblow_1d |
---|
658 | |
---|
659 | #else |
---|
660 | !!---------------------------------------------------------------------- |
---|
661 | !! Default option NO SI3 sea-ice model |
---|
662 | !!---------------------------------------------------------------------- |
---|
663 | #endif |
---|
664 | |
---|
665 | !!====================================================================== |
---|
666 | END MODULE icethd_dh |
---|