1 | MODULE diaptr |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE diaptr *** |
---|
4 | !! Ocean physics: Computes meridonal transports and zonal means |
---|
5 | !!===================================================================== |
---|
6 | !! History : 1.0 ! 2003-09 (C. Talandier, G. Madec) Original code |
---|
7 | !! 2.0 ! 2006-01 (A. Biastoch) Allow sub-basins computation |
---|
8 | !! 3.2 ! 2010-03 (O. Marti, S. Flavoni) Add fields |
---|
9 | !! 3.3 ! 2010-10 (G. Madec) dynamical allocation |
---|
10 | !! 3.6 ! 2014-12 (C. Ethe) use of IOM |
---|
11 | !! 3.6 ! 2016-06 (T. Graham) Addition of diagnostics for CMIP6 |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | !! dia_ptr : Poleward Transport Diagnostics module |
---|
16 | !! dia_ptr_init : Initialization, namelist read |
---|
17 | !! ptr_sjk : "zonal" mean computation of a field - tracer or flux array |
---|
18 | !! ptr_sj : "zonal" and vertical sum computation of a "meridional" flux array |
---|
19 | !! (Generic interface to ptr_sj_3d, ptr_sj_2d) |
---|
20 | !!---------------------------------------------------------------------- |
---|
21 | USE oce ! ocean dynamics and active tracers |
---|
22 | USE dom_oce ! ocean space and time domain |
---|
23 | USE phycst ! physical constants |
---|
24 | ! |
---|
25 | USE iom ! IOM library |
---|
26 | USE in_out_manager ! I/O manager |
---|
27 | USE lib_mpp ! MPP library |
---|
28 | USE timing ! preformance summary |
---|
29 | |
---|
30 | IMPLICIT NONE |
---|
31 | PRIVATE |
---|
32 | |
---|
33 | INTERFACE ptr_sj |
---|
34 | MODULE PROCEDURE ptr_sj_3d, ptr_sj_2d |
---|
35 | END INTERFACE |
---|
36 | |
---|
37 | PUBLIC ptr_sj ! call by tra_ldf & tra_adv routines |
---|
38 | PUBLIC ptr_sjk ! |
---|
39 | PUBLIC dia_ptr_init ! call in memogcm |
---|
40 | PUBLIC dia_ptr ! call in step module |
---|
41 | PUBLIC dia_ptr_hst ! called from tra_ldf/tra_adv routines |
---|
42 | |
---|
43 | ! !!** namelist namptr ** |
---|
44 | REAL(wp), ALLOCATABLE, SAVE, PUBLIC, DIMENSION(:,:) :: htr_adv, htr_ldf, htr_eiv !: Heat TRansports (adv, diff, Bolus.) |
---|
45 | REAL(wp), ALLOCATABLE, SAVE, PUBLIC, DIMENSION(:,:) :: str_adv, str_ldf, str_eiv !: Salt TRansports (adv, diff, Bolus.) |
---|
46 | REAL(wp), ALLOCATABLE, SAVE, PUBLIC, DIMENSION(:,:) :: htr_ove, str_ove !: heat Salt TRansports ( overturn.) |
---|
47 | REAL(wp), ALLOCATABLE, SAVE, PUBLIC, DIMENSION(:,:) :: htr_btr, str_btr !: heat Salt TRansports ( barotropic ) |
---|
48 | |
---|
49 | LOGICAL, PUBLIC :: ln_diaptr ! Poleward transport flag (T) or not (F) |
---|
50 | LOGICAL, PUBLIC :: ln_subbas ! Atlantic/Pacific/Indian basins calculation |
---|
51 | INTEGER, PUBLIC :: nptr ! = 1 (l_subbas=F) or = 5 (glo, atl, pac, ind, ipc) (l_subbas=T) |
---|
52 | |
---|
53 | REAL(wp) :: rc_sv = 1.e-6_wp ! conversion from m3/s to Sverdrup |
---|
54 | REAL(wp) :: rc_pwatt = 1.e-15_wp ! conversion from W to PW (further x rau0 x Cp) |
---|
55 | REAL(wp) :: rc_ggram = 1.e-6_wp ! conversion from g to Pg |
---|
56 | |
---|
57 | CHARACTER(len=3), ALLOCATABLE, SAVE, DIMENSION(:) :: clsubb |
---|
58 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: btmsk ! T-point basin interior masks |
---|
59 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: btm30 ! mask out Southern Ocean (=0 south of 30°S) |
---|
60 | |
---|
61 | REAL(wp), TARGET, ALLOCATABLE, SAVE, DIMENSION(:) :: p_fval1d |
---|
62 | REAL(wp), TARGET, ALLOCATABLE, SAVE, DIMENSION(:,:) :: p_fval2d |
---|
63 | |
---|
64 | !! * Substitutions |
---|
65 | # include "vectopt_loop_substitute.h90" |
---|
66 | !!---------------------------------------------------------------------- |
---|
67 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
68 | !! $Id$ |
---|
69 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
70 | !!---------------------------------------------------------------------- |
---|
71 | CONTAINS |
---|
72 | |
---|
73 | SUBROUTINE dia_ptr( pvtr ) |
---|
74 | !!---------------------------------------------------------------------- |
---|
75 | !! *** ROUTINE dia_ptr *** |
---|
76 | !!---------------------------------------------------------------------- |
---|
77 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(in), OPTIONAL :: pvtr ! j-effective transport |
---|
78 | ! |
---|
79 | INTEGER :: ji, jj, jk, jn ! dummy loop indices |
---|
80 | REAL(wp) :: zsfc,zvfc ! local scalar |
---|
81 | REAL(wp), DIMENSION(jpi,jpj) :: z2d ! 2D workspace |
---|
82 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: z3d ! 3D workspace |
---|
83 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zmask ! 3D workspace |
---|
84 | REAL(wp), DIMENSION(jpi,jpj,jpk,jpts) :: zts ! 3D workspace |
---|
85 | REAL(wp), DIMENSION(jpj) :: vsum ! 1D workspace |
---|
86 | REAL(wp), DIMENSION(jpj,jpts) :: tssum ! 1D workspace |
---|
87 | |
---|
88 | ! |
---|
89 | !overturning calculation |
---|
90 | REAL(wp), DIMENSION(jpj,jpk,nptr) :: sjk , r1_sjk ! i-mean i-k-surface and its inverse |
---|
91 | REAL(wp), DIMENSION(jpj,jpk,nptr) :: v_msf, sn_jk , tn_jk ! i-mean T and S, j-Stream-Function |
---|
92 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zvn ! 3D workspace |
---|
93 | |
---|
94 | |
---|
95 | CHARACTER( len = 12 ) :: cl1 |
---|
96 | !!---------------------------------------------------------------------- |
---|
97 | ! |
---|
98 | IF( ln_timing ) CALL timing_start('dia_ptr') |
---|
99 | |
---|
100 | ! |
---|
101 | IF( PRESENT( pvtr ) ) THEN |
---|
102 | IF( iom_use("zomsfglo") ) THEN ! effective MSF |
---|
103 | z3d(1,:,:) = ptr_sjk( pvtr(:,:,:) ) ! zonal cumulative effective transport |
---|
104 | DO jk = 2, jpkm1 |
---|
105 | z3d(1,:,jk) = z3d(1,:,jk-1) + z3d(1,:,jk) ! effective j-Stream-Function (MSF) |
---|
106 | END DO |
---|
107 | DO ji = 1, jpi |
---|
108 | z3d(ji,:,:) = z3d(1,:,:) |
---|
109 | ENDDO |
---|
110 | cl1 = TRIM('zomsf'//clsubb(1) ) |
---|
111 | CALL iom_put( cl1, z3d * rc_sv ) |
---|
112 | DO jn = 2, nptr ! by sub-basins |
---|
113 | z3d(1,:,:) = ptr_sjk( pvtr(:,:,:), btmsk(:,:,jn)*btm30(:,:) ) |
---|
114 | DO jk = 2, jpkm1 |
---|
115 | z3d(1,:,jk) = z3d(1,:,jk-1) + z3d(1,:,jk) ! effective j-Stream-Function (MSF) |
---|
116 | END DO |
---|
117 | DO ji = 1, jpi |
---|
118 | z3d(ji,:,:) = z3d(1,:,:) |
---|
119 | ENDDO |
---|
120 | cl1 = TRIM('zomsf'//clsubb(jn) ) |
---|
121 | CALL iom_put( cl1, z3d * rc_sv ) |
---|
122 | END DO |
---|
123 | ENDIF |
---|
124 | IF( iom_use("sopstove") .OR. iom_use("sophtove") .OR. iom_use("sopstbtr") .OR. iom_use("sophtbtr") ) THEN |
---|
125 | ! define fields multiplied by scalar |
---|
126 | zmask(:,:,:) = 0._wp |
---|
127 | zts(:,:,:,:) = 0._wp |
---|
128 | zvn(:,:,:) = 0._wp |
---|
129 | DO jk = 1, jpkm1 |
---|
130 | DO jj = 1, jpjm1 |
---|
131 | DO ji = 1, jpi |
---|
132 | zvfc = e1v(ji,jj) * e3v_n(ji,jj,jk) |
---|
133 | zmask(ji,jj,jk) = vmask(ji,jj,jk) * zvfc |
---|
134 | zts(ji,jj,jk,jp_tem) = (tsn(ji,jj,jk,jp_tem)+tsn(ji,jj+1,jk,jp_tem)) * 0.5 * zvfc !Tracers averaged onto V grid |
---|
135 | zts(ji,jj,jk,jp_sal) = (tsn(ji,jj,jk,jp_sal)+tsn(ji,jj+1,jk,jp_sal)) * 0.5 * zvfc |
---|
136 | zvn(ji,jj,jk) = vn(ji,jj,jk) * zvfc |
---|
137 | ENDDO |
---|
138 | ENDDO |
---|
139 | ENDDO |
---|
140 | ENDIF |
---|
141 | IF( iom_use("sopstove") .OR. iom_use("sophtove") ) THEN |
---|
142 | sjk(:,:,1) = ptr_sjk( zmask(:,:,:), btmsk(:,:,1) ) |
---|
143 | r1_sjk(:,:,1) = 0._wp |
---|
144 | WHERE( sjk(:,:,1) /= 0._wp ) r1_sjk(:,:,1) = 1._wp / sjk(:,:,1) |
---|
145 | |
---|
146 | ! i-mean T and S, j-Stream-Function, global |
---|
147 | tn_jk(:,:,1) = ptr_sjk( zts(:,:,:,jp_tem) ) * r1_sjk(:,:,1) |
---|
148 | sn_jk(:,:,1) = ptr_sjk( zts(:,:,:,jp_sal) ) * r1_sjk(:,:,1) |
---|
149 | v_msf(:,:,1) = ptr_sjk( zvn(:,:,:) ) |
---|
150 | |
---|
151 | htr_ove(:,1) = SUM( v_msf(:,:,1)*tn_jk(:,:,1) ,2 ) |
---|
152 | str_ove(:,1) = SUM( v_msf(:,:,1)*sn_jk(:,:,1) ,2 ) |
---|
153 | |
---|
154 | z2d(1,:) = htr_ove(:,1) * rc_pwatt ! (conversion in PW) |
---|
155 | DO ji = 1, jpi |
---|
156 | z2d(ji,:) = z2d(1,:) |
---|
157 | ENDDO |
---|
158 | cl1 = 'sophtove' |
---|
159 | CALL iom_put( TRIM(cl1), z2d ) |
---|
160 | z2d(1,:) = str_ove(:,1) * rc_ggram ! (conversion in Gg) |
---|
161 | DO ji = 1, jpi |
---|
162 | z2d(ji,:) = z2d(1,:) |
---|
163 | ENDDO |
---|
164 | cl1 = 'sopstove' |
---|
165 | CALL iom_put( TRIM(cl1), z2d ) |
---|
166 | IF( ln_subbas ) THEN |
---|
167 | DO jn = 2, nptr |
---|
168 | sjk(:,:,jn) = ptr_sjk( zmask(:,:,:), btmsk(:,:,jn) ) |
---|
169 | r1_sjk(:,:,jn) = 0._wp |
---|
170 | WHERE( sjk(:,:,jn) /= 0._wp ) r1_sjk(:,:,jn) = 1._wp / sjk(:,:,jn) |
---|
171 | |
---|
172 | ! i-mean T and S, j-Stream-Function, basin |
---|
173 | tn_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_tem), btmsk(:,:,jn) ) * r1_sjk(:,:,jn) |
---|
174 | sn_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_sal), btmsk(:,:,jn) ) * r1_sjk(:,:,jn) |
---|
175 | v_msf(:,:,jn) = ptr_sjk( zvn(:,:,:), btmsk(:,:,jn) ) |
---|
176 | htr_ove(:,jn) = SUM( v_msf(:,:,jn)*tn_jk(:,:,jn) ,2 ) |
---|
177 | str_ove(:,jn) = SUM( v_msf(:,:,jn)*sn_jk(:,:,jn) ,2 ) |
---|
178 | |
---|
179 | z2d(1,:) = htr_ove(:,jn) * rc_pwatt ! (conversion in PW) |
---|
180 | DO ji = 1, jpi |
---|
181 | z2d(ji,:) = z2d(1,:) |
---|
182 | ENDDO |
---|
183 | cl1 = TRIM('sophtove_'//clsubb(jn)) |
---|
184 | CALL iom_put( cl1, z2d ) |
---|
185 | z2d(1,:) = str_ove(:,jn) * rc_ggram ! (conversion in Gg) |
---|
186 | DO ji = 1, jpi |
---|
187 | z2d(ji,:) = z2d(1,:) |
---|
188 | ENDDO |
---|
189 | cl1 = TRIM('sopstove_'//clsubb(jn)) |
---|
190 | CALL iom_put( cl1, z2d ) |
---|
191 | END DO |
---|
192 | ENDIF |
---|
193 | ENDIF |
---|
194 | IF( iom_use("sopstbtr") .OR. iom_use("sophtbtr") ) THEN |
---|
195 | ! Calculate barotropic heat and salt transport here |
---|
196 | sjk(:,1,1) = ptr_sj( zmask(:,:,:), btmsk(:,:,1) ) |
---|
197 | r1_sjk(:,1,1) = 0._wp |
---|
198 | WHERE( sjk(:,1,1) /= 0._wp ) r1_sjk(:,1,1) = 1._wp / sjk(:,1,1) |
---|
199 | |
---|
200 | vsum = ptr_sj( zvn(:,:,:), btmsk(:,:,1)) |
---|
201 | tssum(:,jp_tem) = ptr_sj( zts(:,:,:,jp_tem), btmsk(:,:,1) ) |
---|
202 | tssum(:,jp_sal) = ptr_sj( zts(:,:,:,jp_sal), btmsk(:,:,1) ) |
---|
203 | htr_btr(:,1) = vsum * tssum(:,jp_tem) * r1_sjk(:,1,1) |
---|
204 | str_btr(:,1) = vsum * tssum(:,jp_sal) * r1_sjk(:,1,1) |
---|
205 | z2d(1,:) = htr_btr(:,1) * rc_pwatt ! (conversion in PW) |
---|
206 | DO ji = 2, jpi |
---|
207 | z2d(ji,:) = z2d(1,:) |
---|
208 | ENDDO |
---|
209 | cl1 = 'sophtbtr' |
---|
210 | CALL iom_put( TRIM(cl1), z2d ) |
---|
211 | z2d(1,:) = str_btr(:,1) * rc_ggram ! (conversion in Gg) |
---|
212 | DO ji = 2, jpi |
---|
213 | z2d(ji,:) = z2d(1,:) |
---|
214 | ENDDO |
---|
215 | cl1 = 'sopstbtr' |
---|
216 | CALL iom_put( TRIM(cl1), z2d ) |
---|
217 | IF( ln_subbas ) THEN |
---|
218 | DO jn = 2, nptr |
---|
219 | sjk(:,1,jn) = ptr_sj( zmask(:,:,:), btmsk(:,:,jn) ) |
---|
220 | r1_sjk(:,1,jn) = 0._wp |
---|
221 | WHERE( sjk(:,1,jn) /= 0._wp ) r1_sjk(:,1,jn) = 1._wp / sjk(:,1,jn) |
---|
222 | vsum = ptr_sj( zvn(:,:,:), btmsk(:,:,jn)) |
---|
223 | tssum(:,jp_tem) = ptr_sj( zts(:,:,:,jp_tem), btmsk(:,:,jn) ) |
---|
224 | tssum(:,jp_sal) = ptr_sj( zts(:,:,:,jp_sal), btmsk(:,:,jn) ) |
---|
225 | htr_btr(:,jn) = vsum * tssum(:,jp_tem) * r1_sjk(:,1,jn) |
---|
226 | str_btr(:,jn) = vsum * tssum(:,jp_sal) * r1_sjk(:,1,jn) |
---|
227 | z2d(1,:) = htr_btr(:,jn) * rc_pwatt ! (conversion in PW) |
---|
228 | DO ji = 1, jpi |
---|
229 | z2d(ji,:) = z2d(1,:) |
---|
230 | ENDDO |
---|
231 | cl1 = TRIM('sophtbtr_'//clsubb(jn)) |
---|
232 | CALL iom_put( cl1, z2d ) |
---|
233 | z2d(1,:) = str_btr(:,jn) * rc_ggram ! (conversion in Gg) |
---|
234 | DO ji = 1, jpi |
---|
235 | z2d(ji,:) = z2d(1,:) |
---|
236 | ENDDO |
---|
237 | cl1 = TRIM('sopstbtr_'//clsubb(jn)) |
---|
238 | CALL iom_put( cl1, z2d ) |
---|
239 | ENDDO |
---|
240 | ENDIF !ln_subbas |
---|
241 | ENDIF !iom_use("sopstbtr....) |
---|
242 | ! |
---|
243 | ELSE |
---|
244 | ! |
---|
245 | IF( iom_use("zotemglo") ) THEN ! i-mean i-k-surface |
---|
246 | DO jk = 1, jpkm1 |
---|
247 | DO jj = 1, jpj |
---|
248 | DO ji = 1, jpi |
---|
249 | zsfc = e1t(ji,jj) * e3t_n(ji,jj,jk) |
---|
250 | zmask(ji,jj,jk) = tmask(ji,jj,jk) * zsfc |
---|
251 | zts(ji,jj,jk,jp_tem) = tsn(ji,jj,jk,jp_tem) * zsfc |
---|
252 | zts(ji,jj,jk,jp_sal) = tsn(ji,jj,jk,jp_sal) * zsfc |
---|
253 | END DO |
---|
254 | END DO |
---|
255 | END DO |
---|
256 | DO jn = 1, nptr |
---|
257 | zmask(1,:,:) = ptr_sjk( zmask(:,:,:), btmsk(:,:,jn) ) |
---|
258 | cl1 = TRIM('zosrf'//clsubb(jn) ) |
---|
259 | CALL iom_put( cl1, zmask ) |
---|
260 | ! |
---|
261 | z3d(1,:,:) = ptr_sjk( zts(:,:,:,jp_tem), btmsk(:,:,jn) ) & |
---|
262 | & / MAX( zmask(1,:,:), 10.e-15 ) |
---|
263 | DO ji = 1, jpi |
---|
264 | z3d(ji,:,:) = z3d(1,:,:) |
---|
265 | ENDDO |
---|
266 | cl1 = TRIM('zotem'//clsubb(jn) ) |
---|
267 | CALL iom_put( cl1, z3d ) |
---|
268 | ! |
---|
269 | z3d(1,:,:) = ptr_sjk( zts(:,:,:,jp_sal), btmsk(:,:,jn) ) & |
---|
270 | & / MAX( zmask(1,:,:), 10.e-15 ) |
---|
271 | DO ji = 1, jpi |
---|
272 | z3d(ji,:,:) = z3d(1,:,:) |
---|
273 | ENDDO |
---|
274 | cl1 = TRIM('zosal'//clsubb(jn) ) |
---|
275 | CALL iom_put( cl1, z3d ) |
---|
276 | END DO |
---|
277 | ENDIF |
---|
278 | ! |
---|
279 | ! ! Advective and diffusive heat and salt transport |
---|
280 | IF( iom_use("sophtadv") .OR. iom_use("sopstadv") ) THEN |
---|
281 | z2d(1,:) = htr_adv(:,1) * rc_pwatt ! (conversion in PW) |
---|
282 | DO ji = 1, jpi |
---|
283 | z2d(ji,:) = z2d(1,:) |
---|
284 | ENDDO |
---|
285 | cl1 = 'sophtadv' |
---|
286 | CALL iom_put( TRIM(cl1), z2d ) |
---|
287 | z2d(1,:) = str_adv(:,1) * rc_ggram ! (conversion in Gg) |
---|
288 | DO ji = 1, jpi |
---|
289 | z2d(ji,:) = z2d(1,:) |
---|
290 | ENDDO |
---|
291 | cl1 = 'sopstadv' |
---|
292 | CALL iom_put( TRIM(cl1), z2d ) |
---|
293 | IF( ln_subbas ) THEN |
---|
294 | DO jn=2,nptr |
---|
295 | z2d(1,:) = htr_adv(:,jn) * rc_pwatt ! (conversion in PW) |
---|
296 | DO ji = 1, jpi |
---|
297 | z2d(ji,:) = z2d(1,:) |
---|
298 | ENDDO |
---|
299 | cl1 = TRIM('sophtadv_'//clsubb(jn)) |
---|
300 | CALL iom_put( cl1, z2d ) |
---|
301 | z2d(1,:) = str_adv(:,jn) * rc_ggram ! (conversion in Gg) |
---|
302 | DO ji = 1, jpi |
---|
303 | z2d(ji,:) = z2d(1,:) |
---|
304 | ENDDO |
---|
305 | cl1 = TRIM('sopstadv_'//clsubb(jn)) |
---|
306 | CALL iom_put( cl1, z2d ) |
---|
307 | ENDDO |
---|
308 | ENDIF |
---|
309 | ENDIF |
---|
310 | ! |
---|
311 | IF( iom_use("sophtldf") .OR. iom_use("sopstldf") ) THEN |
---|
312 | z2d(1,:) = htr_ldf(:,1) * rc_pwatt ! (conversion in PW) |
---|
313 | DO ji = 1, jpi |
---|
314 | z2d(ji,:) = z2d(1,:) |
---|
315 | ENDDO |
---|
316 | cl1 = 'sophtldf' |
---|
317 | CALL iom_put( TRIM(cl1), z2d ) |
---|
318 | z2d(1,:) = str_ldf(:,1) * rc_ggram ! (conversion in Gg) |
---|
319 | DO ji = 1, jpi |
---|
320 | z2d(ji,:) = z2d(1,:) |
---|
321 | ENDDO |
---|
322 | cl1 = 'sopstldf' |
---|
323 | CALL iom_put( TRIM(cl1), z2d ) |
---|
324 | IF( ln_subbas ) THEN |
---|
325 | DO jn=2,nptr |
---|
326 | z2d(1,:) = htr_ldf(:,jn) * rc_pwatt ! (conversion in PW) |
---|
327 | DO ji = 1, jpi |
---|
328 | z2d(ji,:) = z2d(1,:) |
---|
329 | ENDDO |
---|
330 | cl1 = TRIM('sophtldf_'//clsubb(jn)) |
---|
331 | CALL iom_put( cl1, z2d ) |
---|
332 | z2d(1,:) = str_ldf(:,jn) * rc_ggram ! (conversion in Gg) |
---|
333 | DO ji = 1, jpi |
---|
334 | z2d(ji,:) = z2d(1,:) |
---|
335 | ENDDO |
---|
336 | cl1 = TRIM('sopstldf_'//clsubb(jn)) |
---|
337 | CALL iom_put( cl1, z2d ) |
---|
338 | ENDDO |
---|
339 | ENDIF |
---|
340 | ENDIF |
---|
341 | |
---|
342 | IF( iom_use("sophteiv") .OR. iom_use("sopsteiv") ) THEN |
---|
343 | z2d(1,:) = htr_eiv(:,1) * rc_pwatt ! (conversion in PW) |
---|
344 | DO ji = 1, jpi |
---|
345 | z2d(ji,:) = z2d(1,:) |
---|
346 | ENDDO |
---|
347 | cl1 = 'sophteiv' |
---|
348 | CALL iom_put( TRIM(cl1), z2d ) |
---|
349 | z2d(1,:) = str_eiv(:,1) * rc_ggram ! (conversion in Gg) |
---|
350 | DO ji = 1, jpi |
---|
351 | z2d(ji,:) = z2d(1,:) |
---|
352 | ENDDO |
---|
353 | cl1 = 'sopsteiv' |
---|
354 | CALL iom_put( TRIM(cl1), z2d ) |
---|
355 | IF( ln_subbas ) THEN |
---|
356 | DO jn=2,nptr |
---|
357 | z2d(1,:) = htr_eiv(:,jn) * rc_pwatt ! (conversion in PW) |
---|
358 | DO ji = 1, jpi |
---|
359 | z2d(ji,:) = z2d(1,:) |
---|
360 | ENDDO |
---|
361 | cl1 = TRIM('sophteiv_'//clsubb(jn)) |
---|
362 | CALL iom_put( cl1, z2d ) |
---|
363 | z2d(1,:) = str_eiv(:,jn) * rc_ggram ! (conversion in Gg) |
---|
364 | DO ji = 1, jpi |
---|
365 | z2d(ji,:) = z2d(1,:) |
---|
366 | ENDDO |
---|
367 | cl1 = TRIM('sopsteiv_'//clsubb(jn)) |
---|
368 | CALL iom_put( cl1, z2d ) |
---|
369 | ENDDO |
---|
370 | ENDIF |
---|
371 | ENDIF |
---|
372 | ! |
---|
373 | ENDIF |
---|
374 | ! |
---|
375 | IF( ln_timing ) CALL timing_stop('dia_ptr') |
---|
376 | ! |
---|
377 | END SUBROUTINE dia_ptr |
---|
378 | |
---|
379 | |
---|
380 | SUBROUTINE dia_ptr_init |
---|
381 | !!---------------------------------------------------------------------- |
---|
382 | !! *** ROUTINE dia_ptr_init *** |
---|
383 | !! |
---|
384 | !! ** Purpose : Initialization, namelist read |
---|
385 | !!---------------------------------------------------------------------- |
---|
386 | INTEGER :: jn ! local integers |
---|
387 | INTEGER :: inum, ierr ! local integers |
---|
388 | INTEGER :: ios ! Local integer output status for namelist read |
---|
389 | !! |
---|
390 | NAMELIST/namptr/ ln_diaptr, ln_subbas |
---|
391 | !!---------------------------------------------------------------------- |
---|
392 | |
---|
393 | REWIND( numnam_ref ) ! Namelist namptr in reference namelist : Poleward transport |
---|
394 | READ ( numnam_ref, namptr, IOSTAT = ios, ERR = 901) |
---|
395 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namptr in reference namelist' ) |
---|
396 | |
---|
397 | REWIND( numnam_cfg ) ! Namelist namptr in configuration namelist : Poleward transport |
---|
398 | READ ( numnam_cfg, namptr, IOSTAT = ios, ERR = 902 ) |
---|
399 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namptr in configuration namelist' ) |
---|
400 | IF(lwm) WRITE ( numond, namptr ) |
---|
401 | |
---|
402 | IF(lwp) THEN ! Control print |
---|
403 | WRITE(numout,*) |
---|
404 | WRITE(numout,*) 'dia_ptr_init : poleward transport and msf initialization' |
---|
405 | WRITE(numout,*) '~~~~~~~~~~~~' |
---|
406 | WRITE(numout,*) ' Namelist namptr : set ptr parameters' |
---|
407 | WRITE(numout,*) ' Poleward heat & salt transport (T) or not (F) ln_diaptr = ', ln_diaptr |
---|
408 | WRITE(numout,*) ' Global (F) or glo/Atl/Pac/Ind/Indo-Pac basins ln_subbas = ', ln_subbas |
---|
409 | ENDIF |
---|
410 | |
---|
411 | IF( ln_diaptr ) THEN |
---|
412 | ! |
---|
413 | IF( ln_subbas ) THEN |
---|
414 | nptr = 5 ! Global, Atlantic, Pacific, Indian, Indo-Pacific |
---|
415 | ALLOCATE( clsubb(nptr) ) |
---|
416 | clsubb(1) = 'glo' ; clsubb(2) = 'atl' ; clsubb(3) = 'pac' ; clsubb(4) = 'ind' ; clsubb(5) = 'ipc' |
---|
417 | ELSE |
---|
418 | nptr = 1 ! Global only |
---|
419 | ALLOCATE( clsubb(nptr) ) |
---|
420 | clsubb(1) = 'glo' |
---|
421 | ENDIF |
---|
422 | |
---|
423 | ! ! allocate dia_ptr arrays |
---|
424 | IF( dia_ptr_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'dia_ptr_init : unable to allocate arrays' ) |
---|
425 | |
---|
426 | rc_pwatt = rc_pwatt * rau0_rcp ! conversion from K.s-1 to PetaWatt |
---|
427 | |
---|
428 | IF( lk_mpp ) CALL mpp_ini_znl( numout ) ! Define MPI communicator for zonal sum |
---|
429 | |
---|
430 | IF( ln_subbas ) THEN ! load sub-basin mask |
---|
431 | CALL iom_open( 'subbasins', inum, ldstop = .FALSE. ) |
---|
432 | CALL iom_get( inum, jpdom_data, 'atlmsk', btmsk(:,:,2) ) ! Atlantic basin |
---|
433 | CALL iom_get( inum, jpdom_data, 'pacmsk', btmsk(:,:,3) ) ! Pacific basin |
---|
434 | CALL iom_get( inum, jpdom_data, 'indmsk', btmsk(:,:,4) ) ! Indian basin |
---|
435 | CALL iom_close( inum ) |
---|
436 | btmsk(:,:,5) = MAX ( btmsk(:,:,3), btmsk(:,:,4) ) ! Indo-Pacific basin |
---|
437 | WHERE( gphit(:,:) < -30._wp) ; btm30(:,:) = 0._wp ! mask out Southern Ocean |
---|
438 | ELSE WHERE ; btm30(:,:) = ssmask(:,:) |
---|
439 | END WHERE |
---|
440 | ENDIF |
---|
441 | |
---|
442 | btmsk(:,:,1) = tmask_i(:,:) ! global ocean |
---|
443 | |
---|
444 | DO jn = 1, nptr |
---|
445 | btmsk(:,:,jn) = btmsk(:,:,jn) * tmask_i(:,:) ! interior domain only |
---|
446 | END DO |
---|
447 | |
---|
448 | ! Initialise arrays to zero because diatpr is called before they are first calculated |
---|
449 | ! Note that this means diagnostics will not be exactly correct when model run is restarted. |
---|
450 | htr_adv(:,:) = 0._wp ; str_adv(:,:) = 0._wp |
---|
451 | htr_ldf(:,:) = 0._wp ; str_ldf(:,:) = 0._wp |
---|
452 | htr_eiv(:,:) = 0._wp ; str_eiv(:,:) = 0._wp |
---|
453 | htr_ove(:,:) = 0._wp ; str_ove(:,:) = 0._wp |
---|
454 | htr_btr(:,:) = 0._wp ; str_btr(:,:) = 0._wp |
---|
455 | ! |
---|
456 | ENDIF |
---|
457 | ! |
---|
458 | END SUBROUTINE dia_ptr_init |
---|
459 | |
---|
460 | |
---|
461 | SUBROUTINE dia_ptr_hst( ktra, cptr, pva ) |
---|
462 | !!---------------------------------------------------------------------- |
---|
463 | !! *** ROUTINE dia_ptr_hst *** |
---|
464 | !!---------------------------------------------------------------------- |
---|
465 | !! Wrapper for heat and salt transport calculations to calculate them for each basin |
---|
466 | !! Called from all advection and/or diffusion routines |
---|
467 | !!---------------------------------------------------------------------- |
---|
468 | INTEGER , INTENT(in ) :: ktra ! tracer index |
---|
469 | CHARACTER(len=3) , INTENT(in) :: cptr ! transport type 'adv'/'ldf'/'eiv' |
---|
470 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(in) :: pva ! 3D input array of advection/diffusion |
---|
471 | INTEGER :: jn ! |
---|
472 | |
---|
473 | IF( cptr == 'adv' ) THEN |
---|
474 | IF( ktra == jp_tem ) htr_adv(:,1) = ptr_sj( pva(:,:,:) ) |
---|
475 | IF( ktra == jp_sal ) str_adv(:,1) = ptr_sj( pva(:,:,:) ) |
---|
476 | ENDIF |
---|
477 | IF( cptr == 'ldf' ) THEN |
---|
478 | IF( ktra == jp_tem ) htr_ldf(:,1) = ptr_sj( pva(:,:,:) ) |
---|
479 | IF( ktra == jp_sal ) str_ldf(:,1) = ptr_sj( pva(:,:,:) ) |
---|
480 | ENDIF |
---|
481 | IF( cptr == 'eiv' ) THEN |
---|
482 | IF( ktra == jp_tem ) htr_eiv(:,1) = ptr_sj( pva(:,:,:) ) |
---|
483 | IF( ktra == jp_sal ) str_eiv(:,1) = ptr_sj( pva(:,:,:) ) |
---|
484 | ENDIF |
---|
485 | ! |
---|
486 | IF( ln_subbas ) THEN |
---|
487 | ! |
---|
488 | IF( cptr == 'adv' ) THEN |
---|
489 | IF( ktra == jp_tem ) THEN |
---|
490 | DO jn = 2, nptr |
---|
491 | htr_adv(:,jn) = ptr_sj( pva(:,:,:), btmsk(:,:,jn) ) |
---|
492 | END DO |
---|
493 | ENDIF |
---|
494 | IF( ktra == jp_sal ) THEN |
---|
495 | DO jn = 2, nptr |
---|
496 | str_adv(:,jn) = ptr_sj( pva(:,:,:), btmsk(:,:,jn) ) |
---|
497 | END DO |
---|
498 | ENDIF |
---|
499 | ENDIF |
---|
500 | IF( cptr == 'ldf' ) THEN |
---|
501 | IF( ktra == jp_tem ) THEN |
---|
502 | DO jn = 2, nptr |
---|
503 | htr_ldf(:,jn) = ptr_sj( pva(:,:,:), btmsk(:,:,jn) ) |
---|
504 | END DO |
---|
505 | ENDIF |
---|
506 | IF( ktra == jp_sal ) THEN |
---|
507 | DO jn = 2, nptr |
---|
508 | str_ldf(:,jn) = ptr_sj( pva(:,:,:), btmsk(:,:,jn) ) |
---|
509 | END DO |
---|
510 | ENDIF |
---|
511 | ENDIF |
---|
512 | IF( cptr == 'eiv' ) THEN |
---|
513 | IF( ktra == jp_tem ) THEN |
---|
514 | DO jn = 2, nptr |
---|
515 | htr_eiv(:,jn) = ptr_sj( pva(:,:,:), btmsk(:,:,jn) ) |
---|
516 | END DO |
---|
517 | ENDIF |
---|
518 | IF( ktra == jp_sal ) THEN |
---|
519 | DO jn = 2, nptr |
---|
520 | str_eiv(:,jn) = ptr_sj( pva(:,:,:), btmsk(:,:,jn) ) |
---|
521 | END DO |
---|
522 | ENDIF |
---|
523 | ENDIF |
---|
524 | ! |
---|
525 | ENDIF |
---|
526 | END SUBROUTINE dia_ptr_hst |
---|
527 | |
---|
528 | |
---|
529 | FUNCTION dia_ptr_alloc() |
---|
530 | !!---------------------------------------------------------------------- |
---|
531 | !! *** ROUTINE dia_ptr_alloc *** |
---|
532 | !!---------------------------------------------------------------------- |
---|
533 | INTEGER :: dia_ptr_alloc ! return value |
---|
534 | INTEGER, DIMENSION(3) :: ierr |
---|
535 | !!---------------------------------------------------------------------- |
---|
536 | ierr(:) = 0 |
---|
537 | ! |
---|
538 | ALLOCATE( btmsk(jpi,jpj,nptr) , & |
---|
539 | & htr_adv(jpj,nptr) , str_adv(jpj,nptr) , & |
---|
540 | & htr_eiv(jpj,nptr) , str_eiv(jpj,nptr) , & |
---|
541 | & htr_ove(jpj,nptr) , str_ove(jpj,nptr) , & |
---|
542 | & htr_btr(jpj,nptr) , str_btr(jpj,nptr) , & |
---|
543 | & htr_ldf(jpj,nptr) , str_ldf(jpj,nptr) , STAT=ierr(1) ) |
---|
544 | ! |
---|
545 | ALLOCATE( p_fval1d(jpj), p_fval2d(jpj,jpk), Stat=ierr(2)) |
---|
546 | ! |
---|
547 | ALLOCATE( btm30(jpi,jpj), STAT=ierr(3) ) |
---|
548 | |
---|
549 | ! |
---|
550 | dia_ptr_alloc = MAXVAL( ierr ) |
---|
551 | CALL mpp_sum( 'diaptr', dia_ptr_alloc ) |
---|
552 | ! |
---|
553 | END FUNCTION dia_ptr_alloc |
---|
554 | |
---|
555 | |
---|
556 | FUNCTION ptr_sj_3d( pva, pmsk ) RESULT ( p_fval ) |
---|
557 | !!---------------------------------------------------------------------- |
---|
558 | !! *** ROUTINE ptr_sj_3d *** |
---|
559 | !! |
---|
560 | !! ** Purpose : i-k sum computation of a j-flux array |
---|
561 | !! |
---|
562 | !! ** Method : - i-k sum of pva using the interior 2D vmask (vmask_i). |
---|
563 | !! pva is supposed to be a masked flux (i.e. * vmask*e1v*e3v) |
---|
564 | !! |
---|
565 | !! ** Action : - p_fval: i-k-mean poleward flux of pva |
---|
566 | !!---------------------------------------------------------------------- |
---|
567 | REAL(wp), INTENT(in), DIMENSION(jpi,jpj,jpk) :: pva ! mask flux array at V-point |
---|
568 | REAL(wp), INTENT(in), DIMENSION(jpi,jpj), OPTIONAL :: pmsk ! Optional 2D basin mask |
---|
569 | ! |
---|
570 | INTEGER :: ji, jj, jk ! dummy loop arguments |
---|
571 | INTEGER :: ijpj ! ??? |
---|
572 | REAL(wp), POINTER, DIMENSION(:) :: p_fval ! function value |
---|
573 | !!-------------------------------------------------------------------- |
---|
574 | ! |
---|
575 | p_fval => p_fval1d |
---|
576 | |
---|
577 | ijpj = jpj |
---|
578 | p_fval(:) = 0._wp |
---|
579 | IF( PRESENT( pmsk ) ) THEN |
---|
580 | DO jk = 1, jpkm1 |
---|
581 | DO jj = 2, jpjm1 |
---|
582 | DO ji = fs_2, fs_jpim1 ! Vector opt. |
---|
583 | p_fval(jj) = p_fval(jj) + pva(ji,jj,jk) * tmask_i(ji,jj) * pmsk(ji,jj) |
---|
584 | END DO |
---|
585 | END DO |
---|
586 | END DO |
---|
587 | ELSE |
---|
588 | DO jk = 1, jpkm1 |
---|
589 | DO jj = 2, jpjm1 |
---|
590 | DO ji = fs_2, fs_jpim1 ! Vector opt. |
---|
591 | p_fval(jj) = p_fval(jj) + pva(ji,jj,jk) * tmask_i(ji,jj) |
---|
592 | END DO |
---|
593 | END DO |
---|
594 | END DO |
---|
595 | ENDIF |
---|
596 | #if defined key_mpp_mpi |
---|
597 | CALL mpp_sum( 'diaptr', p_fval, ijpj, ncomm_znl) |
---|
598 | #endif |
---|
599 | ! |
---|
600 | END FUNCTION ptr_sj_3d |
---|
601 | |
---|
602 | |
---|
603 | FUNCTION ptr_sj_2d( pva, pmsk ) RESULT ( p_fval ) |
---|
604 | !!---------------------------------------------------------------------- |
---|
605 | !! *** ROUTINE ptr_sj_2d *** |
---|
606 | !! |
---|
607 | !! ** Purpose : "zonal" and vertical sum computation of a i-flux array |
---|
608 | !! |
---|
609 | !! ** Method : - i-k sum of pva using the interior 2D vmask (vmask_i). |
---|
610 | !! pva is supposed to be a masked flux (i.e. * vmask*e1v*e3v) |
---|
611 | !! |
---|
612 | !! ** Action : - p_fval: i-k-mean poleward flux of pva |
---|
613 | !!---------------------------------------------------------------------- |
---|
614 | REAL(wp) , INTENT(in), DIMENSION(jpi,jpj) :: pva ! mask flux array at V-point |
---|
615 | REAL(wp) , INTENT(in), DIMENSION(jpi,jpj), OPTIONAL :: pmsk ! Optional 2D basin mask |
---|
616 | ! |
---|
617 | INTEGER :: ji,jj ! dummy loop arguments |
---|
618 | INTEGER :: ijpj ! ??? |
---|
619 | REAL(wp), POINTER, DIMENSION(:) :: p_fval ! function value |
---|
620 | !!-------------------------------------------------------------------- |
---|
621 | ! |
---|
622 | p_fval => p_fval1d |
---|
623 | |
---|
624 | ijpj = jpj |
---|
625 | p_fval(:) = 0._wp |
---|
626 | IF( PRESENT( pmsk ) ) THEN |
---|
627 | DO jj = 2, jpjm1 |
---|
628 | DO ji = nldi, nlei ! No vector optimisation here. Better use a mask ? |
---|
629 | p_fval(jj) = p_fval(jj) + pva(ji,jj) * tmask_i(ji,jj) * pmsk(ji,jj) |
---|
630 | END DO |
---|
631 | END DO |
---|
632 | ELSE |
---|
633 | DO jj = 2, jpjm1 |
---|
634 | DO ji = nldi, nlei ! No vector optimisation here. Better use a mask ? |
---|
635 | p_fval(jj) = p_fval(jj) + pva(ji,jj) * tmask_i(ji,jj) |
---|
636 | END DO |
---|
637 | END DO |
---|
638 | ENDIF |
---|
639 | #if defined key_mpp_mpi |
---|
640 | CALL mpp_sum( 'diaptr', p_fval, ijpj, ncomm_znl ) |
---|
641 | #endif |
---|
642 | ! |
---|
643 | END FUNCTION ptr_sj_2d |
---|
644 | |
---|
645 | |
---|
646 | FUNCTION ptr_sjk( pta, pmsk ) RESULT ( p_fval ) |
---|
647 | !!---------------------------------------------------------------------- |
---|
648 | !! *** ROUTINE ptr_sjk *** |
---|
649 | !! |
---|
650 | !! ** Purpose : i-sum computation of an array |
---|
651 | !! |
---|
652 | !! ** Method : - i-sum of pva using the interior 2D vmask (vmask_i). |
---|
653 | !! |
---|
654 | !! ** Action : - p_fval: i-mean poleward flux of pva |
---|
655 | !!---------------------------------------------------------------------- |
---|
656 | !! |
---|
657 | IMPLICIT none |
---|
658 | REAL(wp) , INTENT(in), DIMENSION(jpi,jpj,jpk) :: pta ! mask flux array at V-point |
---|
659 | REAL(wp) , INTENT(in), DIMENSION(jpi,jpj) , OPTIONAL :: pmsk ! Optional 2D basin mask |
---|
660 | !! |
---|
661 | INTEGER :: ji, jj, jk ! dummy loop arguments |
---|
662 | REAL(wp), POINTER, DIMENSION(:,:) :: p_fval ! return function value |
---|
663 | #if defined key_mpp_mpi |
---|
664 | INTEGER, DIMENSION(1) :: ish |
---|
665 | INTEGER, DIMENSION(2) :: ish2 |
---|
666 | INTEGER :: ijpjjpk |
---|
667 | REAL(wp), DIMENSION(jpj*jpk) :: zwork ! mask flux array at V-point |
---|
668 | #endif |
---|
669 | !!-------------------------------------------------------------------- |
---|
670 | ! |
---|
671 | p_fval => p_fval2d |
---|
672 | |
---|
673 | p_fval(:,:) = 0._wp |
---|
674 | ! |
---|
675 | IF( PRESENT( pmsk ) ) THEN |
---|
676 | DO jk = 1, jpkm1 |
---|
677 | DO jj = 2, jpjm1 |
---|
678 | !!gm here, use of tmask_i ==> no need of loop over nldi, nlei.... |
---|
679 | DO ji = nldi, nlei ! No vector optimisation here. Better use a mask ? |
---|
680 | p_fval(jj,jk) = p_fval(jj,jk) + pta(ji,jj,jk) * pmsk(ji,jj) |
---|
681 | END DO |
---|
682 | END DO |
---|
683 | END DO |
---|
684 | ELSE |
---|
685 | DO jk = 1, jpkm1 |
---|
686 | DO jj = 2, jpjm1 |
---|
687 | DO ji = nldi, nlei ! No vector optimisation here. Better use a mask ? |
---|
688 | p_fval(jj,jk) = p_fval(jj,jk) + pta(ji,jj,jk) * tmask_i(ji,jj) |
---|
689 | END DO |
---|
690 | END DO |
---|
691 | END DO |
---|
692 | END IF |
---|
693 | ! |
---|
694 | #if defined key_mpp_mpi |
---|
695 | ijpjjpk = jpj*jpk |
---|
696 | ish(1) = ijpjjpk ; ish2(1) = jpj ; ish2(2) = jpk |
---|
697 | zwork(1:ijpjjpk) = RESHAPE( p_fval, ish ) |
---|
698 | CALL mpp_sum( 'diaptr', zwork, ijpjjpk, ncomm_znl ) |
---|
699 | p_fval(:,:) = RESHAPE( zwork, ish2 ) |
---|
700 | #endif |
---|
701 | ! |
---|
702 | END FUNCTION ptr_sjk |
---|
703 | |
---|
704 | |
---|
705 | !!====================================================================== |
---|
706 | END MODULE diaptr |
---|