1 | MODULE icethd_do |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE icethd_do *** |
---|
4 | !! sea-ice: sea ice growth in the leads (open water) |
---|
5 | !!====================================================================== |
---|
6 | !! History : ! 2005-12 (M. Vancoppenolle) Original code |
---|
7 | !! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube] |
---|
8 | !!---------------------------------------------------------------------- |
---|
9 | #if defined key_si3 |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | !! 'key_si3' SI3 sea-ice model |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! ice_thd_do : ice growth in open water (=lateral accretion of ice) |
---|
14 | !! ice_thd_do_init : initialization |
---|
15 | !!---------------------------------------------------------------------- |
---|
16 | USE dom_oce ! ocean space and time domain |
---|
17 | USE phycst ! physical constants |
---|
18 | USE sbc_oce , ONLY : sss_m |
---|
19 | USE ice1D ! sea-ice: thermodynamics variables |
---|
20 | USE ice ! sea-ice: variables |
---|
21 | USE icetab ! sea-ice: 2D <==> 1D |
---|
22 | USE icectl ! sea-ice: conservation |
---|
23 | USE icethd_ent ! sea-ice: thermodynamics, enthalpy |
---|
24 | USE icevar ! sea-ice: operations |
---|
25 | USE icethd_sal ! sea-ice: salinity profiles |
---|
26 | ! |
---|
27 | USE in_out_manager ! I/O manager |
---|
28 | USE lib_mpp ! MPP library |
---|
29 | USE lib_fortran ! fortran utilities (glob_sum + no signed zero) |
---|
30 | USE lbclnk ! lateral boundary conditions (or mpp links) |
---|
31 | |
---|
32 | IMPLICIT NONE |
---|
33 | PRIVATE |
---|
34 | |
---|
35 | PUBLIC ice_thd_do ! called by ice_thd |
---|
36 | PUBLIC ice_thd_do_init ! called by ice_stp |
---|
37 | |
---|
38 | ! !!** namelist (namthd_do) ** |
---|
39 | REAL(wp), PUBLIC :: rn_hinew ! thickness for new ice formation (m) |
---|
40 | LOGICAL , PUBLIC :: ln_frazil ! use of frazil ice collection as function of wind (T) or not (F) |
---|
41 | REAL(wp), PUBLIC :: rn_maxfraz ! maximum portion of frazil ice collecting at the ice bottom |
---|
42 | REAL(wp), PUBLIC :: rn_vfraz ! threshold drift speed for collection of bottom frazil ice |
---|
43 | REAL(wp), PUBLIC :: rn_Cfraz ! squeezing coefficient for collection of bottom frazil ice |
---|
44 | |
---|
45 | !! * Substitutions |
---|
46 | # include "do_loop_substitute.h90" |
---|
47 | !!---------------------------------------------------------------------- |
---|
48 | !! NEMO/ICE 4.0 , NEMO Consortium (2018) |
---|
49 | !! $Id$ |
---|
50 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
51 | !!---------------------------------------------------------------------- |
---|
52 | CONTAINS |
---|
53 | |
---|
54 | SUBROUTINE ice_thd_do |
---|
55 | !!------------------------------------------------------------------- |
---|
56 | !! *** ROUTINE ice_thd_do *** |
---|
57 | !! |
---|
58 | !! ** Purpose : Computation of the evolution of the ice thickness and |
---|
59 | !! concentration as a function of the heat balance in the leads |
---|
60 | !! |
---|
61 | !! ** Method : Ice is formed in the open water when ocean looses heat |
---|
62 | !! (heat budget of open water is negative) following |
---|
63 | !! |
---|
64 | !! (dA/dt)acc = F[ (1-A)/(1-a) ] * [ Bl / (Li*h0) ] |
---|
65 | !! where - h0 is the thickness of ice created in the lead |
---|
66 | !! - a is a minimum fraction for leads |
---|
67 | !! - F is a monotonic non-increasing function defined as: |
---|
68 | !! F(X)=( 1 - X**exld )**(1.0/exld) |
---|
69 | !! - exld is the exponent closure rate (=2 default val.) |
---|
70 | !! |
---|
71 | !! ** Action : - Adjustment of snow and ice thicknesses and heat |
---|
72 | !! content in brine pockets |
---|
73 | !! - Updating ice internal temperature |
---|
74 | !! - Computation of variation of ice volume and mass |
---|
75 | !! - Computation of a_i after lateral accretion and |
---|
76 | !! update h_s_1d, h_i_1d |
---|
77 | !!------------------------------------------------------------------------ |
---|
78 | INTEGER :: ji, jj, jk, jl ! dummy loop indices |
---|
79 | ! |
---|
80 | REAL(wp) :: ztmelts |
---|
81 | REAL(wp) :: zdE |
---|
82 | REAL(wp) :: zQm ! enthalpy exchanged with the ocean (J/m2, >0 towards ocean) |
---|
83 | REAL(wp) :: zEi ! sea ice specific enthalpy (J/kg) |
---|
84 | REAL(wp) :: zEw ! seawater specific enthalpy (J/kg) |
---|
85 | REAL(wp) :: zfmdt ! mass flux x time step (kg/m2, >0 towards ocean) |
---|
86 | ! |
---|
87 | REAL(wp) :: zv_newfra |
---|
88 | ! |
---|
89 | INTEGER , DIMENSION(jpij) :: jcat ! indexes of categories where new ice grows |
---|
90 | REAL(wp), DIMENSION(jpij) :: zswinew ! switch for new ice or not |
---|
91 | ! |
---|
92 | REAL(wp), DIMENSION(jpij) :: zv_newice ! volume of accreted ice |
---|
93 | REAL(wp), DIMENSION(jpij) :: za_newice ! fractional area of accreted ice |
---|
94 | REAL(wp), DIMENSION(jpij) :: zh_newice ! thickness of accreted ice |
---|
95 | REAL(wp), DIMENSION(jpij) :: ze_newice ! heat content of accreted ice |
---|
96 | REAL(wp), DIMENSION(jpij) :: zs_newice ! salinity of accreted ice |
---|
97 | REAL(wp), DIMENSION(jpij) :: zo_newice ! age of accreted ice |
---|
98 | REAL(wp), DIMENSION(jpij) :: zdv_res ! residual volume in case of excessive heat budget |
---|
99 | REAL(wp), DIMENSION(jpij) :: zda_res ! residual area in case of excessive heat budget |
---|
100 | REAL(wp), DIMENSION(jpij) :: zv_frazb ! accretion of frazil ice at the ice bottom |
---|
101 | REAL(wp), DIMENSION(jpij) :: zfraz_frac_1d ! relative ice / frazil velocity (1D vector) |
---|
102 | ! |
---|
103 | REAL(wp), DIMENSION(jpij,jpl) :: zv_b ! old volume of ice in category jl |
---|
104 | REAL(wp), DIMENSION(jpij,jpl) :: za_b ! old area of ice in category jl |
---|
105 | ! |
---|
106 | REAL(wp), DIMENSION(jpij,nlay_i,jpl) :: ze_i_2d !: 1-D version of e_i |
---|
107 | ! |
---|
108 | !!-----------------------------------------------------------------------! |
---|
109 | |
---|
110 | IF( ln_icediachk ) CALL ice_cons_hsm( 0, 'icethd_do', rdiag_v, rdiag_s, rdiag_t, rdiag_fv, rdiag_fs, rdiag_ft ) |
---|
111 | IF( ln_icediachk ) CALL ice_cons2D ( 0, 'icethd_do', diag_v, diag_s, diag_t, diag_fv, diag_fs, diag_ft ) |
---|
112 | |
---|
113 | at_i(:,:) = SUM( a_i, dim=3 ) |
---|
114 | !------------------------------------------------------------------------------! |
---|
115 | ! 1) Compute thickness, salinity, enthalpy, age, area and volume of new ice |
---|
116 | !------------------------------------------------------------------------------! |
---|
117 | ! it occurs if cooling |
---|
118 | |
---|
119 | ! Identify grid points where new ice forms |
---|
120 | npti = 0 ; nptidx(:) = 0 |
---|
121 | DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) |
---|
122 | IF ( qlead(ji,jj) < 0._wp ) THEN |
---|
123 | npti = npti + 1 |
---|
124 | nptidx( npti ) = (jj - 1) * jpi + ji |
---|
125 | ENDIF |
---|
126 | END_2D |
---|
127 | |
---|
128 | ! Move from 2-D to 1-D vectors |
---|
129 | IF ( npti > 0 ) THEN |
---|
130 | |
---|
131 | CALL tab_2d_1d( npti, nptidx(1:npti), at_i_1d(1:npti) , at_i ) |
---|
132 | CALL tab_3d_2d( npti, nptidx(1:npti), a_i_2d (1:npti,1:jpl), a_i (:,:,:) ) |
---|
133 | CALL tab_3d_2d( npti, nptidx(1:npti), v_i_2d (1:npti,1:jpl), v_i (:,:,:) ) |
---|
134 | CALL tab_3d_2d( npti, nptidx(1:npti), sv_i_2d(1:npti,1:jpl), sv_i(:,:,:) ) |
---|
135 | DO jl = 1, jpl |
---|
136 | DO jk = 1, nlay_i |
---|
137 | CALL tab_2d_1d( npti, nptidx(1:npti), ze_i_2d(1:npti,jk,jl), e_i(:,:,jk,jl) ) |
---|
138 | END DO |
---|
139 | END DO |
---|
140 | CALL tab_2d_1d( npti, nptidx(1:npti), qlead_1d (1:npti) , qlead ) |
---|
141 | CALL tab_2d_1d( npti, nptidx(1:npti), t_bo_1d (1:npti) , t_bo ) |
---|
142 | CALL tab_2d_1d( npti, nptidx(1:npti), sfx_opw_1d (1:npti) , sfx_opw ) |
---|
143 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_opw_1d (1:npti) , wfx_opw ) |
---|
144 | CALL tab_2d_1d( npti, nptidx(1:npti), zh_newice (1:npti) , ht_i_new ) |
---|
145 | CALL tab_2d_1d( npti, nptidx(1:npti), zfraz_frac_1d(1:npti) , fraz_frac ) |
---|
146 | |
---|
147 | CALL tab_2d_1d( npti, nptidx(1:npti), hfx_thd_1d(1:npti) , hfx_thd ) |
---|
148 | CALL tab_2d_1d( npti, nptidx(1:npti), hfx_opw_1d(1:npti) , hfx_opw ) |
---|
149 | CALL tab_2d_1d( npti, nptidx(1:npti), rn_amax_1d(1:npti) , rn_amax_2d ) |
---|
150 | CALL tab_2d_1d( npti, nptidx(1:npti), sss_1d (1:npti) , sss_m ) |
---|
151 | |
---|
152 | ! Convert units for ice internal energy |
---|
153 | DO jl = 1, jpl |
---|
154 | DO jk = 1, nlay_i |
---|
155 | WHERE( v_i_2d(1:npti,jl) > 0._wp ) |
---|
156 | ze_i_2d(1:npti,jk,jl) = ze_i_2d(1:npti,jk,jl) / v_i_2d(1:npti,jl) * REAL( nlay_i ) |
---|
157 | ELSEWHERE |
---|
158 | ze_i_2d(1:npti,jk,jl) = 0._wp |
---|
159 | END WHERE |
---|
160 | END DO |
---|
161 | END DO |
---|
162 | |
---|
163 | ! Keep old ice areas and volume in memory |
---|
164 | zv_b(1:npti,:) = v_i_2d(1:npti,:) |
---|
165 | za_b(1:npti,:) = a_i_2d(1:npti,:) |
---|
166 | |
---|
167 | ! --- Salinity of new ice --- ! |
---|
168 | SELECT CASE ( nn_icesal ) |
---|
169 | CASE ( 1 ) ! Sice = constant |
---|
170 | zs_newice(1:npti) = rn_icesal |
---|
171 | CASE ( 2 ) ! Sice = F(z,t) [Vancoppenolle et al (2005)] |
---|
172 | DO ji = 1, npti |
---|
173 | zs_newice(ji) = MIN( 4.606 + 0.91 / zh_newice(ji) , rn_simax , 0.5 * sss_1d(ji) ) |
---|
174 | END DO |
---|
175 | CASE ( 3 ) ! Sice = F(z) [multiyear ice] |
---|
176 | zs_newice(1:npti) = 2.3 |
---|
177 | END SELECT |
---|
178 | |
---|
179 | ! --- Heat content of new ice --- ! |
---|
180 | ! We assume that new ice is formed at the seawater freezing point |
---|
181 | DO ji = 1, npti |
---|
182 | ztmelts = - rTmlt * zs_newice(ji) ! Melting point (C) |
---|
183 | ze_newice(ji) = rhoi * ( rcpi * ( ztmelts - ( t_bo_1d(ji) - rt0 ) ) & |
---|
184 | & + rLfus * ( 1.0 - ztmelts / MIN( t_bo_1d(ji) - rt0, -epsi10 ) ) & |
---|
185 | & - rcp * ztmelts ) |
---|
186 | END DO |
---|
187 | |
---|
188 | ! --- Age of new ice --- ! |
---|
189 | zo_newice(1:npti) = 0._wp |
---|
190 | |
---|
191 | ! --- Volume of new ice --- ! |
---|
192 | DO ji = 1, npti |
---|
193 | |
---|
194 | zEi = - ze_newice(ji) * r1_rhoi ! specific enthalpy of forming ice [J/kg] |
---|
195 | |
---|
196 | zEw = rcp * ( t_bo_1d(ji) - rt0 ) ! specific enthalpy of seawater at t_bo_1d [J/kg] |
---|
197 | ! clem: we suppose we are already at the freezing point (condition qlead<0 is satisfyied) |
---|
198 | |
---|
199 | zdE = zEi - zEw ! specific enthalpy difference [J/kg] |
---|
200 | |
---|
201 | zfmdt = - qlead_1d(ji) / zdE ! Fm.dt [kg/m2] (<0) |
---|
202 | ! clem: we use qlead instead of zqld (icethd) because we suppose we are at the freezing point |
---|
203 | zv_newice(ji) = - zfmdt * r1_rhoi |
---|
204 | |
---|
205 | zQm = zfmdt * zEw ! heat to the ocean >0 associated with mass flux |
---|
206 | |
---|
207 | ! Contribution to heat flux to the ocean [W.m-2], >0 |
---|
208 | hfx_thd_1d(ji) = hfx_thd_1d(ji) + zfmdt * zEw * r1_Dt_ice |
---|
209 | ! Total heat flux used in this process [W.m-2] |
---|
210 | hfx_opw_1d(ji) = hfx_opw_1d(ji) - zfmdt * zdE * r1_Dt_ice |
---|
211 | ! mass flux |
---|
212 | wfx_opw_1d(ji) = wfx_opw_1d(ji) - zv_newice(ji) * rhoi * r1_Dt_ice |
---|
213 | ! salt flux |
---|
214 | sfx_opw_1d(ji) = sfx_opw_1d(ji) - zv_newice(ji) * rhoi * zs_newice(ji) * r1_Dt_ice |
---|
215 | END DO |
---|
216 | |
---|
217 | ! A fraction fraz_frac of frazil ice is accreted at the ice bottom |
---|
218 | DO ji = 1, npti |
---|
219 | rswitch = 1._wp - MAX( 0._wp, SIGN( 1._wp , - at_i_1d(ji) ) ) |
---|
220 | zv_frazb(ji) = zfraz_frac_1d(ji) * rswitch * zv_newice(ji) |
---|
221 | zv_newice(ji) = ( 1._wp - zfraz_frac_1d(ji) * rswitch ) * zv_newice(ji) |
---|
222 | END DO |
---|
223 | |
---|
224 | ! --- Area of new ice --- ! |
---|
225 | DO ji = 1, npti |
---|
226 | za_newice(ji) = zv_newice(ji) / zh_newice(ji) |
---|
227 | END DO |
---|
228 | |
---|
229 | !------------------------------------------------------------------------------! |
---|
230 | ! 2) Redistribute new ice area and volume into ice categories ! |
---|
231 | !------------------------------------------------------------------------------! |
---|
232 | |
---|
233 | ! --- lateral ice growth --- ! |
---|
234 | ! If lateral ice growth gives an ice concentration > amax, then |
---|
235 | ! we keep the excessive volume in memory and attribute it later to bottom accretion |
---|
236 | DO ji = 1, npti |
---|
237 | IF ( za_newice(ji) > MAX( 0._wp, rn_amax_1d(ji) - at_i_1d(ji) ) ) THEN ! max is for roundoff error |
---|
238 | zda_res(ji) = za_newice(ji) - MAX( 0._wp, rn_amax_1d(ji) - at_i_1d(ji) ) |
---|
239 | zdv_res(ji) = zda_res (ji) * zh_newice(ji) |
---|
240 | za_newice(ji) = MAX( 0._wp, za_newice(ji) - zda_res (ji) ) |
---|
241 | zv_newice(ji) = MAX( 0._wp, zv_newice(ji) - zdv_res (ji) ) |
---|
242 | ELSE |
---|
243 | zda_res(ji) = 0._wp |
---|
244 | zdv_res(ji) = 0._wp |
---|
245 | ENDIF |
---|
246 | END DO |
---|
247 | |
---|
248 | ! find which category to fill |
---|
249 | DO jl = 1, jpl |
---|
250 | DO ji = 1, npti |
---|
251 | IF( zh_newice(ji) > hi_max(jl-1) .AND. zh_newice(ji) <= hi_max(jl) ) THEN |
---|
252 | a_i_2d(ji,jl) = a_i_2d(ji,jl) + za_newice(ji) |
---|
253 | v_i_2d(ji,jl) = v_i_2d(ji,jl) + zv_newice(ji) |
---|
254 | jcat(ji) = jl |
---|
255 | ENDIF |
---|
256 | END DO |
---|
257 | END DO |
---|
258 | at_i_1d(1:npti) = SUM( a_i_2d(1:npti,:), dim=2 ) |
---|
259 | |
---|
260 | ! Heat content |
---|
261 | DO ji = 1, npti |
---|
262 | jl = jcat(ji) ! categroy in which new ice is put |
---|
263 | zswinew (ji) = MAX( 0._wp , SIGN( 1._wp , - za_b(ji,jl) ) ) ! 0 if old ice |
---|
264 | END DO |
---|
265 | |
---|
266 | DO jk = 1, nlay_i |
---|
267 | DO ji = 1, npti |
---|
268 | jl = jcat(ji) |
---|
269 | rswitch = MAX( 0._wp, SIGN( 1._wp , v_i_2d(ji,jl) - epsi20 ) ) |
---|
270 | ze_i_2d(ji,jk,jl) = zswinew(ji) * ze_newice(ji) + & |
---|
271 | & ( 1.0 - zswinew(ji) ) * ( ze_newice(ji) * zv_newice(ji) + ze_i_2d(ji,jk,jl) * zv_b(ji,jl) ) & |
---|
272 | & * rswitch / MAX( v_i_2d(ji,jl), epsi20 ) |
---|
273 | END DO |
---|
274 | END DO |
---|
275 | |
---|
276 | ! --- bottom ice growth + ice enthalpy remapping --- ! |
---|
277 | DO jl = 1, jpl |
---|
278 | |
---|
279 | ! for remapping |
---|
280 | h_i_old (1:npti,0:nlay_i+1) = 0._wp |
---|
281 | eh_i_old(1:npti,0:nlay_i+1) = 0._wp |
---|
282 | DO jk = 1, nlay_i |
---|
283 | DO ji = 1, npti |
---|
284 | h_i_old (ji,jk) = v_i_2d(ji,jl) * r1_nlay_i |
---|
285 | eh_i_old(ji,jk) = ze_i_2d(ji,jk,jl) * h_i_old(ji,jk) |
---|
286 | END DO |
---|
287 | END DO |
---|
288 | |
---|
289 | ! new volumes including lateral/bottom accretion + residual |
---|
290 | DO ji = 1, npti |
---|
291 | rswitch = MAX( 0._wp, SIGN( 1._wp , at_i_1d(ji) - epsi20 ) ) |
---|
292 | zv_newfra = rswitch * ( zdv_res(ji) + zv_frazb(ji) ) * a_i_2d(ji,jl) / MAX( at_i_1d(ji) , epsi20 ) |
---|
293 | a_i_2d(ji,jl) = rswitch * a_i_2d(ji,jl) |
---|
294 | v_i_2d(ji,jl) = v_i_2d(ji,jl) + zv_newfra |
---|
295 | ! for remapping |
---|
296 | h_i_old (ji,nlay_i+1) = zv_newfra |
---|
297 | eh_i_old(ji,nlay_i+1) = ze_newice(ji) * zv_newfra |
---|
298 | END DO |
---|
299 | ! --- Ice enthalpy remapping --- ! |
---|
300 | CALL ice_thd_ent( ze_i_2d(1:npti,:,jl) ) |
---|
301 | END DO |
---|
302 | |
---|
303 | ! --- Update salinity --- ! |
---|
304 | DO jl = 1, jpl |
---|
305 | DO ji = 1, npti |
---|
306 | sv_i_2d(ji,jl) = sv_i_2d(ji,jl) + zs_newice(ji) * ( v_i_2d(ji,jl) - zv_b(ji,jl) ) |
---|
307 | END DO |
---|
308 | END DO |
---|
309 | |
---|
310 | ! Change units for e_i |
---|
311 | DO jl = 1, jpl |
---|
312 | DO jk = 1, nlay_i |
---|
313 | ze_i_2d(1:npti,jk,jl) = ze_i_2d(1:npti,jk,jl) * v_i_2d(1:npti,jl) * r1_nlay_i |
---|
314 | END DO |
---|
315 | END DO |
---|
316 | |
---|
317 | ! Move 2D vectors to 1D vectors |
---|
318 | CALL tab_2d_3d( npti, nptidx(1:npti), a_i_2d (1:npti,1:jpl), a_i (:,:,:) ) |
---|
319 | CALL tab_2d_3d( npti, nptidx(1:npti), v_i_2d (1:npti,1:jpl), v_i (:,:,:) ) |
---|
320 | CALL tab_2d_3d( npti, nptidx(1:npti), sv_i_2d(1:npti,1:jpl), sv_i(:,:,:) ) |
---|
321 | DO jl = 1, jpl |
---|
322 | DO jk = 1, nlay_i |
---|
323 | CALL tab_1d_2d( npti, nptidx(1:npti), ze_i_2d(1:npti,jk,jl), e_i(:,:,jk,jl) ) |
---|
324 | END DO |
---|
325 | END DO |
---|
326 | CALL tab_1d_2d( npti, nptidx(1:npti), sfx_opw_1d(1:npti), sfx_opw ) |
---|
327 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_opw_1d(1:npti), wfx_opw ) |
---|
328 | CALL tab_1d_2d( npti, nptidx(1:npti), hfx_thd_1d(1:npti), hfx_thd ) |
---|
329 | CALL tab_1d_2d( npti, nptidx(1:npti), hfx_opw_1d(1:npti), hfx_opw ) |
---|
330 | ! |
---|
331 | ENDIF ! npti > 0 |
---|
332 | ! |
---|
333 | IF( ln_icediachk ) CALL ice_cons_hsm(1, 'icethd_do', rdiag_v, rdiag_s, rdiag_t, rdiag_fv, rdiag_fs, rdiag_ft) |
---|
334 | IF( ln_icediachk ) CALL ice_cons2D (1, 'icethd_do', diag_v, diag_s, diag_t, diag_fv, diag_fs, diag_ft) |
---|
335 | ! |
---|
336 | END SUBROUTINE ice_thd_do |
---|
337 | |
---|
338 | |
---|
339 | SUBROUTINE ice_thd_do_init |
---|
340 | !!----------------------------------------------------------------------- |
---|
341 | !! *** ROUTINE ice_thd_do_init *** |
---|
342 | !! |
---|
343 | !! ** Purpose : Physical constants and parameters associated with |
---|
344 | !! ice growth in the leads |
---|
345 | !! |
---|
346 | !! ** Method : Read the namthd_do namelist and check the parameters |
---|
347 | !! called at the first timestep (nit000) |
---|
348 | !! |
---|
349 | !! ** input : Namelist namthd_do |
---|
350 | !!------------------------------------------------------------------- |
---|
351 | INTEGER :: ios ! Local integer |
---|
352 | !! |
---|
353 | NAMELIST/namthd_do/ rn_hinew, ln_frazil, rn_maxfraz, rn_vfraz, rn_Cfraz |
---|
354 | !!------------------------------------------------------------------- |
---|
355 | ! |
---|
356 | READ ( numnam_ice_ref, namthd_do, IOSTAT = ios, ERR = 901) |
---|
357 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namthd_do in reference namelist' ) |
---|
358 | READ ( numnam_ice_cfg, namthd_do, IOSTAT = ios, ERR = 902 ) |
---|
359 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namthd_do in configuration namelist' ) |
---|
360 | IF(lwm) WRITE( numoni, namthd_do ) |
---|
361 | ! |
---|
362 | IF(lwp) THEN ! control print |
---|
363 | WRITE(numout,*) |
---|
364 | WRITE(numout,*) 'ice_thd_do_init: Ice growth in open water' |
---|
365 | WRITE(numout,*) '~~~~~~~~~~~~~~~' |
---|
366 | WRITE(numout,*) ' Namelist namthd_do:' |
---|
367 | WRITE(numout,*) ' ice thickness for lateral accretion rn_hinew = ', rn_hinew |
---|
368 | WRITE(numout,*) ' Frazil ice thickness as a function of wind or not ln_frazil = ', ln_frazil |
---|
369 | WRITE(numout,*) ' Maximum proportion of frazil ice collecting at bottom rn_maxfraz = ', rn_maxfraz |
---|
370 | WRITE(numout,*) ' Threshold relative drift speed for collection of frazil rn_vfraz = ', rn_vfraz |
---|
371 | WRITE(numout,*) ' Squeezing coefficient for collection of frazil rn_Cfraz = ', rn_Cfraz |
---|
372 | ENDIF |
---|
373 | ! |
---|
374 | IF ( rn_hinew < rn_himin ) CALL ctl_stop( 'ice_thd_do_init : rn_hinew should be >= rn_himin' ) |
---|
375 | ! |
---|
376 | END SUBROUTINE ice_thd_do_init |
---|
377 | |
---|
378 | #else |
---|
379 | !!---------------------------------------------------------------------- |
---|
380 | !! Default option NO SI3 sea-ice model |
---|
381 | !!---------------------------------------------------------------------- |
---|
382 | #endif |
---|
383 | |
---|
384 | !!====================================================================== |
---|
385 | END MODULE icethd_do |
---|