1 | MODULE diawri |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE diawri *** |
---|
4 | !! Ocean diagnostics : write ocean output files |
---|
5 | !!===================================================================== |
---|
6 | !! History : OPA ! 1991-03 (M.-A. Foujols) Original code |
---|
7 | !! 4.0 ! 1991-11 (G. Madec) |
---|
8 | !! ! 1992-06 (M. Imbard) correction restart file |
---|
9 | !! ! 1992-07 (M. Imbard) split into diawri and rstwri |
---|
10 | !! ! 1993-03 (M. Imbard) suppress writibm |
---|
11 | !! ! 1998-01 (C. Levy) NETCDF format using ioipsl INTERFACE |
---|
12 | !! ! 1999-02 (E. Guilyardi) name of netCDF files + variables |
---|
13 | !! 8.2 ! 2000-06 (M. Imbard) Original code (diabort.F) |
---|
14 | !! NEMO 1.0 ! 2002-06 (A.Bozec, E. Durand) Original code (diainit.F) |
---|
15 | !! - ! 2002-09 (G. Madec) F90: Free form and module |
---|
16 | !! - ! 2002-12 (G. Madec) merge of diabort and diainit, F90 |
---|
17 | !! ! 2005-11 (V. Garnier) Surface pressure gradient organization |
---|
18 | !! 3.2 ! 2008-11 (B. Lemaire) creation from old diawri |
---|
19 | !! 3.7 ! 2014-01 (G. Madec) remove eddy induced velocity from no-IOM output |
---|
20 | !! ! change name of output variables in dia_wri_state |
---|
21 | !! 4.0 ! 2020-10 (A. Nasser, S. Techene) add diagnostic for SWE |
---|
22 | !!---------------------------------------------------------------------- |
---|
23 | |
---|
24 | !!---------------------------------------------------------------------- |
---|
25 | !! dia_wri : create the standart output files |
---|
26 | !! dia_wri_state : create an output NetCDF file for a single instantaeous ocean state and forcing fields |
---|
27 | !!---------------------------------------------------------------------- |
---|
28 | USE oce ! ocean dynamics and tracers |
---|
29 | USE isf_oce |
---|
30 | USE isfcpl |
---|
31 | USE abl ! abl variables in case ln_abl = .true. |
---|
32 | USE dom_oce ! ocean space and time domain |
---|
33 | USE phycst ! physical constants |
---|
34 | USE dianam ! build name of file (routine) |
---|
35 | USE diahth ! thermocline diagnostics |
---|
36 | USE dynadv , ONLY: ln_dynadv_vec |
---|
37 | USE icb_oce ! Icebergs |
---|
38 | USE icbdia ! Iceberg budgets |
---|
39 | USE ldftra ! lateral physics: eddy diffusivity coef. |
---|
40 | USE ldfdyn ! lateral physics: eddy viscosity coef. |
---|
41 | USE sbc_oce ! Surface boundary condition: ocean fields |
---|
42 | USE sbc_ice ! Surface boundary condition: ice fields |
---|
43 | USE sbcssr ! restoring term toward SST/SSS climatology |
---|
44 | USE sbcwave ! wave parameters |
---|
45 | USE wet_dry ! wetting and drying |
---|
46 | USE zdf_oce ! ocean vertical physics |
---|
47 | USE zdfdrg ! ocean vertical physics: top/bottom friction |
---|
48 | USE zdfmxl ! mixed layer |
---|
49 | USE zdfosm ! mixed layer |
---|
50 | ! |
---|
51 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
52 | USE in_out_manager ! I/O manager |
---|
53 | USE dia25h ! 25h Mean output |
---|
54 | USE iom ! |
---|
55 | USE ioipsl ! |
---|
56 | |
---|
57 | #if defined key_si3 |
---|
58 | USE ice |
---|
59 | USE icewri |
---|
60 | #endif |
---|
61 | USE lib_mpp ! MPP library |
---|
62 | USE timing ! preformance summary |
---|
63 | USE diu_bulk ! diurnal warm layer |
---|
64 | USE diu_coolskin ! Cool skin |
---|
65 | |
---|
66 | IMPLICIT NONE |
---|
67 | PRIVATE |
---|
68 | |
---|
69 | PUBLIC dia_wri ! routines called by step.F90 |
---|
70 | PUBLIC dia_wri_state |
---|
71 | PUBLIC dia_wri_alloc ! Called by nemogcm module |
---|
72 | #if ! defined key_iomput |
---|
73 | PUBLIC dia_wri_alloc_abl ! Called by sbcabl module (if ln_abl = .true.) |
---|
74 | #endif |
---|
75 | INTEGER :: nid_T, nz_T, nh_T, ndim_T, ndim_hT ! grid_T file |
---|
76 | INTEGER :: nb_T , ndim_bT ! grid_T file |
---|
77 | INTEGER :: nid_U, nz_U, nh_U, ndim_U, ndim_hU ! grid_U file |
---|
78 | INTEGER :: nid_V, nz_V, nh_V, ndim_V, ndim_hV ! grid_V file |
---|
79 | INTEGER :: nid_W, nz_W, nh_W ! grid_W file |
---|
80 | INTEGER :: nid_A, nz_A, nh_A, ndim_A, ndim_hA ! grid_ABL file |
---|
81 | INTEGER :: ndex(1) ! ??? |
---|
82 | INTEGER, SAVE, ALLOCATABLE, DIMENSION(:) :: ndex_hT, ndex_hU, ndex_hV |
---|
83 | INTEGER, SAVE, ALLOCATABLE, DIMENSION(:) :: ndex_hA, ndex_A ! ABL |
---|
84 | INTEGER, SAVE, ALLOCATABLE, DIMENSION(:) :: ndex_T, ndex_U, ndex_V |
---|
85 | INTEGER, SAVE, ALLOCATABLE, DIMENSION(:) :: ndex_bT |
---|
86 | |
---|
87 | !! * Substitutions |
---|
88 | # include "do_loop_substitute.h90" |
---|
89 | # include "domzgr_substitute.h90" |
---|
90 | !!---------------------------------------------------------------------- |
---|
91 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
92 | !! $Id$ |
---|
93 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
94 | !!---------------------------------------------------------------------- |
---|
95 | CONTAINS |
---|
96 | |
---|
97 | #if defined key_iomput |
---|
98 | !!---------------------------------------------------------------------- |
---|
99 | !! 'key_iomput' use IOM library |
---|
100 | !!---------------------------------------------------------------------- |
---|
101 | INTEGER FUNCTION dia_wri_alloc() |
---|
102 | ! |
---|
103 | dia_wri_alloc = 0 |
---|
104 | ! |
---|
105 | END FUNCTION dia_wri_alloc |
---|
106 | |
---|
107 | |
---|
108 | SUBROUTINE dia_wri( kt, Kmm ) |
---|
109 | !!--------------------------------------------------------------------- |
---|
110 | !! *** ROUTINE dia_wri *** |
---|
111 | !! |
---|
112 | !! ** Purpose : Standard output of opa: dynamics and tracer fields |
---|
113 | !! NETCDF format is used by default |
---|
114 | !! |
---|
115 | !! ** Method : use iom_put |
---|
116 | !!---------------------------------------------------------------------- |
---|
117 | INTEGER, INTENT( in ) :: kt ! ocean time-step index |
---|
118 | INTEGER, INTENT( in ) :: Kmm ! ocean time level index |
---|
119 | !! |
---|
120 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
121 | INTEGER :: ikbot ! local integer |
---|
122 | REAL(wp):: zztmp , zztmpx ! local scalar |
---|
123 | REAL(wp):: zztmp2, zztmpy ! - - |
---|
124 | REAL(wp):: ze3 |
---|
125 | REAL(wp), DIMENSION(jpi,jpj) :: z2d ! 2D workspace |
---|
126 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: z3d ! 3D workspace |
---|
127 | !!---------------------------------------------------------------------- |
---|
128 | ! |
---|
129 | IF( ln_timing ) CALL timing_start('dia_wri') |
---|
130 | ! |
---|
131 | ! Output the initial state and forcings |
---|
132 | IF( ninist == 1 ) THEN |
---|
133 | CALL dia_wri_state( Kmm, 'output.init' ) |
---|
134 | ninist = 0 |
---|
135 | ENDIF |
---|
136 | |
---|
137 | ! Output of initial vertical scale factor |
---|
138 | CALL iom_put("e3t_0", e3t_0(:,:,:) ) |
---|
139 | CALL iom_put("e3u_0", e3u_0(:,:,:) ) |
---|
140 | CALL iom_put("e3v_0", e3v_0(:,:,:) ) |
---|
141 | CALL iom_put("e3f_0", e3f_0(:,:,:) ) |
---|
142 | ! |
---|
143 | IF ( iom_use("tpt_dep") ) THEN |
---|
144 | DO jk = 1, jpk |
---|
145 | z3d(:,:,jk) = gdept(:,:,jk,Kmm) |
---|
146 | END DO |
---|
147 | CALL iom_put( "tpt_dep", z3d(:,:,:) ) |
---|
148 | ENDIF |
---|
149 | |
---|
150 | IF ( iom_use("e3t") .OR. iom_use("e3tdef") ) THEN ! time-varying e3t |
---|
151 | DO jk = 1, jpk |
---|
152 | z3d(:,:,jk) = e3t(:,:,jk,Kmm) |
---|
153 | END DO |
---|
154 | CALL iom_put( "e3t" , z3d(:,:,:) ) |
---|
155 | CALL iom_put( "e3tdef" , ( ( z3d(:,:,:) - e3t_0(:,:,:) ) / e3t_0(:,:,:) * 100 * tmask(:,:,:) ) ** 2 ) |
---|
156 | ENDIF |
---|
157 | IF ( iom_use("e3u") ) THEN ! time-varying e3u |
---|
158 | DO jk = 1, jpk |
---|
159 | z3d(:,:,jk) = e3u(:,:,jk,Kmm) |
---|
160 | END DO |
---|
161 | CALL iom_put( "e3u" , z3d(:,:,:) ) |
---|
162 | ENDIF |
---|
163 | IF ( iom_use("e3v") ) THEN ! time-varying e3v |
---|
164 | DO jk = 1, jpk |
---|
165 | z3d(:,:,jk) = e3v(:,:,jk,Kmm) |
---|
166 | END DO |
---|
167 | CALL iom_put( "e3v" , z3d(:,:,:) ) |
---|
168 | ENDIF |
---|
169 | IF ( iom_use("e3w") ) THEN ! time-varying e3w |
---|
170 | DO jk = 1, jpk |
---|
171 | z3d(:,:,jk) = e3w(:,:,jk,Kmm) |
---|
172 | END DO |
---|
173 | CALL iom_put( "e3w" , z3d(:,:,:) ) |
---|
174 | ENDIF |
---|
175 | IF ( iom_use("e3f") ) THEN ! time-varying e3f caution here at Kaa |
---|
176 | DO jk = 1, jpk |
---|
177 | z3d(:,:,jk) = e3f(:,:,jk) |
---|
178 | END DO |
---|
179 | CALL iom_put( "e3f" , z3d(:,:,:) ) |
---|
180 | ENDIF |
---|
181 | |
---|
182 | IF( ll_wd ) THEN ! sea surface height (brought back to the reference used for wetting and drying) |
---|
183 | CALL iom_put( "ssh" , (ssh(:,:,Kmm)+ssh_ref)*ssmask(:,:) ) |
---|
184 | ELSE |
---|
185 | CALL iom_put( "ssh" , ssh(:,:,Kmm) ) ! sea surface height |
---|
186 | ENDIF |
---|
187 | |
---|
188 | IF( iom_use("wetdep") ) CALL iom_put( "wetdep" , ht_0(:,:) + ssh(:,:,Kmm) ) ! wet depth |
---|
189 | |
---|
190 | #if defined key_qco |
---|
191 | IF( iom_use("ht") ) CALL iom_put( "ht" , ht(:,:) ) ! water column at t-point |
---|
192 | IF( iom_use("hu") ) CALL iom_put( "hu" , hu(:,:,Kmm) ) ! water column at u-point |
---|
193 | IF( iom_use("hv") ) CALL iom_put( "hv" , hv(:,:,Kmm) ) ! water column at v-point |
---|
194 | IF( iom_use("hf") ) CALL iom_put( "hf" , hf_0(:,:)*( 1._wp + r3f(:,:) ) ) ! water column at f-point (caution here at Naa) |
---|
195 | #endif |
---|
196 | |
---|
197 | CALL iom_put( "toce", ts(:,:,:,jp_tem,Kmm) ) ! 3D temperature |
---|
198 | CALL iom_put( "sst", ts(:,:,1,jp_tem,Kmm) ) ! surface temperature |
---|
199 | IF ( iom_use("sbt") ) THEN |
---|
200 | DO_2D( 0, 0, 0, 0 ) |
---|
201 | ikbot = mbkt(ji,jj) |
---|
202 | z2d(ji,jj) = ts(ji,jj,ikbot,jp_tem,Kmm) |
---|
203 | END_2D |
---|
204 | CALL iom_put( "sbt", z2d ) ! bottom temperature |
---|
205 | ENDIF |
---|
206 | |
---|
207 | CALL iom_put( "soce", ts(:,:,:,jp_sal,Kmm) ) ! 3D salinity |
---|
208 | CALL iom_put( "sss", ts(:,:,1,jp_sal,Kmm) ) ! surface salinity |
---|
209 | IF ( iom_use("sbs") ) THEN |
---|
210 | DO_2D( 0, 0, 0, 0 ) |
---|
211 | ikbot = mbkt(ji,jj) |
---|
212 | z2d(ji,jj) = ts(ji,jj,ikbot,jp_sal,Kmm) |
---|
213 | END_2D |
---|
214 | CALL iom_put( "sbs", z2d ) ! bottom salinity |
---|
215 | ENDIF |
---|
216 | |
---|
217 | IF( .NOT.lk_SWE ) CALL iom_put( "rhop", rhop(:,:,:) ) ! 3D potential density (sigma0) |
---|
218 | |
---|
219 | IF ( iom_use("taubot") ) THEN ! bottom stress |
---|
220 | zztmp = rho0 * 0.25 |
---|
221 | z2d(:,:) = 0._wp |
---|
222 | DO_2D( 0, 0, 0, 0 ) |
---|
223 | zztmp2 = ( ( rCdU_bot(ji+1,jj)+rCdU_bot(ji ,jj) ) * uu(ji ,jj,mbku(ji ,jj),Kmm) )**2 & |
---|
224 | & + ( ( rCdU_bot(ji ,jj)+rCdU_bot(ji-1,jj) ) * uu(ji-1,jj,mbku(ji-1,jj),Kmm) )**2 & |
---|
225 | & + ( ( rCdU_bot(ji,jj+1)+rCdU_bot(ji,jj ) ) * vv(ji,jj ,mbkv(ji,jj ),Kmm) )**2 & |
---|
226 | & + ( ( rCdU_bot(ji,jj )+rCdU_bot(ji,jj-1) ) * vv(ji,jj-1,mbkv(ji,jj-1),Kmm) )**2 |
---|
227 | z2d(ji,jj) = zztmp * SQRT( zztmp2 ) * tmask(ji,jj,1) |
---|
228 | ! |
---|
229 | END_2D |
---|
230 | CALL iom_put( "taubot", z2d ) |
---|
231 | ENDIF |
---|
232 | |
---|
233 | CALL iom_put( "uoce", uu(:,:,:,Kmm) ) ! 3D i-current |
---|
234 | CALL iom_put( "ssu", uu(:,:,1,Kmm) ) ! surface i-current |
---|
235 | IF ( iom_use("sbu") ) THEN |
---|
236 | DO_2D( 0, 0, 0, 0 ) |
---|
237 | ikbot = mbku(ji,jj) |
---|
238 | z2d(ji,jj) = uu(ji,jj,ikbot,Kmm) |
---|
239 | END_2D |
---|
240 | CALL iom_put( "sbu", z2d ) ! bottom i-current |
---|
241 | ENDIF |
---|
242 | |
---|
243 | CALL iom_put( "voce", vv(:,:,:,Kmm) ) ! 3D j-current |
---|
244 | CALL iom_put( "ssv", vv(:,:,1,Kmm) ) ! surface j-current |
---|
245 | IF ( iom_use("sbv") ) THEN |
---|
246 | DO_2D( 0, 0, 0, 0 ) |
---|
247 | ikbot = mbkv(ji,jj) |
---|
248 | z2d(ji,jj) = vv(ji,jj,ikbot,Kmm) |
---|
249 | END_2D |
---|
250 | CALL iom_put( "sbv", z2d ) ! bottom j-current |
---|
251 | ENDIF |
---|
252 | |
---|
253 | IF( ln_zad_Aimp ) ww = ww + wi ! Recombine explicit and implicit parts of vertical velocity for diagnostic output |
---|
254 | CALL iom_put( "woce", ww ) ! vertical velocity |
---|
255 | |
---|
256 | IF( iom_use('w_masstr') .OR. iom_use('w_masstr2') ) THEN ! vertical mass transport & its square value |
---|
257 | ! Caution: in the VVL case, it only correponds to the baroclinic mass transport. |
---|
258 | z2d(:,:) = rho0 * e1e2t(:,:) |
---|
259 | DO jk = 1, jpk |
---|
260 | z3d(:,:,jk) = ww(:,:,jk) * z2d(:,:) |
---|
261 | END DO |
---|
262 | CALL iom_put( "w_masstr" , z3d ) |
---|
263 | IF( iom_use('w_masstr2') ) CALL iom_put( "w_masstr2", z3d(:,:,:) * z3d(:,:,:) ) |
---|
264 | ENDIF |
---|
265 | ! |
---|
266 | IF( ln_zad_Aimp ) ww = ww - wi ! Remove implicit part of vertical velocity that was added for diagnostic output |
---|
267 | |
---|
268 | CALL iom_put( "avt" , avt ) ! T vert. eddy diff. coef. |
---|
269 | CALL iom_put( "avs" , avs ) ! S vert. eddy diff. coef. |
---|
270 | CALL iom_put( "avm" , avm ) ! T vert. eddy visc. coef. |
---|
271 | |
---|
272 | IF( iom_use('logavt') ) CALL iom_put( "logavt", LOG( MAX( 1.e-20_wp, avt(:,:,:) ) ) ) |
---|
273 | IF( iom_use('logavs') ) CALL iom_put( "logavs", LOG( MAX( 1.e-20_wp, avs(:,:,:) ) ) ) |
---|
274 | |
---|
275 | IF ( iom_use("socegrad") .OR. iom_use("socegrad2") ) THEN |
---|
276 | z3d(:,:,jpk) = 0. |
---|
277 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
278 | zztmp = ts(ji,jj,jk,jp_sal,Kmm) |
---|
279 | zztmpx = (ts(ji+1,jj,jk,jp_sal,Kmm) - zztmp) * r1_e1u(ji,jj) + (zztmp - ts(ji-1,jj ,jk,jp_sal,Kmm)) * r1_e1u(ji-1,jj) |
---|
280 | zztmpy = (ts(ji,jj+1,jk,jp_sal,Kmm) - zztmp) * r1_e2v(ji,jj) + (zztmp - ts(ji ,jj-1,jk,jp_sal,Kmm)) * r1_e2v(ji,jj-1) |
---|
281 | z3d(ji,jj,jk) = 0.25 * ( zztmpx * zztmpx + zztmpy * zztmpy ) & |
---|
282 | & * umask(ji,jj,jk) * umask(ji-1,jj,jk) * vmask(ji,jj,jk) * umask(ji,jj-1,jk) |
---|
283 | END_3D |
---|
284 | CALL iom_put( "socegrad2", z3d ) ! square of module of sal gradient |
---|
285 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
286 | z3d(ji,jj,jk) = SQRT( z3d(ji,jj,jk) ) |
---|
287 | END_3D |
---|
288 | CALL iom_put( "socegrad" , z3d ) ! module of sal gradient |
---|
289 | ENDIF |
---|
290 | |
---|
291 | IF ( iom_use("sstgrad") .OR. iom_use("sstgrad2") ) THEN |
---|
292 | DO_2D( 0, 0, 0, 0 ) ! sst gradient |
---|
293 | zztmp = ts(ji,jj,1,jp_tem,Kmm) |
---|
294 | zztmpx = ( ts(ji+1,jj,1,jp_tem,Kmm) - zztmp ) * r1_e1u(ji,jj) + ( zztmp - ts(ji-1,jj ,1,jp_tem,Kmm) ) * r1_e1u(ji-1,jj) |
---|
295 | zztmpy = ( ts(ji,jj+1,1,jp_tem,Kmm) - zztmp ) * r1_e2v(ji,jj) + ( zztmp - ts(ji ,jj-1,1,jp_tem,Kmm) ) * r1_e2v(ji,jj-1) |
---|
296 | z2d(ji,jj) = 0.25 * ( zztmpx * zztmpx + zztmpy * zztmpy ) & |
---|
297 | & * umask(ji,jj,1) * umask(ji-1,jj,1) * vmask(ji,jj,1) * umask(ji,jj-1,1) |
---|
298 | END_2D |
---|
299 | CALL iom_put( "sstgrad2", z2d ) ! square of module of sst gradient |
---|
300 | DO_2D( 0, 0, 0, 0 ) |
---|
301 | z2d(ji,jj) = SQRT( z2d(ji,jj) ) |
---|
302 | END_2D |
---|
303 | CALL iom_put( "sstgrad" , z2d ) ! module of sst gradient |
---|
304 | ENDIF |
---|
305 | |
---|
306 | ! heat and salt contents |
---|
307 | IF( iom_use("heatc") ) THEN |
---|
308 | z2d(:,:) = 0._wp |
---|
309 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
310 | z2d(ji,jj) = z2d(ji,jj) + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_tem,Kmm) * tmask(ji,jj,jk) |
---|
311 | END_3D |
---|
312 | CALL iom_put( "heatc", rho0_rcp * z2d ) ! vertically integrated heat content (J/m2) |
---|
313 | ENDIF |
---|
314 | |
---|
315 | IF( iom_use("saltc") ) THEN |
---|
316 | z2d(:,:) = 0._wp |
---|
317 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
318 | z2d(ji,jj) = z2d(ji,jj) + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_sal,Kmm) * tmask(ji,jj,jk) |
---|
319 | END_3D |
---|
320 | CALL iom_put( "saltc", rho0 * z2d ) ! vertically integrated salt content (PSU*kg/m2) |
---|
321 | ENDIF |
---|
322 | ! |
---|
323 | IF( iom_use("salt2c") ) THEN |
---|
324 | z2d(:,:) = 0._wp |
---|
325 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
326 | z2d(ji,jj) = z2d(ji,jj) + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_sal,Kmm) * ts(ji,jj,jk,jp_sal,Kmm) * tmask(ji,jj,jk) |
---|
327 | END_3D |
---|
328 | CALL iom_put( "salt2c", rho0 * z2d ) ! vertically integrated salt content (PSU*kg/m2) |
---|
329 | ENDIF |
---|
330 | ! |
---|
331 | IF ( iom_use("ke") .OR. iom_use("ke_int") ) THEN |
---|
332 | z3d(:,:,jpk) = 0._wp |
---|
333 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
334 | zztmpx = 0.5 * ( uu(ji-1,jj ,jk,Kmm) + uu(ji,jj,jk,Kmm) ) |
---|
335 | zztmpy = 0.5 * ( vv(ji ,jj-1,jk,Kmm) + vv(ji,jj,jk,Kmm) ) |
---|
336 | z3d(ji,jj,jk) = 0.5 * ( zztmpx*zztmpx + zztmpy*zztmpy ) |
---|
337 | END_3D |
---|
338 | CALL iom_put( "ke", z3d ) ! kinetic energy |
---|
339 | |
---|
340 | z2d(:,:) = 0._wp |
---|
341 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
342 | z2d(ji,jj) = z2d(ji,jj) + e3t(ji,jj,jk,Kmm) * z3d(ji,jj,jk) * e1e2t(ji,jj) * tmask(ji,jj,jk) |
---|
343 | END_3D |
---|
344 | CALL iom_put( "ke_int", z2d ) ! vertically integrated kinetic energy |
---|
345 | ENDIF |
---|
346 | ! |
---|
347 | IF ( iom_use("sKE") ) THEN ! surface kinetic energy at T point |
---|
348 | z2d(:,:) = 0._wp |
---|
349 | DO_2D( 0, 0, 0, 0 ) |
---|
350 | z2d(ji,jj) = 0.25_wp * ( uu(ji ,jj,1,Kmm) * uu(ji ,jj,1,Kmm) * e1e2u(ji ,jj) * e3u(ji ,jj,1,Kmm) & |
---|
351 | & + uu(ji-1,jj,1,Kmm) * uu(ji-1,jj,1,Kmm) * e1e2u(ji-1,jj) * e3u(ji-1,jj,1,Kmm) & |
---|
352 | & + vv(ji,jj ,1,Kmm) * vv(ji,jj ,1,Kmm) * e1e2v(ji,jj ) * e3v(ji,jj ,1,Kmm) & |
---|
353 | & + vv(ji,jj-1,1,Kmm) * vv(ji,jj-1,1,Kmm) * e1e2v(ji,jj-1) * e3v(ji,jj-1,1,Kmm) ) & |
---|
354 | & * r1_e1e2t(ji,jj) / e3t(ji,jj,1,Kmm) * ssmask(ji,jj) |
---|
355 | END_2D |
---|
356 | CALL lbc_lnk( 'diawri', z2d, 'T', 1. ) |
---|
357 | IF ( iom_use("sKE" ) ) CALL iom_put( "sKE" , z2d ) |
---|
358 | ENDIF |
---|
359 | ! |
---|
360 | IF ( iom_use("ssKEf") ) THEN ! surface kinetic energy at F point |
---|
361 | z2d(:,:) = 0._wp ! CAUTION : only valid in SWE, not with bathymetry |
---|
362 | DO_2D( 0, 0, 0, 0 ) |
---|
363 | z2d(ji,jj) = 0.25_wp * ( uu(ji,jj ,1,Kmm) * uu(ji,jj ,1,Kmm) * e1e2u(ji,jj ) * e3u(ji,jj ,1,Kmm) & |
---|
364 | & + uu(ji,jj+1,1,Kmm) * uu(ji,jj+1,1,Kmm) * e1e2u(ji,jj+1) * e3u(ji,jj+1,1,Kmm) & |
---|
365 | & + vv(ji ,jj,1,Kmm) * vv(ji,jj ,1,Kmm) * e1e2v(ji ,jj) * e3v(ji ,jj,1,Kmm) & |
---|
366 | & + vv(ji+1,jj,1,Kmm) * vv(ji+1,jj,1,Kmm) * e1e2v(ji+1,jj) * e3v(ji+1,jj,1,Kmm) ) & |
---|
367 | & * r1_e1e2f(ji,jj) / e3f(ji,jj,1) * ssfmask(ji,jj) |
---|
368 | END_2D |
---|
369 | CALL lbc_lnk( 'diawri', z2d, 'F', 1. ) |
---|
370 | CALL iom_put( "ssKEf", z2d ) |
---|
371 | ENDIF |
---|
372 | ! |
---|
373 | CALL iom_put( "hdiv", hdiv ) ! Horizontal divergence |
---|
374 | |
---|
375 | IF ( iom_use("relvor") .OR. iom_use("absvor") .OR. iom_use("potvor") ) THEN |
---|
376 | |
---|
377 | z3d(:,:,jpk) = 0._wp |
---|
378 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
379 | z3d(ji,jj,jk) = ( e2v(ji+1,jj ) * vv(ji+1,jj ,jk,Kmm) - e2v(ji,jj) * vv(ji,jj,jk,Kmm) & |
---|
380 | & - e1u(ji ,jj+1) * uu(ji ,jj+1,jk,Kmm) + e1u(ji,jj) * uu(ji,jj,jk,Kmm) ) * r1_e1e2f(ji,jj) |
---|
381 | END_3D |
---|
382 | CALL iom_put( "relvor", z3d ) ! relative vorticity |
---|
383 | |
---|
384 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
385 | z3d(ji,jj,jk) = ff_f(ji,jj) + z3d(ji,jj,jk) |
---|
386 | END_3D |
---|
387 | CALL iom_put( "absvor", z3d ) ! absolute vorticity |
---|
388 | |
---|
389 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
390 | ze3 = ( e3t(ji,jj+1,jk,Kmm)*tmask(ji,jj+1,jk) + e3t(ji+1,jj+1,jk,Kmm)*tmask(ji+1,jj+1,jk) & |
---|
391 | & + e3t(ji,jj ,jk,Kmm)*tmask(ji,jj ,jk) + e3t(ji+1,jj ,jk,Kmm)*tmask(ji+1,jj ,jk) ) |
---|
392 | IF( ze3 /= 0._wp ) THEN ; ze3 = 4._wp / ze3 |
---|
393 | ELSE ; ze3 = 0._wp |
---|
394 | ENDIF |
---|
395 | z3d(ji,jj,jk) = ze3 * z3d(ji,jj,jk) |
---|
396 | END_3D |
---|
397 | CALL iom_put( "potvor", z3d ) ! potential vorticity |
---|
398 | |
---|
399 | ENDIF |
---|
400 | ! |
---|
401 | IF( iom_use("u_masstr") .OR. iom_use("u_masstr_vint") .OR. iom_use("u_heattr") .OR. iom_use("u_salttr") ) THEN |
---|
402 | z3d(:,:,jpk) = 0.e0 |
---|
403 | z2d(:,:) = 0.e0 |
---|
404 | DO jk = 1, jpkm1 |
---|
405 | z3d(:,:,jk) = rho0 * uu(:,:,jk,Kmm) * e2u(:,:) * e3u(:,:,jk,Kmm) * umask(:,:,jk) |
---|
406 | z2d(:,:) = z2d(:,:) + z3d(:,:,jk) |
---|
407 | END DO |
---|
408 | CALL iom_put( "u_masstr" , z3d ) ! mass transport in i-direction |
---|
409 | CALL iom_put( "u_masstr_vint", z2d ) ! mass transport in i-direction vertical sum |
---|
410 | ENDIF |
---|
411 | |
---|
412 | IF( iom_use("u_heattr") ) THEN |
---|
413 | z2d(:,:) = 0._wp |
---|
414 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
415 | z2d(ji,jj) = z2d(ji,jj) + z3d(ji,jj,jk) * ( ts(ji,jj,jk,jp_tem,Kmm) + ts(ji+1,jj,jk,jp_tem,Kmm) ) |
---|
416 | END_3D |
---|
417 | CALL iom_put( "u_heattr", 0.5*rcp * z2d ) ! heat transport in i-direction |
---|
418 | ENDIF |
---|
419 | |
---|
420 | IF( iom_use("u_salttr") ) THEN |
---|
421 | z2d(:,:) = 0.e0 |
---|
422 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
423 | z2d(ji,jj) = z2d(ji,jj) + z3d(ji,jj,jk) * ( ts(ji,jj,jk,jp_sal,Kmm) + ts(ji+1,jj,jk,jp_sal,Kmm) ) |
---|
424 | END_3D |
---|
425 | CALL iom_put( "u_salttr", 0.5 * z2d ) ! heat transport in i-direction |
---|
426 | ENDIF |
---|
427 | |
---|
428 | |
---|
429 | IF( iom_use("v_masstr") .OR. iom_use("v_heattr") .OR. iom_use("v_salttr") ) THEN |
---|
430 | z3d(:,:,jpk) = 0.e0 |
---|
431 | DO jk = 1, jpkm1 |
---|
432 | z3d(:,:,jk) = rho0 * vv(:,:,jk,Kmm) * e1v(:,:) * e3v(:,:,jk,Kmm) * vmask(:,:,jk) |
---|
433 | END DO |
---|
434 | CALL iom_put( "v_masstr", z3d ) ! mass transport in j-direction |
---|
435 | ENDIF |
---|
436 | |
---|
437 | IF( iom_use("v_heattr") ) THEN |
---|
438 | z2d(:,:) = 0.e0 |
---|
439 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
440 | z2d(ji,jj) = z2d(ji,jj) + z3d(ji,jj,jk) * ( ts(ji,jj,jk,jp_tem,Kmm) + ts(ji,jj+1,jk,jp_tem,Kmm) ) |
---|
441 | END_3D |
---|
442 | CALL iom_put( "v_heattr", 0.5*rcp * z2d ) ! heat transport in j-direction |
---|
443 | ENDIF |
---|
444 | |
---|
445 | IF( iom_use("v_salttr") ) THEN |
---|
446 | z2d(:,:) = 0._wp |
---|
447 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
448 | z2d(ji,jj) = z2d(ji,jj) + z3d(ji,jj,jk) * ( ts(ji,jj,jk,jp_sal,Kmm) + ts(ji,jj+1,jk,jp_sal,Kmm) ) |
---|
449 | END_3D |
---|
450 | CALL iom_put( "v_salttr", 0.5 * z2d ) ! heat transport in j-direction |
---|
451 | ENDIF |
---|
452 | |
---|
453 | IF( iom_use("tosmint") ) THEN |
---|
454 | z2d(:,:) = 0._wp |
---|
455 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
456 | z2d(ji,jj) = z2d(ji,jj) + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_tem,Kmm) |
---|
457 | END_3D |
---|
458 | CALL iom_put( "tosmint", rho0 * z2d ) ! Vertical integral of temperature |
---|
459 | ENDIF |
---|
460 | IF( iom_use("somint") ) THEN |
---|
461 | z2d(:,:)=0._wp |
---|
462 | DO_3D( 0, 0, 0, 0, 1, jpkm1 ) |
---|
463 | z2d(ji,jj) = z2d(ji,jj) + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_sal,Kmm) |
---|
464 | END_3D |
---|
465 | CALL iom_put( "somint", rho0 * z2d ) ! Vertical integral of salinity |
---|
466 | ENDIF |
---|
467 | |
---|
468 | CALL iom_put( "bn2", rn2 ) ! Brunt-Vaisala buoyancy frequency (N^2) |
---|
469 | ! |
---|
470 | |
---|
471 | IF (ln_dia25h) CALL dia_25h( kt, Kmm ) ! 25h averaging |
---|
472 | |
---|
473 | ! Output of surface vorticity terms |
---|
474 | IF ( iom_use("ssrelvor") .OR. iom_use("ssplavor") .OR. & |
---|
475 | & iom_use("ssrelpotvor") .OR. iom_use("ssabspotvor") .OR. & |
---|
476 | & iom_use("ssEns") ) THEN |
---|
477 | ! |
---|
478 | z2d(:,:) = 0._wp |
---|
479 | ze3 = 0._wp |
---|
480 | DO_2D( 1, 0, 1, 0 ) |
---|
481 | z2d(ji,jj) = ( e2v(ji+1,jj ) * vv(ji+1,jj ,1,Kmm) - e2v(ji,jj) * vv(ji,jj,1,Kmm) & |
---|
482 | & - e1u(ji ,jj+1) * uu(ji ,jj+1,1,Kmm) + e1u(ji,jj) * uu(ji,jj,1,Kmm) ) * r1_e1e2f(ji,jj) |
---|
483 | END_2D |
---|
484 | CALL lbc_lnk( 'diawri', z2d, 'F', 1. ) |
---|
485 | CALL iom_put( "ssrelvor", z2d ) ! relative vorticity ( zeta ) |
---|
486 | ! |
---|
487 | CALL iom_put( "ssplavor", ff_f ) ! planetary vorticity ( f ) |
---|
488 | ! |
---|
489 | DO_2D( 1, 0, 1, 0 ) |
---|
490 | ze3 = ( e3t(ji,jj+1,1,Kmm) * e1e2t(ji,jj+1) + e3t(ji+1,jj+1,1,Kmm) * e1e2t(ji+1,jj+1) & |
---|
491 | & + e3t(ji,jj ,1,Kmm) * e1e2t(ji,jj ) + e3t(ji+1,jj ,1,Kmm) * e1e2t(ji+1,jj ) ) * r1_e1e2f(ji,jj) |
---|
492 | IF( ze3 /= 0._wp ) THEN ; ze3 = 4._wp / ze3 |
---|
493 | ELSE ; ze3 = 0._wp |
---|
494 | ENDIF |
---|
495 | z2d(ji,jj) = ze3 * z2d(ji,jj) |
---|
496 | END_2D |
---|
497 | CALL lbc_lnk( 'diawri', z2d, 'F', 1. ) |
---|
498 | CALL iom_put( "ssrelpotvor", z2d ) ! relative potential vorticity (zeta/h) |
---|
499 | ! |
---|
500 | DO_2D( 1, 0, 1, 0 ) |
---|
501 | ze3 = ( e3t(ji,jj+1,1,Kmm) * e1e2t(ji,jj+1) + e3t(ji+1,jj+1,1,Kmm) * e1e2t(ji+1,jj+1) & |
---|
502 | & + e3t(ji,jj ,1,Kmm) * e1e2t(ji,jj ) + e3t(ji+1,jj ,1,Kmm) * e1e2t(ji+1,jj ) ) * r1_e1e2f(ji,jj) |
---|
503 | IF( ze3 /= 0._wp ) THEN ; ze3 = 4._wp / ze3 |
---|
504 | ELSE ; ze3 = 0._wp |
---|
505 | ENDIF |
---|
506 | z2d(ji,jj) = ze3 * ff_f(ji,jj) + z2d(ji,jj) |
---|
507 | END_2D |
---|
508 | CALL lbc_lnk( 'diawri', z2d, 'F', 1. ) |
---|
509 | CALL iom_put( "ssabspotvor", z2d ) ! absolute potential vorticity ( q ) |
---|
510 | ! |
---|
511 | DO_2D( 1, 0, 1, 0 ) |
---|
512 | z2d(ji,jj) = 0.5_wp * z2d(ji,jj) * z2d(ji,jj) |
---|
513 | END_2D |
---|
514 | CALL lbc_lnk( 'diawri', z2d, 'F', 1. ) |
---|
515 | CALL iom_put( "ssEns", z2d ) ! potential enstrophy ( 1/2*q2 ) |
---|
516 | ! |
---|
517 | ENDIF |
---|
518 | |
---|
519 | IF( ln_timing ) CALL timing_stop('dia_wri') |
---|
520 | ! |
---|
521 | END SUBROUTINE dia_wri |
---|
522 | |
---|
523 | #else |
---|
524 | !!---------------------------------------------------------------------- |
---|
525 | !! Default option use IOIPSL library |
---|
526 | !!---------------------------------------------------------------------- |
---|
527 | |
---|
528 | INTEGER FUNCTION dia_wri_alloc() |
---|
529 | !!---------------------------------------------------------------------- |
---|
530 | INTEGER, DIMENSION(2) :: ierr |
---|
531 | !!---------------------------------------------------------------------- |
---|
532 | IF( nn_write == -1 ) THEN |
---|
533 | dia_wri_alloc = 0 |
---|
534 | ELSE |
---|
535 | ierr = 0 |
---|
536 | ALLOCATE( ndex_hT(jpi*jpj) , ndex_T(jpi*jpj*jpk) , & |
---|
537 | & ndex_hU(jpi*jpj) , ndex_U(jpi*jpj*jpk) , & |
---|
538 | & ndex_hV(jpi*jpj) , ndex_V(jpi*jpj*jpk) , STAT=ierr(1) ) |
---|
539 | ! |
---|
540 | dia_wri_alloc = MAXVAL(ierr) |
---|
541 | CALL mpp_sum( 'diawri', dia_wri_alloc ) |
---|
542 | ! |
---|
543 | ENDIF |
---|
544 | ! |
---|
545 | END FUNCTION dia_wri_alloc |
---|
546 | |
---|
547 | INTEGER FUNCTION dia_wri_alloc_abl() |
---|
548 | !!---------------------------------------------------------------------- |
---|
549 | ALLOCATE( ndex_hA(jpi*jpj), ndex_A (jpi*jpj*jpkam1), STAT=dia_wri_alloc_abl) |
---|
550 | CALL mpp_sum( 'diawri', dia_wri_alloc_abl ) |
---|
551 | ! |
---|
552 | END FUNCTION dia_wri_alloc_abl |
---|
553 | |
---|
554 | |
---|
555 | SUBROUTINE dia_wri( kt, Kmm ) |
---|
556 | !!--------------------------------------------------------------------- |
---|
557 | !! *** ROUTINE dia_wri *** |
---|
558 | !! |
---|
559 | !! ** Purpose : Standard output of opa: dynamics and tracer fields |
---|
560 | !! NETCDF format is used by default |
---|
561 | !! |
---|
562 | !! ** Method : At the beginning of the first time step (nit000), |
---|
563 | !! define all the NETCDF files and fields |
---|
564 | !! At each time step call histdef to compute the mean if ncessary |
---|
565 | !! Each nn_write time step, output the instantaneous or mean fields |
---|
566 | !!---------------------------------------------------------------------- |
---|
567 | INTEGER, INTENT( in ) :: kt ! ocean time-step index |
---|
568 | INTEGER, INTENT( in ) :: Kmm ! ocean time level index |
---|
569 | ! |
---|
570 | LOGICAL :: ll_print = .FALSE. ! =T print and flush numout |
---|
571 | CHARACTER (len=40) :: clhstnam, clop, clmx ! local names |
---|
572 | INTEGER :: inum = 11 ! temporary logical unit |
---|
573 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
574 | INTEGER :: ierr ! error code return from allocation |
---|
575 | INTEGER :: iimi, iima, ipk, it, itmod, ijmi, ijma ! local integers |
---|
576 | INTEGER :: ipka ! ABL |
---|
577 | INTEGER :: jn, ierror ! local integers |
---|
578 | REAL(wp) :: zsto, zout, zmax, zjulian ! local scalars |
---|
579 | ! |
---|
580 | REAL(wp), DIMENSION(jpi,jpj) :: zw2d ! 2D workspace |
---|
581 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zw3d, ze3t, zgdept ! 3D workspace |
---|
582 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: zw3d_abl ! ABL 3D workspace |
---|
583 | !!---------------------------------------------------------------------- |
---|
584 | ! |
---|
585 | IF( ninist == 1 ) THEN !== Output the initial state and forcings ==! |
---|
586 | CALL dia_wri_state( Kmm, 'output.init' ) |
---|
587 | ninist = 0 |
---|
588 | ENDIF |
---|
589 | ! |
---|
590 | IF( nn_write == -1 ) RETURN ! we will never do any output |
---|
591 | ! |
---|
592 | IF( ln_timing ) CALL timing_start('dia_wri') |
---|
593 | ! |
---|
594 | ! 0. Initialisation |
---|
595 | ! ----------------- |
---|
596 | |
---|
597 | ll_print = .FALSE. ! local variable for debugging |
---|
598 | ll_print = ll_print .AND. lwp |
---|
599 | |
---|
600 | ! Define frequency of output and means |
---|
601 | clop = "x" ! no use of the mask value (require less cpu time and otherwise the model crashes) |
---|
602 | #if defined key_diainstant |
---|
603 | zsto = nn_write * rn_Dt |
---|
604 | clop = "inst("//TRIM(clop)//")" |
---|
605 | #else |
---|
606 | zsto=rn_Dt |
---|
607 | clop = "ave("//TRIM(clop)//")" |
---|
608 | #endif |
---|
609 | zout = nn_write * rn_Dt |
---|
610 | zmax = ( nitend - nit000 + 1 ) * rn_Dt |
---|
611 | |
---|
612 | ! Define indices of the horizontal output zoom and vertical limit storage |
---|
613 | iimi = Nis0 ; iima = Nie0 |
---|
614 | ijmi = Njs0 ; ijma = Nje0 |
---|
615 | ipk = jpk |
---|
616 | IF(ln_abl) ipka = jpkam1 |
---|
617 | |
---|
618 | ! define time axis |
---|
619 | it = kt |
---|
620 | itmod = kt - nit000 + 1 |
---|
621 | |
---|
622 | ! store e3t for subsitute |
---|
623 | DO jk = 1, jpk |
---|
624 | ze3t (:,:,jk) = e3t (:,:,jk,Kmm) |
---|
625 | zgdept(:,:,jk) = gdept(:,:,jk,Kmm) |
---|
626 | END DO |
---|
627 | |
---|
628 | |
---|
629 | ! 1. Define NETCDF files and fields at beginning of first time step |
---|
630 | ! ----------------------------------------------------------------- |
---|
631 | |
---|
632 | IF( kt == nit000 ) THEN |
---|
633 | |
---|
634 | ! Define the NETCDF files (one per grid) |
---|
635 | |
---|
636 | ! Compute julian date from starting date of the run |
---|
637 | CALL ymds2ju( nyear, nmonth, nday, rn_Dt, zjulian ) |
---|
638 | zjulian = zjulian - adatrj ! set calendar origin to the beginning of the experiment |
---|
639 | IF(lwp)WRITE(numout,*) |
---|
640 | IF(lwp)WRITE(numout,*) 'Date 0 used :', nit000, ' YEAR ', nyear, & |
---|
641 | & ' MONTH ', nmonth, ' DAY ', nday, 'Julian day : ', zjulian |
---|
642 | IF(lwp)WRITE(numout,*) ' indexes of zoom = ', iimi, iima, ijmi, ijma, & |
---|
643 | ' limit storage in depth = ', ipk |
---|
644 | |
---|
645 | ! WRITE root name in date.file for use by postpro |
---|
646 | IF(lwp) THEN |
---|
647 | CALL dia_nam( clhstnam, nn_write,' ' ) |
---|
648 | CALL ctl_opn( inum, 'date.file', 'REPLACE', 'FORMATTED', 'SEQUENTIAL', -1, numout, lwp, narea ) |
---|
649 | WRITE(inum,*) clhstnam |
---|
650 | CLOSE(inum) |
---|
651 | ENDIF |
---|
652 | |
---|
653 | ! Define the T grid FILE ( nid_T ) |
---|
654 | |
---|
655 | CALL dia_nam( clhstnam, nn_write, 'grid_T' ) |
---|
656 | IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam ! filename |
---|
657 | CALL histbeg( clhstnam, jpi, glamt, jpj, gphit, & ! Horizontal grid: glamt and gphit |
---|
658 | & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, & |
---|
659 | & nit000-1, zjulian, rn_Dt, nh_T, nid_T, domain_id=nidom, snc4chunks=snc4set ) |
---|
660 | CALL histvert( nid_T, "deptht", "Vertical T levels", & ! Vertical grid: gdept |
---|
661 | & "m", ipk, gdept_1d, nz_T, "down" ) |
---|
662 | ! ! Index of ocean points |
---|
663 | CALL wheneq( jpi*jpj*ipk, tmask, 1, 1., ndex_T , ndim_T ) ! volume |
---|
664 | CALL wheneq( jpi*jpj , tmask, 1, 1., ndex_hT, ndim_hT ) ! surface |
---|
665 | ! |
---|
666 | IF( ln_icebergs ) THEN |
---|
667 | ! |
---|
668 | !! allocation cant go in dia_wri_alloc because ln_icebergs is only set after |
---|
669 | !! that routine is called from nemogcm, so do it here immediately before its needed |
---|
670 | ALLOCATE( ndex_bT(jpi*jpj*nclasses), STAT=ierror ) |
---|
671 | CALL mpp_sum( 'diawri', ierror ) |
---|
672 | IF( ierror /= 0 ) THEN |
---|
673 | CALL ctl_stop('dia_wri: failed to allocate iceberg diagnostic array') |
---|
674 | RETURN |
---|
675 | ENDIF |
---|
676 | ! |
---|
677 | !! iceberg vertical coordinate is class number |
---|
678 | CALL histvert( nid_T, "class", "Iceberg class", & ! Vertical grid: class |
---|
679 | & "number", nclasses, class_num, nb_T ) |
---|
680 | ! |
---|
681 | !! each class just needs the surface index pattern |
---|
682 | ndim_bT = 3 |
---|
683 | DO jn = 1,nclasses |
---|
684 | ndex_bT((jn-1)*jpi*jpj+1:jn*jpi*jpj) = ndex_hT(1:jpi*jpj) |
---|
685 | ENDDO |
---|
686 | ! |
---|
687 | ENDIF |
---|
688 | |
---|
689 | ! Define the U grid FILE ( nid_U ) |
---|
690 | |
---|
691 | CALL dia_nam( clhstnam, nn_write, 'grid_U' ) |
---|
692 | IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam ! filename |
---|
693 | CALL histbeg( clhstnam, jpi, glamu, jpj, gphiu, & ! Horizontal grid: glamu and gphiu |
---|
694 | & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, & |
---|
695 | & nit000-1, zjulian, rn_Dt, nh_U, nid_U, domain_id=nidom, snc4chunks=snc4set ) |
---|
696 | CALL histvert( nid_U, "depthu", "Vertical U levels", & ! Vertical grid: gdept |
---|
697 | & "m", ipk, gdept_1d, nz_U, "down" ) |
---|
698 | ! ! Index of ocean points |
---|
699 | CALL wheneq( jpi*jpj*ipk, umask, 1, 1., ndex_U , ndim_U ) ! volume |
---|
700 | CALL wheneq( jpi*jpj , umask, 1, 1., ndex_hU, ndim_hU ) ! surface |
---|
701 | |
---|
702 | ! Define the V grid FILE ( nid_V ) |
---|
703 | |
---|
704 | CALL dia_nam( clhstnam, nn_write, 'grid_V' ) ! filename |
---|
705 | IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam |
---|
706 | CALL histbeg( clhstnam, jpi, glamv, jpj, gphiv, & ! Horizontal grid: glamv and gphiv |
---|
707 | & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, & |
---|
708 | & nit000-1, zjulian, rn_Dt, nh_V, nid_V, domain_id=nidom, snc4chunks=snc4set ) |
---|
709 | CALL histvert( nid_V, "depthv", "Vertical V levels", & ! Vertical grid : gdept |
---|
710 | & "m", ipk, gdept_1d, nz_V, "down" ) |
---|
711 | ! ! Index of ocean points |
---|
712 | CALL wheneq( jpi*jpj*ipk, vmask, 1, 1., ndex_V , ndim_V ) ! volume |
---|
713 | CALL wheneq( jpi*jpj , vmask, 1, 1., ndex_hV, ndim_hV ) ! surface |
---|
714 | |
---|
715 | ! Define the W grid FILE ( nid_W ) |
---|
716 | |
---|
717 | CALL dia_nam( clhstnam, nn_write, 'grid_W' ) ! filename |
---|
718 | IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam |
---|
719 | CALL histbeg( clhstnam, jpi, glamt, jpj, gphit, & ! Horizontal grid: glamt and gphit |
---|
720 | & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, & |
---|
721 | & nit000-1, zjulian, rn_Dt, nh_W, nid_W, domain_id=nidom, snc4chunks=snc4set ) |
---|
722 | CALL histvert( nid_W, "depthw", "Vertical W levels", & ! Vertical grid: gdepw |
---|
723 | & "m", ipk, gdepw_1d, nz_W, "down" ) |
---|
724 | |
---|
725 | IF( ln_abl ) THEN |
---|
726 | ! Define the ABL grid FILE ( nid_A ) |
---|
727 | CALL dia_nam( clhstnam, nn_write, 'grid_ABL' ) |
---|
728 | IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam ! filename |
---|
729 | CALL histbeg( clhstnam, jpi, glamt, jpj, gphit, & ! Horizontal grid: glamt and gphit |
---|
730 | & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, & |
---|
731 | & nit000-1, zjulian, rn_Dt, nh_A, nid_A, domain_id=nidom, snc4chunks=snc4set ) |
---|
732 | CALL histvert( nid_A, "ght_abl", "Vertical T levels", & ! Vertical grid: gdept |
---|
733 | & "m", ipka, ght_abl(2:jpka), nz_A, "up" ) |
---|
734 | ! ! Index of ocean points |
---|
735 | ALLOCATE( zw3d_abl(jpi,jpj,ipka) ) |
---|
736 | zw3d_abl(:,:,:) = 1._wp |
---|
737 | CALL wheneq( jpi*jpj*ipka, zw3d_abl, 1, 1., ndex_A , ndim_A ) ! volume |
---|
738 | CALL wheneq( jpi*jpj , zw3d_abl, 1, 1., ndex_hA, ndim_hA ) ! surface |
---|
739 | DEALLOCATE(zw3d_abl) |
---|
740 | ENDIF |
---|
741 | ! |
---|
742 | |
---|
743 | ! Declare all the output fields as NETCDF variables |
---|
744 | |
---|
745 | ! !!! nid_T : 3D |
---|
746 | CALL histdef( nid_T, "votemper", "Temperature" , "C" , & ! tn |
---|
747 | & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout ) |
---|
748 | CALL histdef( nid_T, "vosaline", "Salinity" , "PSU" , & ! sn |
---|
749 | & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout ) |
---|
750 | IF( .NOT.ln_linssh ) THEN |
---|
751 | CALL histdef( nid_T, "vovvle3t", "Level thickness" , "m" ,& ! e3t n |
---|
752 | & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout ) |
---|
753 | CALL histdef( nid_T, "vovvldep", "T point depth" , "m" ,& ! e3t n |
---|
754 | & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout ) |
---|
755 | CALL histdef( nid_T, "vovvldef", "Squared level deformation" , "%^2" ,& ! e3t n |
---|
756 | & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout ) |
---|
757 | ENDIF |
---|
758 | ! !!! nid_T : 2D |
---|
759 | CALL histdef( nid_T, "sosstsst", "Sea Surface temperature" , "C" , & ! sst |
---|
760 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
761 | CALL histdef( nid_T, "sosaline", "Sea Surface Salinity" , "PSU" , & ! sss |
---|
762 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
763 | CALL histdef( nid_T, "sossheig", "Sea Surface Height" , "m" , & ! ssh |
---|
764 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
765 | CALL histdef( nid_T, "sowaflup", "Net Upward Water Flux" , "Kg/m2/s", & ! (emp-rnf) |
---|
766 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
767 | CALL histdef( nid_T, "sorunoff", "River runoffs" , "Kg/m2/s", & ! runoffs |
---|
768 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
769 | CALL histdef( nid_T, "sosfldow", "downward salt flux" , "PSU/m2/s", & ! sfx |
---|
770 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
771 | IF( ln_linssh ) THEN |
---|
772 | CALL histdef( nid_T, "sosst_cd", "Concentration/Dilution term on temperature" & ! emp * ts(:,:,1,jp_tem,Kmm) |
---|
773 | & , "KgC/m2/s", & ! sosst_cd |
---|
774 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
775 | CALL histdef( nid_T, "sosss_cd", "Concentration/Dilution term on salinity" & ! emp * ts(:,:,1,jp_sal,Kmm) |
---|
776 | & , "KgPSU/m2/s",& ! sosss_cd |
---|
777 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
778 | ENDIF |
---|
779 | CALL histdef( nid_T, "sohefldo", "Net Downward Heat Flux" , "W/m2" , & ! qns + qsr |
---|
780 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
781 | CALL histdef( nid_T, "soshfldo", "Shortwave Radiation" , "W/m2" , & ! qsr |
---|
782 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
783 | CALL histdef( nid_T, "somixhgt", "Turbocline Depth" , "m" , & ! hmld |
---|
784 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
785 | CALL histdef( nid_T, "somxl010", "Mixed Layer Depth 0.01" , "m" , & ! hmlp |
---|
786 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
787 | CALL histdef( nid_T, "soicecov", "Ice fraction" , "[0,1]" , & ! fr_i |
---|
788 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
789 | CALL histdef( nid_T, "sowindsp", "wind speed at 10m" , "m/s" , & ! wndm |
---|
790 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
791 | ! |
---|
792 | IF( ln_abl ) THEN |
---|
793 | CALL histdef( nid_A, "t_abl", "Potential Temperature" , "K" , & ! t_abl |
---|
794 | & jpi, jpj, nh_A, ipka, 1, ipka, nz_A, 32, clop, zsto, zout ) |
---|
795 | CALL histdef( nid_A, "q_abl", "Humidity" , "kg/kg" , & ! q_abl |
---|
796 | & jpi, jpj, nh_A, ipka, 1, ipka, nz_A, 32, clop, zsto, zout ) |
---|
797 | CALL histdef( nid_A, "u_abl", "Atmospheric U-wind " , "m/s" , & ! u_abl |
---|
798 | & jpi, jpj, nh_A, ipka, 1, ipka, nz_A, 32, clop, zsto, zout ) |
---|
799 | CALL histdef( nid_A, "v_abl", "Atmospheric V-wind " , "m/s" , & ! v_abl |
---|
800 | & jpi, jpj, nh_A, ipka, 1, ipka, nz_A, 32, clop, zsto, zout ) |
---|
801 | CALL histdef( nid_A, "tke_abl", "Atmospheric TKE " , "m2/s2" , & ! tke_abl |
---|
802 | & jpi, jpj, nh_A, ipka, 1, ipka, nz_A, 32, clop, zsto, zout ) |
---|
803 | CALL histdef( nid_A, "avm_abl", "Atmospheric turbulent viscosity", "m2/s" , & ! avm_abl |
---|
804 | & jpi, jpj, nh_A, ipka, 1, ipka, nz_A, 32, clop, zsto, zout ) |
---|
805 | CALL histdef( nid_A, "avt_abl", "Atmospheric turbulent diffusivity", "m2/s2", & ! avt_abl |
---|
806 | & jpi, jpj, nh_A, ipka, 1, ipka, nz_A, 32, clop, zsto, zout ) |
---|
807 | CALL histdef( nid_A, "pblh", "Atmospheric boundary layer height " , "m", & ! pblh |
---|
808 | & jpi, jpj, nh_A, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
809 | #if defined key_si3 |
---|
810 | CALL histdef( nid_A, "oce_frac", "Fraction of open ocean" , " ", & ! ato_i |
---|
811 | & jpi, jpj, nh_A, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
812 | #endif |
---|
813 | CALL histend( nid_A, snc4chunks=snc4set ) |
---|
814 | ENDIF |
---|
815 | ! |
---|
816 | IF( ln_icebergs ) THEN |
---|
817 | CALL histdef( nid_T, "calving" , "calving mass input" , "kg/s" , & |
---|
818 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
819 | CALL histdef( nid_T, "calving_heat" , "calving heat flux" , "XXXX" , & |
---|
820 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
821 | CALL histdef( nid_T, "berg_floating_melt" , "Melt rate of icebergs + bits" , "kg/m2/s", & |
---|
822 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
823 | CALL histdef( nid_T, "berg_stored_ice" , "Accumulated ice mass by class" , "kg" , & |
---|
824 | & jpi, jpj, nh_T, nclasses , 1, nclasses , nb_T , 32, clop, zsto, zout ) |
---|
825 | IF( ln_bergdia ) THEN |
---|
826 | CALL histdef( nid_T, "berg_melt" , "Melt rate of icebergs" , "kg/m2/s", & |
---|
827 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
828 | CALL histdef( nid_T, "berg_buoy_melt" , "Buoyancy component of iceberg melt rate" , "kg/m2/s", & |
---|
829 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
830 | CALL histdef( nid_T, "berg_eros_melt" , "Erosion component of iceberg melt rate" , "kg/m2/s", & |
---|
831 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
832 | CALL histdef( nid_T, "berg_conv_melt" , "Convective component of iceberg melt rate", "kg/m2/s", & |
---|
833 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
834 | CALL histdef( nid_T, "berg_virtual_area" , "Virtual coverage by icebergs" , "m2" , & |
---|
835 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
836 | CALL histdef( nid_T, "bits_src" , "Mass source of bergy bits" , "kg/m2/s", & |
---|
837 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
838 | CALL histdef( nid_T, "bits_melt" , "Melt rate of bergy bits" , "kg/m2/s", & |
---|
839 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
840 | CALL histdef( nid_T, "bits_mass" , "Bergy bit density field" , "kg/m2" , & |
---|
841 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
842 | CALL histdef( nid_T, "berg_mass" , "Iceberg density field" , "kg/m2" , & |
---|
843 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
844 | CALL histdef( nid_T, "berg_real_calving" , "Calving into iceberg class" , "kg/s" , & |
---|
845 | & jpi, jpj, nh_T, nclasses , 1, nclasses , nb_T , 32, clop, zsto, zout ) |
---|
846 | ENDIF |
---|
847 | ENDIF |
---|
848 | |
---|
849 | IF( ln_ssr ) THEN |
---|
850 | CALL histdef( nid_T, "sohefldp", "Surface Heat Flux: Damping" , "W/m2" , & ! qrp |
---|
851 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
852 | CALL histdef( nid_T, "sowafldp", "Surface Water Flux: Damping" , "Kg/m2/s", & ! erp |
---|
853 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
854 | CALL histdef( nid_T, "sosafldp", "Surface salt flux: damping" , "Kg/m2/s", & ! erp * sn |
---|
855 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
856 | ENDIF |
---|
857 | |
---|
858 | clmx ="l_max(only(x))" ! max index on a period |
---|
859 | ! CALL histdef( nid_T, "sobowlin", "Bowl Index" , "W-point", & ! bowl INDEX |
---|
860 | ! & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clmx, zsto, zout ) |
---|
861 | #if defined key_diahth |
---|
862 | CALL histdef( nid_T, "sothedep", "Thermocline Depth" , "m" , & ! hth |
---|
863 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
864 | CALL histdef( nid_T, "so20chgt", "Depth of 20C isotherm" , "m" , & ! hd20 |
---|
865 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
866 | CALL histdef( nid_T, "so28chgt", "Depth of 28C isotherm" , "m" , & ! hd28 |
---|
867 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
868 | CALL histdef( nid_T, "sohtc300", "Heat content 300 m" , "J/m2" , & ! htc3 |
---|
869 | & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) |
---|
870 | #endif |
---|
871 | |
---|
872 | CALL histend( nid_T, snc4chunks=snc4set ) |
---|
873 | |
---|
874 | ! !!! nid_U : 3D |
---|
875 | CALL histdef( nid_U, "vozocrtx", "Zonal Current" , "m/s" , & ! uu(:,:,:,Kmm) |
---|
876 | & jpi, jpj, nh_U, ipk, 1, ipk, nz_U, 32, clop, zsto, zout ) |
---|
877 | IF( ln_wave .AND. ln_sdw) THEN |
---|
878 | CALL histdef( nid_U, "sdzocrtx", "Stokes Drift Zonal Current" , "m/s" , & ! usd |
---|
879 | & jpi, jpj, nh_U, ipk, 1, ipk, nz_U, 32, clop, zsto, zout ) |
---|
880 | ENDIF |
---|
881 | ! !!! nid_U : 2D |
---|
882 | CALL histdef( nid_U, "sozotaux", "Wind Stress along i-axis" , "N/m2" , & ! utau |
---|
883 | & jpi, jpj, nh_U, 1 , 1, 1 , - 99, 32, clop, zsto, zout ) |
---|
884 | |
---|
885 | CALL histend( nid_U, snc4chunks=snc4set ) |
---|
886 | |
---|
887 | ! !!! nid_V : 3D |
---|
888 | CALL histdef( nid_V, "vomecrty", "Meridional Current" , "m/s" , & ! vv(:,:,:,Kmm) |
---|
889 | & jpi, jpj, nh_V, ipk, 1, ipk, nz_V, 32, clop, zsto, zout ) |
---|
890 | IF( ln_wave .AND. ln_sdw) THEN |
---|
891 | CALL histdef( nid_V, "sdmecrty", "Stokes Drift Meridional Current" , "m/s" , & ! vsd |
---|
892 | & jpi, jpj, nh_V, ipk, 1, ipk, nz_V, 32, clop, zsto, zout ) |
---|
893 | ENDIF |
---|
894 | ! !!! nid_V : 2D |
---|
895 | CALL histdef( nid_V, "sometauy", "Wind Stress along j-axis" , "N/m2" , & ! vtau |
---|
896 | & jpi, jpj, nh_V, 1 , 1, 1 , - 99, 32, clop, zsto, zout ) |
---|
897 | |
---|
898 | CALL histend( nid_V, snc4chunks=snc4set ) |
---|
899 | |
---|
900 | ! !!! nid_W : 3D |
---|
901 | CALL histdef( nid_W, "vovecrtz", "Vertical Velocity" , "m/s" , & ! ww |
---|
902 | & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) |
---|
903 | CALL histdef( nid_W, "votkeavt", "Vertical Eddy Diffusivity" , "m2/s" , & ! avt |
---|
904 | & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) |
---|
905 | CALL histdef( nid_W, "votkeavm", "Vertical Eddy Viscosity" , "m2/s" , & ! avm |
---|
906 | & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) |
---|
907 | |
---|
908 | IF( ln_zdfddm ) THEN |
---|
909 | CALL histdef( nid_W,"voddmavs","Salt Vertical Eddy Diffusivity" , "m2/s" , & ! avs |
---|
910 | & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) |
---|
911 | ENDIF |
---|
912 | |
---|
913 | IF( ln_wave .AND. ln_sdw) THEN |
---|
914 | CALL histdef( nid_W, "sdvecrtz", "Stokes Drift Vertical Current" , "m/s" , & ! wsd |
---|
915 | & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) |
---|
916 | ENDIF |
---|
917 | ! !!! nid_W : 2D |
---|
918 | CALL histend( nid_W, snc4chunks=snc4set ) |
---|
919 | |
---|
920 | IF(lwp) WRITE(numout,*) |
---|
921 | IF(lwp) WRITE(numout,*) 'End of NetCDF Initialization' |
---|
922 | IF(ll_print) CALL FLUSH(numout ) |
---|
923 | |
---|
924 | ENDIF |
---|
925 | |
---|
926 | ! 2. Start writing data |
---|
927 | ! --------------------- |
---|
928 | |
---|
929 | ! ndex(1) est utilise ssi l'avant dernier argument est different de |
---|
930 | ! la taille du tableau en sortie. Dans ce cas , l'avant dernier argument |
---|
931 | ! donne le nombre d'elements, et ndex la liste des indices a sortir |
---|
932 | |
---|
933 | IF( lwp .AND. MOD( itmod, nn_write ) == 0 ) THEN |
---|
934 | WRITE(numout,*) 'dia_wri : write model outputs in NetCDF files at ', kt, 'time-step' |
---|
935 | WRITE(numout,*) '~~~~~~ ' |
---|
936 | ENDIF |
---|
937 | |
---|
938 | IF( .NOT.ln_linssh ) THEN |
---|
939 | CALL histwrite( nid_T, "votemper", it, ts(:,:,:,jp_tem,Kmm) * ze3t(:,:,:) , ndim_T , ndex_T ) ! heat content |
---|
940 | CALL histwrite( nid_T, "vosaline", it, ts(:,:,:,jp_sal,Kmm) * ze3t(:,:,:) , ndim_T , ndex_T ) ! salt content |
---|
941 | CALL histwrite( nid_T, "sosstsst", it, ts(:,:,1,jp_tem,Kmm) * ze3t(:,:,1) , ndim_hT, ndex_hT ) ! sea surface heat content |
---|
942 | CALL histwrite( nid_T, "sosaline", it, ts(:,:,1,jp_sal,Kmm) * ze3t(:,:,1) , ndim_hT, ndex_hT ) ! sea surface salinity content |
---|
943 | ELSE |
---|
944 | CALL histwrite( nid_T, "votemper", it, ts(:,:,:,jp_tem,Kmm) , ndim_T , ndex_T ) ! temperature |
---|
945 | CALL histwrite( nid_T, "vosaline", it, ts(:,:,:,jp_sal,Kmm) , ndim_T , ndex_T ) ! salinity |
---|
946 | CALL histwrite( nid_T, "sosstsst", it, ts(:,:,1,jp_tem,Kmm) , ndim_hT, ndex_hT ) ! sea surface temperature |
---|
947 | CALL histwrite( nid_T, "sosaline", it, ts(:,:,1,jp_sal,Kmm) , ndim_hT, ndex_hT ) ! sea surface salinity |
---|
948 | ENDIF |
---|
949 | IF( .NOT.ln_linssh ) THEN |
---|
950 | zw3d(:,:,:) = ( ( ze3t(:,:,:) - e3t_0(:,:,:) ) / e3t_0(:,:,:) * 100 * tmask(:,:,:) ) ** 2 |
---|
951 | CALL histwrite( nid_T, "vovvle3t", it, ze3t (:,:,:) , ndim_T , ndex_T ) ! level thickness |
---|
952 | CALL histwrite( nid_T, "vovvldep", it, zgdept , ndim_T , ndex_T ) ! t-point depth |
---|
953 | CALL histwrite( nid_T, "vovvldef", it, zw3d , ndim_T , ndex_T ) ! level thickness deformation |
---|
954 | ENDIF |
---|
955 | CALL histwrite( nid_T, "sossheig", it, ssh(:,:,Kmm) , ndim_hT, ndex_hT ) ! sea surface height |
---|
956 | CALL histwrite( nid_T, "sowaflup", it, ( emp-rnf ) , ndim_hT, ndex_hT ) ! upward water flux |
---|
957 | CALL histwrite( nid_T, "sorunoff", it, rnf , ndim_hT, ndex_hT ) ! river runoffs |
---|
958 | CALL histwrite( nid_T, "sosfldow", it, sfx , ndim_hT, ndex_hT ) ! downward salt flux |
---|
959 | ! (includes virtual salt flux beneath ice |
---|
960 | ! in linear free surface case) |
---|
961 | IF( ln_linssh ) THEN |
---|
962 | zw2d(:,:) = emp (:,:) * ts(:,:,1,jp_tem,Kmm) |
---|
963 | CALL histwrite( nid_T, "sosst_cd", it, zw2d, ndim_hT, ndex_hT ) ! c/d term on sst |
---|
964 | zw2d(:,:) = emp (:,:) * ts(:,:,1,jp_sal,Kmm) |
---|
965 | CALL histwrite( nid_T, "sosss_cd", it, zw2d, ndim_hT, ndex_hT ) ! c/d term on sss |
---|
966 | ENDIF |
---|
967 | CALL histwrite( nid_T, "sohefldo", it, qns + qsr , ndim_hT, ndex_hT ) ! total heat flux |
---|
968 | CALL histwrite( nid_T, "soshfldo", it, qsr , ndim_hT, ndex_hT ) ! solar heat flux |
---|
969 | CALL histwrite( nid_T, "somixhgt", it, hmld , ndim_hT, ndex_hT ) ! turbocline depth |
---|
970 | CALL histwrite( nid_T, "somxl010", it, hmlp , ndim_hT, ndex_hT ) ! mixed layer depth |
---|
971 | CALL histwrite( nid_T, "soicecov", it, fr_i , ndim_hT, ndex_hT ) ! ice fraction |
---|
972 | CALL histwrite( nid_T, "sowindsp", it, wndm , ndim_hT, ndex_hT ) ! wind speed |
---|
973 | ! |
---|
974 | IF( ln_abl ) THEN |
---|
975 | ALLOCATE( zw3d_abl(jpi,jpj,jpka) ) |
---|
976 | IF( ln_mskland ) THEN |
---|
977 | DO jk=1,jpka |
---|
978 | zw3d_abl(:,:,jk) = tmask(:,:,1) |
---|
979 | END DO |
---|
980 | ELSE |
---|
981 | zw3d_abl(:,:,:) = 1._wp |
---|
982 | ENDIF |
---|
983 | CALL histwrite( nid_A, "pblh" , it, pblh(:,:) *zw3d_abl(:,:,1 ), ndim_hA, ndex_hA ) ! pblh |
---|
984 | CALL histwrite( nid_A, "u_abl" , it, u_abl (:,:,2:jpka,nt_n )*zw3d_abl(:,:,2:jpka), ndim_A , ndex_A ) ! u_abl |
---|
985 | CALL histwrite( nid_A, "v_abl" , it, v_abl (:,:,2:jpka,nt_n )*zw3d_abl(:,:,2:jpka), ndim_A , ndex_A ) ! v_abl |
---|
986 | CALL histwrite( nid_A, "t_abl" , it, tq_abl (:,:,2:jpka,nt_n,1)*zw3d_abl(:,:,2:jpka), ndim_A , ndex_A ) ! t_abl |
---|
987 | CALL histwrite( nid_A, "q_abl" , it, tq_abl (:,:,2:jpka,nt_n,2)*zw3d_abl(:,:,2:jpka), ndim_A , ndex_A ) ! q_abl |
---|
988 | CALL histwrite( nid_A, "tke_abl", it, tke_abl (:,:,2:jpka,nt_n )*zw3d_abl(:,:,2:jpka), ndim_A , ndex_A ) ! tke_abl |
---|
989 | CALL histwrite( nid_A, "avm_abl", it, avm_abl (:,:,2:jpka )*zw3d_abl(:,:,2:jpka), ndim_A , ndex_A ) ! avm_abl |
---|
990 | CALL histwrite( nid_A, "avt_abl", it, avt_abl (:,:,2:jpka )*zw3d_abl(:,:,2:jpka), ndim_A , ndex_A ) ! avt_abl |
---|
991 | #if defined key_si3 |
---|
992 | CALL histwrite( nid_A, "oce_frac" , it, ato_i(:,:) , ndim_hA, ndex_hA ) ! ato_i |
---|
993 | #endif |
---|
994 | DEALLOCATE(zw3d_abl) |
---|
995 | ENDIF |
---|
996 | ! |
---|
997 | IF( ln_icebergs ) THEN |
---|
998 | ! |
---|
999 | CALL histwrite( nid_T, "calving" , it, berg_grid%calving , ndim_hT, ndex_hT ) |
---|
1000 | CALL histwrite( nid_T, "calving_heat" , it, berg_grid%calving_hflx , ndim_hT, ndex_hT ) |
---|
1001 | CALL histwrite( nid_T, "berg_floating_melt" , it, berg_grid%floating_melt, ndim_hT, ndex_hT ) |
---|
1002 | ! |
---|
1003 | CALL histwrite( nid_T, "berg_stored_ice" , it, berg_grid%stored_ice , ndim_bT, ndex_bT ) |
---|
1004 | ! |
---|
1005 | IF( ln_bergdia ) THEN |
---|
1006 | CALL histwrite( nid_T, "berg_melt" , it, berg_melt , ndim_hT, ndex_hT ) |
---|
1007 | CALL histwrite( nid_T, "berg_buoy_melt" , it, buoy_melt , ndim_hT, ndex_hT ) |
---|
1008 | CALL histwrite( nid_T, "berg_eros_melt" , it, eros_melt , ndim_hT, ndex_hT ) |
---|
1009 | CALL histwrite( nid_T, "berg_conv_melt" , it, conv_melt , ndim_hT, ndex_hT ) |
---|
1010 | CALL histwrite( nid_T, "berg_virtual_area" , it, virtual_area , ndim_hT, ndex_hT ) |
---|
1011 | CALL histwrite( nid_T, "bits_src" , it, bits_src , ndim_hT, ndex_hT ) |
---|
1012 | CALL histwrite( nid_T, "bits_melt" , it, bits_melt , ndim_hT, ndex_hT ) |
---|
1013 | CALL histwrite( nid_T, "bits_mass" , it, bits_mass , ndim_hT, ndex_hT ) |
---|
1014 | CALL histwrite( nid_T, "berg_mass" , it, berg_mass , ndim_hT, ndex_hT ) |
---|
1015 | ! |
---|
1016 | CALL histwrite( nid_T, "berg_real_calving" , it, real_calving , ndim_bT, ndex_bT ) |
---|
1017 | ENDIF |
---|
1018 | ENDIF |
---|
1019 | |
---|
1020 | IF( ln_ssr ) THEN |
---|
1021 | CALL histwrite( nid_T, "sohefldp", it, qrp , ndim_hT, ndex_hT ) ! heat flux damping |
---|
1022 | CALL histwrite( nid_T, "sowafldp", it, erp , ndim_hT, ndex_hT ) ! freshwater flux damping |
---|
1023 | zw2d(:,:) = erp(:,:) * ts(:,:,1,jp_sal,Kmm) * tmask(:,:,1) |
---|
1024 | CALL histwrite( nid_T, "sosafldp", it, zw2d , ndim_hT, ndex_hT ) ! salt flux damping |
---|
1025 | ENDIF |
---|
1026 | ! zw2d(:,:) = FLOAT( nmln(:,:) ) * tmask(:,:,1) |
---|
1027 | ! CALL histwrite( nid_T, "sobowlin", it, zw2d , ndim_hT, ndex_hT ) ! ??? |
---|
1028 | |
---|
1029 | #if defined key_diahth |
---|
1030 | CALL histwrite( nid_T, "sothedep", it, hth , ndim_hT, ndex_hT ) ! depth of the thermocline |
---|
1031 | CALL histwrite( nid_T, "so20chgt", it, hd20 , ndim_hT, ndex_hT ) ! depth of the 20 isotherm |
---|
1032 | CALL histwrite( nid_T, "so28chgt", it, hd28 , ndim_hT, ndex_hT ) ! depth of the 28 isotherm |
---|
1033 | CALL histwrite( nid_T, "sohtc300", it, htc3 , ndim_hT, ndex_hT ) ! first 300m heaat content |
---|
1034 | #endif |
---|
1035 | |
---|
1036 | CALL histwrite( nid_U, "vozocrtx", it, uu(:,:,:,Kmm) , ndim_U , ndex_U ) ! i-current |
---|
1037 | CALL histwrite( nid_U, "sozotaux", it, utau , ndim_hU, ndex_hU ) ! i-wind stress |
---|
1038 | |
---|
1039 | CALL histwrite( nid_V, "vomecrty", it, vv(:,:,:,Kmm) , ndim_V , ndex_V ) ! j-current |
---|
1040 | CALL histwrite( nid_V, "sometauy", it, vtau , ndim_hV, ndex_hV ) ! j-wind stress |
---|
1041 | |
---|
1042 | IF( ln_zad_Aimp ) THEN |
---|
1043 | CALL histwrite( nid_W, "vovecrtz", it, ww + wi , ndim_T, ndex_T ) ! vert. current |
---|
1044 | ELSE |
---|
1045 | CALL histwrite( nid_W, "vovecrtz", it, ww , ndim_T, ndex_T ) ! vert. current |
---|
1046 | ENDIF |
---|
1047 | CALL histwrite( nid_W, "votkeavt", it, avt , ndim_T, ndex_T ) ! T vert. eddy diff. coef. |
---|
1048 | CALL histwrite( nid_W, "votkeavm", it, avm , ndim_T, ndex_T ) ! T vert. eddy visc. coef. |
---|
1049 | IF( ln_zdfddm ) THEN |
---|
1050 | CALL histwrite( nid_W, "voddmavs", it, avs , ndim_T, ndex_T ) ! S vert. eddy diff. coef. |
---|
1051 | ENDIF |
---|
1052 | |
---|
1053 | IF( ln_wave .AND. ln_sdw ) THEN |
---|
1054 | CALL histwrite( nid_U, "sdzocrtx", it, usd , ndim_U , ndex_U ) ! i-StokesDrift-current |
---|
1055 | CALL histwrite( nid_V, "sdmecrty", it, vsd , ndim_V , ndex_V ) ! j-StokesDrift-current |
---|
1056 | CALL histwrite( nid_W, "sdvecrtz", it, wsd , ndim_T , ndex_T ) ! StokesDrift vert. current |
---|
1057 | ENDIF |
---|
1058 | |
---|
1059 | ! 3. Close all files |
---|
1060 | ! --------------------------------------- |
---|
1061 | IF( kt == nitend ) THEN |
---|
1062 | CALL histclo( nid_T ) |
---|
1063 | CALL histclo( nid_U ) |
---|
1064 | CALL histclo( nid_V ) |
---|
1065 | CALL histclo( nid_W ) |
---|
1066 | IF(ln_abl) CALL histclo( nid_A ) |
---|
1067 | ENDIF |
---|
1068 | ! |
---|
1069 | IF( ln_timing ) CALL timing_stop('dia_wri') |
---|
1070 | ! |
---|
1071 | END SUBROUTINE dia_wri |
---|
1072 | #endif |
---|
1073 | |
---|
1074 | SUBROUTINE dia_wri_state( Kmm, cdfile_name ) |
---|
1075 | !!--------------------------------------------------------------------- |
---|
1076 | !! *** ROUTINE dia_wri_state *** |
---|
1077 | !! |
---|
1078 | !! ** Purpose : create a NetCDF file named cdfile_name which contains |
---|
1079 | !! the instantaneous ocean state and forcing fields. |
---|
1080 | !! Used to find errors in the initial state or save the last |
---|
1081 | !! ocean state in case of abnormal end of a simulation |
---|
1082 | !! |
---|
1083 | !! ** Method : NetCDF files using ioipsl |
---|
1084 | !! File 'output.init.nc' is created if ninist = 1 (namelist) |
---|
1085 | !! File 'output.abort.nc' is created in case of abnormal job end |
---|
1086 | !!---------------------------------------------------------------------- |
---|
1087 | INTEGER , INTENT( in ) :: Kmm ! time level index |
---|
1088 | CHARACTER (len=* ), INTENT( in ) :: cdfile_name ! name of the file created |
---|
1089 | !! |
---|
1090 | INTEGER :: inum, jk |
---|
1091 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: ze3t, zgdept ! 3D workspace for qco substitution |
---|
1092 | !!---------------------------------------------------------------------- |
---|
1093 | ! |
---|
1094 | IF(lwp) THEN |
---|
1095 | WRITE(numout,*) |
---|
1096 | WRITE(numout,*) 'dia_wri_state : single instantaneous ocean state' |
---|
1097 | WRITE(numout,*) '~~~~~~~~~~~~~ and forcing fields file created ' |
---|
1098 | WRITE(numout,*) ' and named :', cdfile_name, '...nc' |
---|
1099 | ENDIF |
---|
1100 | ! |
---|
1101 | DO jk = 1, jpk |
---|
1102 | ze3t(:,:,jk) = e3t(:,:,jk,Kmm) |
---|
1103 | zgdept(:,:,jk) = gdept(:,:,jk,Kmm) |
---|
1104 | END DO |
---|
1105 | ! |
---|
1106 | CALL iom_open( TRIM(cdfile_name), inum, ldwrt = .TRUE. ) |
---|
1107 | ! |
---|
1108 | CALL iom_rstput( 0, 0, inum, 'votemper', ts(:,:,:,jp_tem,Kmm) ) ! now temperature |
---|
1109 | CALL iom_rstput( 0, 0, inum, 'vosaline', ts(:,:,:,jp_sal,Kmm) ) ! now salinity |
---|
1110 | CALL iom_rstput( 0, 0, inum, 'sossheig', ssh(:,:,Kmm) ) ! sea surface height |
---|
1111 | CALL iom_rstput( 0, 0, inum, 'vozocrtx', uu(:,:,:,Kmm) ) ! now i-velocity |
---|
1112 | CALL iom_rstput( 0, 0, inum, 'vomecrty', vv(:,:,:,Kmm) ) ! now j-velocity |
---|
1113 | IF( ln_zad_Aimp ) THEN |
---|
1114 | CALL iom_rstput( 0, 0, inum, 'vovecrtz', ww + wi ) ! now k-velocity |
---|
1115 | ELSE |
---|
1116 | CALL iom_rstput( 0, 0, inum, 'vovecrtz', ww ) ! now k-velocity |
---|
1117 | ENDIF |
---|
1118 | CALL iom_rstput( 0, 0, inum, 'risfdep', risfdep ) ! now k-velocity |
---|
1119 | CALL iom_rstput( 0, 0, inum, 'ht' , ht(:,:) ) ! now water column height |
---|
1120 | ! |
---|
1121 | IF ( ln_isf ) THEN |
---|
1122 | IF (ln_isfcav_mlt) THEN |
---|
1123 | CALL iom_rstput( 0, 0, inum, 'fwfisf_cav', fwfisf_cav ) ! now k-velocity |
---|
1124 | CALL iom_rstput( 0, 0, inum, 'rhisf_cav_tbl', rhisf_tbl_cav ) ! now k-velocity |
---|
1125 | CALL iom_rstput( 0, 0, inum, 'rfrac_cav_tbl', rfrac_tbl_cav ) ! now k-velocity |
---|
1126 | CALL iom_rstput( 0, 0, inum, 'misfkb_cav', REAL(misfkb_cav,wp) ) ! now k-velocity |
---|
1127 | CALL iom_rstput( 0, 0, inum, 'misfkt_cav', REAL(misfkt_cav,wp) ) ! now k-velocity |
---|
1128 | CALL iom_rstput( 0, 0, inum, 'mskisf_cav', REAL(mskisf_cav,wp), ktype = jp_i1 ) |
---|
1129 | END IF |
---|
1130 | IF (ln_isfpar_mlt) THEN |
---|
1131 | CALL iom_rstput( 0, 0, inum, 'isfmsk_par', REAL(mskisf_par,wp) ) ! now k-velocity |
---|
1132 | CALL iom_rstput( 0, 0, inum, 'fwfisf_par', fwfisf_par ) ! now k-velocity |
---|
1133 | CALL iom_rstput( 0, 0, inum, 'rhisf_par_tbl', rhisf_tbl_par ) ! now k-velocity |
---|
1134 | CALL iom_rstput( 0, 0, inum, 'rfrac_par_tbl', rfrac_tbl_par ) ! now k-velocity |
---|
1135 | CALL iom_rstput( 0, 0, inum, 'misfkb_par', REAL(misfkb_par,wp) ) ! now k-velocity |
---|
1136 | CALL iom_rstput( 0, 0, inum, 'misfkt_par', REAL(misfkt_par,wp) ) ! now k-velocity |
---|
1137 | CALL iom_rstput( 0, 0, inum, 'mskisf_par', REAL(mskisf_par,wp), ktype = jp_i1 ) |
---|
1138 | END IF |
---|
1139 | END IF |
---|
1140 | ! |
---|
1141 | IF( ALLOCATED(ahtu) ) THEN |
---|
1142 | CALL iom_rstput( 0, 0, inum, 'ahtu', ahtu ) ! aht at u-point |
---|
1143 | CALL iom_rstput( 0, 0, inum, 'ahtv', ahtv ) ! aht at v-point |
---|
1144 | ENDIF |
---|
1145 | IF( ALLOCATED(ahmt) ) THEN |
---|
1146 | CALL iom_rstput( 0, 0, inum, 'ahmt', ahmt ) ! ahmt at u-point |
---|
1147 | CALL iom_rstput( 0, 0, inum, 'ahmf', ahmf ) ! ahmf at v-point |
---|
1148 | ENDIF |
---|
1149 | CALL iom_rstput( 0, 0, inum, 'sowaflup', emp - rnf ) ! freshwater budget |
---|
1150 | CALL iom_rstput( 0, 0, inum, 'sohefldo', qsr + qns ) ! total heat flux |
---|
1151 | CALL iom_rstput( 0, 0, inum, 'soshfldo', qsr ) ! solar heat flux |
---|
1152 | CALL iom_rstput( 0, 0, inum, 'soicecov', fr_i ) ! ice fraction |
---|
1153 | CALL iom_rstput( 0, 0, inum, 'sozotaux', utau ) ! i-wind stress |
---|
1154 | CALL iom_rstput( 0, 0, inum, 'sometauy', vtau ) ! j-wind stress |
---|
1155 | IF( .NOT.ln_linssh ) THEN |
---|
1156 | CALL iom_rstput( 0, 0, inum, 'vovvldep', zgdept ) ! T-cell depth |
---|
1157 | CALL iom_rstput( 0, 0, inum, 'vovvle3t', ze3t ) ! T-cell thickness |
---|
1158 | END IF |
---|
1159 | IF( ln_wave .AND. ln_sdw ) THEN |
---|
1160 | CALL iom_rstput( 0, 0, inum, 'sdzocrtx', usd ) ! now StokesDrift i-velocity |
---|
1161 | CALL iom_rstput( 0, 0, inum, 'sdmecrty', vsd ) ! now StokesDrift j-velocity |
---|
1162 | CALL iom_rstput( 0, 0, inum, 'sdvecrtz', wsd ) ! now StokesDrift k-velocity |
---|
1163 | ENDIF |
---|
1164 | IF ( ln_abl ) THEN |
---|
1165 | CALL iom_rstput ( 0, 0, inum, "uz1_abl", u_abl(:,:,2,nt_a ) ) ! now first level i-wind |
---|
1166 | CALL iom_rstput ( 0, 0, inum, "vz1_abl", v_abl(:,:,2,nt_a ) ) ! now first level j-wind |
---|
1167 | CALL iom_rstput ( 0, 0, inum, "tz1_abl", tq_abl(:,:,2,nt_a,1) ) ! now first level temperature |
---|
1168 | CALL iom_rstput ( 0, 0, inum, "qz1_abl", tq_abl(:,:,2,nt_a,2) ) ! now first level humidity |
---|
1169 | ENDIF |
---|
1170 | IF( ln_zdfosm ) THEN |
---|
1171 | CALL iom_rstput( 0, 0, inum, 'hbl', hbl*tmask(:,:,1) ) ! now boundary-layer depth |
---|
1172 | CALL iom_rstput( 0, 0, inum, 'hml', hml*tmask(:,:,1) ) ! now mixed-layer depth |
---|
1173 | CALL iom_rstput( 0, 0, inum, 'avt_k', avt_k*wmask ) ! w-level diffusion |
---|
1174 | CALL iom_rstput( 0, 0, inum, 'avm_k', avm_k*wmask ) ! now w-level viscosity |
---|
1175 | CALL iom_rstput( 0, 0, inum, 'ghamt', ghamt*wmask ) ! non-local t forcing |
---|
1176 | CALL iom_rstput( 0, 0, inum, 'ghams', ghams*wmask ) ! non-local s forcing |
---|
1177 | CALL iom_rstput( 0, 0, inum, 'ghamu', ghamu*umask ) ! non-local u forcing |
---|
1178 | CALL iom_rstput( 0, 0, inum, 'ghamv', ghamv*vmask ) ! non-local v forcing |
---|
1179 | IF( ln_osm_mle ) THEN |
---|
1180 | CALL iom_rstput( 0, 0, inum, 'hmle', hmle*tmask(:,:,1) ) ! now transition-layer depth |
---|
1181 | END IF |
---|
1182 | ENDIF |
---|
1183 | ! |
---|
1184 | CALL iom_close( inum ) |
---|
1185 | ! |
---|
1186 | #if defined key_si3 |
---|
1187 | IF( nn_ice == 2 ) THEN ! condition needed in case agrif + ice-model but no-ice in child grid |
---|
1188 | CALL iom_open( TRIM(cdfile_name)//'_ice', inum, ldwrt = .TRUE., kdlev = jpl, cdcomp = 'ICE' ) |
---|
1189 | CALL ice_wri_state( inum ) |
---|
1190 | CALL iom_close( inum ) |
---|
1191 | ENDIF |
---|
1192 | ! |
---|
1193 | #endif |
---|
1194 | END SUBROUTINE dia_wri_state |
---|
1195 | |
---|
1196 | !!====================================================================== |
---|
1197 | END MODULE diawri |
---|