1 | MODULE sbcblk |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE sbcblk *** |
---|
4 | !! Ocean forcing: momentum, heat and freshwater flux formulation |
---|
5 | !! Aerodynamic Bulk Formulas |
---|
6 | !! SUCCESSOR OF "sbcblk_core" |
---|
7 | !!===================================================================== |
---|
8 | !! History : 1.0 ! 2004-08 (U. Schweckendiek) Original CORE code |
---|
9 | !! 2.0 ! 2005-04 (L. Brodeau, A.M. Treguier) improved CORE bulk and its user interface |
---|
10 | !! 3.0 ! 2006-06 (G. Madec) sbc rewritting |
---|
11 | !! - ! 2006-12 (L. Brodeau) Original code for turb_core |
---|
12 | !! 3.2 ! 2009-04 (B. Lemaire) Introduce iom_put |
---|
13 | !! 3.3 ! 2010-10 (S. Masson) add diurnal cycle |
---|
14 | !! 3.4 ! 2011-11 (C. Harris) Fill arrays required by CICE |
---|
15 | !! 3.7 ! 2014-06 (L. Brodeau) simplification and optimization of CORE bulk |
---|
16 | !! 4.0 ! 2016-06 (L. Brodeau) sbcblk_core becomes sbcblk and is not restricted to the CORE algorithm anymore |
---|
17 | !! ! ==> based on AeroBulk (http://aerobulk.sourceforge.net/) |
---|
18 | !! 4.0 ! 2016-10 (G. Madec) introduce a sbc_blk_init routine |
---|
19 | !! 4.0 ! 2016-10 (M. Vancoppenolle) Introduce Jules emulator (M. Vancoppenolle) |
---|
20 | !!---------------------------------------------------------------------- |
---|
21 | |
---|
22 | !!---------------------------------------------------------------------- |
---|
23 | !! sbc_blk_init : initialisation of the chosen bulk formulation as ocean surface boundary condition |
---|
24 | !! sbc_blk : bulk formulation as ocean surface boundary condition |
---|
25 | !! blk_oce : computes momentum, heat and freshwater fluxes over ocean |
---|
26 | !! rho_air : density of (moist) air (depends on T_air, q_air and SLP |
---|
27 | !! cp_air : specific heat of (moist) air (depends spec. hum. q_air) |
---|
28 | !! q_sat : saturation humidity as a function of SLP and temperature |
---|
29 | !! L_vap : latent heat of vaporization of water as a function of temperature |
---|
30 | !! sea-ice case only : |
---|
31 | !! blk_ice_tau : provide the air-ice stress |
---|
32 | !! blk_ice_flx : provide the heat and mass fluxes at air-ice interface |
---|
33 | !! blk_ice_qcn : provide ice surface temperature and snow/ice conduction flux (emulating JULES coupler) |
---|
34 | !! Cdn10_Lupkes2012 : Lupkes et al. (2012) air-ice drag |
---|
35 | !! Cdn10_Lupkes2015 : Lupkes et al. (2015) air-ice drag |
---|
36 | !!---------------------------------------------------------------------- |
---|
37 | USE oce ! ocean dynamics and tracers |
---|
38 | USE dom_oce ! ocean space and time domain |
---|
39 | USE phycst ! physical constants |
---|
40 | USE fldread ! read input fields |
---|
41 | USE sbc_oce ! Surface boundary condition: ocean fields |
---|
42 | USE cyclone ! Cyclone 10m wind form trac of cyclone centres |
---|
43 | USE sbcdcy ! surface boundary condition: diurnal cycle |
---|
44 | USE sbcwave , ONLY : cdn_wave ! wave module |
---|
45 | USE sbc_ice ! Surface boundary condition: ice fields |
---|
46 | USE lib_fortran ! to use key_nosignedzero |
---|
47 | #if defined key_si3 |
---|
48 | USE ice , ONLY : u_ice, v_ice, jpl, a_i_b, at_i_b, tm_su, rn_cnd_s |
---|
49 | USE icethd_dh ! for CALL ice_thd_snwblow |
---|
50 | #endif |
---|
51 | USE sbcblk_algo_ncar ! => turb_ncar : NCAR - CORE (Large & Yeager, 2009) |
---|
52 | USE sbcblk_algo_coare ! => turb_coare : COAREv3.0 (Fairall et al. 2003) |
---|
53 | USE sbcblk_algo_coare3p5 ! => turb_coare3p5 : COAREv3.5 (Edson et al. 2013) |
---|
54 | USE sbcblk_algo_ecmwf ! => turb_ecmwf : ECMWF (IFS cycle 31) |
---|
55 | ! |
---|
56 | USE iom ! I/O manager library |
---|
57 | USE in_out_manager ! I/O manager |
---|
58 | USE lib_mpp ! distribued memory computing library |
---|
59 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
60 | USE prtctl ! Print control |
---|
61 | |
---|
62 | IMPLICIT NONE |
---|
63 | PRIVATE |
---|
64 | |
---|
65 | PUBLIC sbc_blk_init ! called in sbcmod |
---|
66 | PUBLIC sbc_blk ! called in sbcmod |
---|
67 | #if defined key_si3 |
---|
68 | PUBLIC blk_ice_tau ! routine called in iceforcing |
---|
69 | PUBLIC blk_ice_flx ! routine called in iceforcing |
---|
70 | PUBLIC blk_ice_qcn ! routine called in iceforcing |
---|
71 | #endif |
---|
72 | |
---|
73 | !!Lolo: should ultimately be moved in the module with all physical constants ? |
---|
74 | !!gm : In principle, yes. |
---|
75 | REAL(wp), PARAMETER :: Cp_dry = 1005.0 !: Specic heat of dry air, constant pressure [J/K/kg] |
---|
76 | REAL(wp), PARAMETER :: Cp_vap = 1860.0 !: Specic heat of water vapor, constant pressure [J/K/kg] |
---|
77 | REAL(wp), PARAMETER :: R_dry = 287.05_wp !: Specific gas constant for dry air [J/K/kg] |
---|
78 | REAL(wp), PARAMETER :: R_vap = 461.495_wp !: Specific gas constant for water vapor [J/K/kg] |
---|
79 | REAL(wp), PARAMETER :: reps0 = R_dry/R_vap !: ratio of gas constant for dry air and water vapor => ~ 0.622 |
---|
80 | REAL(wp), PARAMETER :: rctv0 = R_vap/R_dry !: for virtual temperature (== (1-eps)/eps) => ~ 0.608 |
---|
81 | |
---|
82 | INTEGER , PARAMETER :: jpfld =10 ! maximum number of files to read |
---|
83 | INTEGER , PARAMETER :: jp_wndi = 1 ! index of 10m wind velocity (i-component) (m/s) at T-point |
---|
84 | INTEGER , PARAMETER :: jp_wndj = 2 ! index of 10m wind velocity (j-component) (m/s) at T-point |
---|
85 | INTEGER , PARAMETER :: jp_tair = 3 ! index of 10m air temperature (Kelvin) |
---|
86 | INTEGER , PARAMETER :: jp_humi = 4 ! index of specific humidity ( % ) |
---|
87 | INTEGER , PARAMETER :: jp_qsr = 5 ! index of solar heat (W/m2) |
---|
88 | INTEGER , PARAMETER :: jp_qlw = 6 ! index of Long wave (W/m2) |
---|
89 | INTEGER , PARAMETER :: jp_prec = 7 ! index of total precipitation (rain+snow) (Kg/m2/s) |
---|
90 | INTEGER , PARAMETER :: jp_snow = 8 ! index of snow (solid prcipitation) (kg/m2/s) |
---|
91 | INTEGER , PARAMETER :: jp_slp = 9 ! index of sea level pressure (Pa) |
---|
92 | INTEGER , PARAMETER :: jp_tdif =10 ! index of tau diff associated to HF tau (N/m2) at T-point |
---|
93 | |
---|
94 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf ! structure of input fields (file informations, fields read) |
---|
95 | |
---|
96 | ! !!! Bulk parameters |
---|
97 | REAL(wp), PARAMETER :: cpa = 1000.5 ! specific heat of air (only used for ice fluxes now...) |
---|
98 | REAL(wp), PARAMETER :: Ls = 2.839e6 ! latent heat of sublimation |
---|
99 | REAL(wp), PARAMETER :: Stef = 5.67e-8 ! Stefan Boltzmann constant |
---|
100 | REAL(wp), PARAMETER :: Cd_ice = 1.4e-3 ! transfer coefficient over ice |
---|
101 | REAL(wp), PARAMETER :: albo = 0.066 ! ocean albedo assumed to be constant |
---|
102 | ! |
---|
103 | ! !!* Namelist namsbc_blk : bulk parameters |
---|
104 | LOGICAL :: ln_NCAR ! "NCAR" algorithm (Large and Yeager 2008) |
---|
105 | LOGICAL :: ln_COARE_3p0 ! "COARE 3.0" algorithm (Fairall et al. 2003) |
---|
106 | LOGICAL :: ln_COARE_3p5 ! "COARE 3.5" algorithm (Edson et al. 2013) |
---|
107 | LOGICAL :: ln_ECMWF ! "ECMWF" algorithm (IFS cycle 31) |
---|
108 | ! |
---|
109 | LOGICAL :: ln_taudif ! logical flag to use the "mean of stress module - module of mean stress" data |
---|
110 | REAL(wp) :: rn_pfac ! multiplication factor for precipitation |
---|
111 | REAL(wp) :: rn_efac ! multiplication factor for evaporation |
---|
112 | REAL(wp) :: rn_vfac ! multiplication factor for ice/ocean velocity in the calculation of wind stress |
---|
113 | REAL(wp) :: rn_zqt ! z(q,t) : height of humidity and temperature measurements |
---|
114 | REAL(wp) :: rn_zu ! z(u) : height of wind measurements |
---|
115 | !!gm ref namelist initialize it so remove the setting to false below |
---|
116 | LOGICAL :: ln_Cd_L12 = .FALSE. ! Modify the drag ice-atm depending on ice concentration (from Lupkes et al. JGR2012) |
---|
117 | LOGICAL :: ln_Cd_L15 = .FALSE. ! Modify the drag ice-atm depending on ice concentration (from Lupkes et al. JGR2015) |
---|
118 | ! |
---|
119 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: Cd_atm ! transfer coefficient for momentum (tau) |
---|
120 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: Ch_atm ! transfer coefficient for sensible heat (Q_sens) |
---|
121 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: Ce_atm ! tansfert coefficient for evaporation (Q_lat) |
---|
122 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: t_zu ! air temperature at wind speed height (needed by Lupkes 2015 bulk scheme) |
---|
123 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: q_zu ! air spec. hum. at wind speed height (needed by Lupkes 2015 bulk scheme) |
---|
124 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: cdn_oce, chn_oce, cen_oce ! needed by Lupkes 2015 bulk scheme |
---|
125 | |
---|
126 | INTEGER :: nblk ! choice of the bulk algorithm |
---|
127 | ! ! associated indices: |
---|
128 | INTEGER, PARAMETER :: np_NCAR = 1 ! "NCAR" algorithm (Large and Yeager 2008) |
---|
129 | INTEGER, PARAMETER :: np_COARE_3p0 = 2 ! "COARE 3.0" algorithm (Fairall et al. 2003) |
---|
130 | INTEGER, PARAMETER :: np_COARE_3p5 = 3 ! "COARE 3.5" algorithm (Edson et al. 2013) |
---|
131 | INTEGER, PARAMETER :: np_ECMWF = 4 ! "ECMWF" algorithm (IFS cycle 31) |
---|
132 | |
---|
133 | !! * Substitutions |
---|
134 | # include "vectopt_loop_substitute.h90" |
---|
135 | !!---------------------------------------------------------------------- |
---|
136 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
137 | !! $Id: sbcblk.F90 6416 2016-04-01 12:22:17Z clem $ |
---|
138 | !! Software governed by the CeCILL licence (./LICENSE) |
---|
139 | !!---------------------------------------------------------------------- |
---|
140 | CONTAINS |
---|
141 | |
---|
142 | INTEGER FUNCTION sbc_blk_alloc() |
---|
143 | !!------------------------------------------------------------------- |
---|
144 | !! *** ROUTINE sbc_blk_alloc *** |
---|
145 | !!------------------------------------------------------------------- |
---|
146 | ALLOCATE( Cd_atm (jpi,jpj), Ch_atm (jpi,jpj), Ce_atm (jpi,jpj), t_zu(jpi,jpj), q_zu(jpi,jpj), & |
---|
147 | & cdn_oce(jpi,jpj), chn_oce(jpi,jpj), cen_oce(jpi,jpj), STAT=sbc_blk_alloc ) |
---|
148 | ! |
---|
149 | IF( lk_mpp ) CALL mpp_sum ( sbc_blk_alloc ) |
---|
150 | IF( sbc_blk_alloc /= 0 ) CALL ctl_warn('sbc_blk_alloc: failed to allocate arrays') |
---|
151 | END FUNCTION sbc_blk_alloc |
---|
152 | |
---|
153 | |
---|
154 | SUBROUTINE sbc_blk_init |
---|
155 | !!--------------------------------------------------------------------- |
---|
156 | !! *** ROUTINE sbc_blk_init *** |
---|
157 | !! |
---|
158 | !! ** Purpose : choose and initialize a bulk formulae formulation |
---|
159 | !! |
---|
160 | !! ** Method : |
---|
161 | !! |
---|
162 | !!---------------------------------------------------------------------- |
---|
163 | INTEGER :: ifpr, jfld ! dummy loop indice and argument |
---|
164 | INTEGER :: ios, ierror, ioptio ! Local integer |
---|
165 | !! |
---|
166 | CHARACTER(len=100) :: cn_dir ! Root directory for location of atmospheric forcing files |
---|
167 | TYPE(FLD_N), DIMENSION(jpfld) :: slf_i ! array of namelist informations on the fields to read |
---|
168 | TYPE(FLD_N) :: sn_wndi, sn_wndj, sn_humi, sn_qsr ! informations about the fields to be read |
---|
169 | TYPE(FLD_N) :: sn_qlw , sn_tair, sn_prec, sn_snow ! " " |
---|
170 | TYPE(FLD_N) :: sn_slp , sn_tdif ! " " |
---|
171 | NAMELIST/namsbc_blk/ sn_wndi, sn_wndj, sn_humi, sn_qsr, sn_qlw , & ! input fields |
---|
172 | & sn_tair, sn_prec, sn_snow, sn_slp, sn_tdif, & |
---|
173 | & ln_NCAR, ln_COARE_3p0, ln_COARE_3p5, ln_ECMWF, & ! bulk algorithm |
---|
174 | & cn_dir , ln_taudif, rn_zqt, rn_zu, & |
---|
175 | & rn_pfac, rn_efac, rn_vfac, ln_Cd_L12, ln_Cd_L15 |
---|
176 | !!--------------------------------------------------------------------- |
---|
177 | ! |
---|
178 | ! ! allocate sbc_blk_core array |
---|
179 | IF( sbc_blk_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_blk : unable to allocate standard arrays' ) |
---|
180 | ! |
---|
181 | ! !** read bulk namelist |
---|
182 | REWIND( numnam_ref ) !* Namelist namsbc_blk in reference namelist : bulk parameters |
---|
183 | READ ( numnam_ref, namsbc_blk, IOSTAT = ios, ERR = 901) |
---|
184 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_blk in reference namelist', lwp ) |
---|
185 | ! |
---|
186 | REWIND( numnam_cfg ) !* Namelist namsbc_blk in configuration namelist : bulk parameters |
---|
187 | READ ( numnam_cfg, namsbc_blk, IOSTAT = ios, ERR = 902 ) |
---|
188 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc_blk in configuration namelist', lwp ) |
---|
189 | ! |
---|
190 | IF(lwm) WRITE( numond, namsbc_blk ) |
---|
191 | ! |
---|
192 | ! !** initialization of the chosen bulk formulae (+ check) |
---|
193 | ! !* select the bulk chosen in the namelist and check the choice |
---|
194 | ioptio = 0 |
---|
195 | IF( ln_NCAR ) THEN ; nblk = np_NCAR ; ioptio = ioptio + 1 ; ENDIF |
---|
196 | IF( ln_COARE_3p0 ) THEN ; nblk = np_COARE_3p0 ; ioptio = ioptio + 1 ; ENDIF |
---|
197 | IF( ln_COARE_3p5 ) THEN ; nblk = np_COARE_3p5 ; ioptio = ioptio + 1 ; ENDIF |
---|
198 | IF( ln_ECMWF ) THEN ; nblk = np_ECMWF ; ioptio = ioptio + 1 ; ENDIF |
---|
199 | ! |
---|
200 | IF( ioptio /= 1 ) CALL ctl_stop( 'sbc_blk_init: Choose one and only one bulk algorithm' ) |
---|
201 | ! |
---|
202 | IF( ln_dm2dc ) THEN !* check: diurnal cycle on Qsr |
---|
203 | IF( sn_qsr%nfreqh /= 24 ) CALL ctl_stop( 'sbc_blk_init: ln_dm2dc=T only with daily short-wave input' ) |
---|
204 | IF( sn_qsr%ln_tint ) THEN |
---|
205 | CALL ctl_warn( 'sbc_blk_init: ln_dm2dc=T daily qsr time interpolation done by sbcdcy module', & |
---|
206 | & ' ==> We force time interpolation = .false. for qsr' ) |
---|
207 | sn_qsr%ln_tint = .false. |
---|
208 | ENDIF |
---|
209 | ENDIF |
---|
210 | ! !* set the bulk structure |
---|
211 | ! !- store namelist information in an array |
---|
212 | slf_i(jp_wndi) = sn_wndi ; slf_i(jp_wndj) = sn_wndj |
---|
213 | slf_i(jp_qsr ) = sn_qsr ; slf_i(jp_qlw ) = sn_qlw |
---|
214 | slf_i(jp_tair) = sn_tair ; slf_i(jp_humi) = sn_humi |
---|
215 | slf_i(jp_prec) = sn_prec ; slf_i(jp_snow) = sn_snow |
---|
216 | slf_i(jp_slp) = sn_slp ; slf_i(jp_tdif) = sn_tdif |
---|
217 | ! |
---|
218 | lhftau = ln_taudif !- add an extra field if HF stress is used |
---|
219 | jfld = jpfld - COUNT( (/.NOT.lhftau/) ) |
---|
220 | ! |
---|
221 | ! !- allocate the bulk structure |
---|
222 | ALLOCATE( sf(jfld), STAT=ierror ) |
---|
223 | IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_blk_init: unable to allocate sf structure' ) |
---|
224 | DO ifpr= 1, jfld |
---|
225 | ALLOCATE( sf(ifpr)%fnow(jpi,jpj,1) ) |
---|
226 | IF( slf_i(ifpr)%ln_tint ) ALLOCATE( sf(ifpr)%fdta(jpi,jpj,1,2) ) |
---|
227 | IF( slf_i(ifpr)%nfreqh > 0. .AND. MOD( 3600. * slf_i(ifpr)%nfreqh , REAL(nn_fsbc) * rdt) /= 0. ) & |
---|
228 | & CALL ctl_warn( 'sbc_blk_init: sbcmod timestep rdt*nn_fsbc is NOT a submultiple of atmospheric forcing frequency.', & |
---|
229 | & ' This is not ideal. You should consider changing either rdt or nn_fsbc value...' ) |
---|
230 | |
---|
231 | END DO |
---|
232 | ! !- fill the bulk structure with namelist informations |
---|
233 | CALL fld_fill( sf, slf_i, cn_dir, 'sbc_blk_init', 'surface boundary condition -- bulk formulae', 'namsbc_blk' ) |
---|
234 | ! |
---|
235 | IF ( ln_wave ) THEN |
---|
236 | !Activated wave module but neither drag nor stokes drift activated |
---|
237 | IF ( .NOT.(ln_cdgw .OR. ln_sdw .OR. ln_tauwoc .OR. ln_stcor ) ) THEN |
---|
238 | CALL ctl_warn( 'Ask for wave coupling but ln_cdgw=F, ln_sdw=F, ln_tauwoc=F, ln_stcor=F') |
---|
239 | !drag coefficient read from wave model definable only with mfs bulk formulae and core |
---|
240 | ELSEIF (ln_cdgw .AND. .NOT. ln_NCAR ) THEN |
---|
241 | CALL ctl_stop( 'drag coefficient read from wave model definable only with mfs bulk formulae and core') |
---|
242 | ELSEIF (ln_stcor .AND. .NOT. ln_sdw) THEN |
---|
243 | CALL ctl_stop( 'Stokes-Coriolis term calculated only if activated Stokes Drift ln_sdw=T') |
---|
244 | ENDIF |
---|
245 | ELSE |
---|
246 | IF ( ln_cdgw .OR. ln_sdw .OR. ln_tauwoc .OR. ln_stcor ) & |
---|
247 | & CALL ctl_stop( 'Not Activated Wave Module (ln_wave=F) but asked coupling ', & |
---|
248 | & 'with drag coefficient (ln_cdgw =T) ' , & |
---|
249 | & 'or Stokes Drift (ln_sdw=T) ' , & |
---|
250 | & 'or ocean stress modification due to waves (ln_tauwoc=T) ', & |
---|
251 | & 'or Stokes-Coriolis term (ln_stcori=T)' ) |
---|
252 | ENDIF |
---|
253 | ! |
---|
254 | ! |
---|
255 | IF(lwp) THEN !** Control print |
---|
256 | ! |
---|
257 | WRITE(numout,*) !* namelist |
---|
258 | WRITE(numout,*) ' Namelist namsbc_blk (other than data information):' |
---|
259 | WRITE(numout,*) ' "NCAR" algorithm (Large and Yeager 2008) ln_NCAR = ', ln_NCAR |
---|
260 | WRITE(numout,*) ' "COARE 3.0" algorithm (Fairall et al. 2003) ln_COARE_3p0 = ', ln_COARE_3p0 |
---|
261 | WRITE(numout,*) ' "COARE 3.5" algorithm (Edson et al. 2013) ln_COARE_3p5 = ', ln_COARE_3p0 |
---|
262 | WRITE(numout,*) ' "ECMWF" algorithm (IFS cycle 31) ln_ECMWF = ', ln_ECMWF |
---|
263 | WRITE(numout,*) ' add High freq.contribution to the stress module ln_taudif = ', ln_taudif |
---|
264 | WRITE(numout,*) ' Air temperature and humidity reference height (m) rn_zqt = ', rn_zqt |
---|
265 | WRITE(numout,*) ' Wind vector reference height (m) rn_zu = ', rn_zu |
---|
266 | WRITE(numout,*) ' factor applied on precipitation (total & snow) rn_pfac = ', rn_pfac |
---|
267 | WRITE(numout,*) ' factor applied on evaporation rn_efac = ', rn_efac |
---|
268 | WRITE(numout,*) ' factor applied on ocean/ice velocity rn_vfac = ', rn_vfac |
---|
269 | WRITE(numout,*) ' (form absolute (=0) to relative winds(=1))' |
---|
270 | WRITE(numout,*) ' use ice-atm drag from Lupkes2012 ln_Cd_L12 = ', ln_Cd_L12 |
---|
271 | WRITE(numout,*) ' use ice-atm drag from Lupkes2015 ln_Cd_L15 = ', ln_Cd_L15 |
---|
272 | ! |
---|
273 | WRITE(numout,*) |
---|
274 | SELECT CASE( nblk ) !* Print the choice of bulk algorithm |
---|
275 | CASE( np_NCAR ) ; WRITE(numout,*) ' ==>>> "NCAR" algorithm (Large and Yeager 2008)' |
---|
276 | CASE( np_COARE_3p0 ) ; WRITE(numout,*) ' ==>>> "COARE 3.0" algorithm (Fairall et al. 2003)' |
---|
277 | CASE( np_COARE_3p5 ) ; WRITE(numout,*) ' ==>>> "COARE 3.5" algorithm (Edson et al. 2013)' |
---|
278 | CASE( np_ECMWF ) ; WRITE(numout,*) ' ==>>> "ECMWF" algorithm (IFS cycle 31)' |
---|
279 | END SELECT |
---|
280 | ! |
---|
281 | ENDIF |
---|
282 | ! |
---|
283 | END SUBROUTINE sbc_blk_init |
---|
284 | |
---|
285 | |
---|
286 | SUBROUTINE sbc_blk( kt ) |
---|
287 | !!--------------------------------------------------------------------- |
---|
288 | !! *** ROUTINE sbc_blk *** |
---|
289 | !! |
---|
290 | !! ** Purpose : provide at each time step the surface ocean fluxes |
---|
291 | !! (momentum, heat, freshwater and runoff) |
---|
292 | !! |
---|
293 | !! ** Method : (1) READ each fluxes in NetCDF files: |
---|
294 | !! the 10m wind velocity (i-component) (m/s) at T-point |
---|
295 | !! the 10m wind velocity (j-component) (m/s) at T-point |
---|
296 | !! the 10m or 2m specific humidity ( % ) |
---|
297 | !! the solar heat (W/m2) |
---|
298 | !! the Long wave (W/m2) |
---|
299 | !! the 10m or 2m air temperature (Kelvin) |
---|
300 | !! the total precipitation (rain+snow) (Kg/m2/s) |
---|
301 | !! the snow (solid prcipitation) (kg/m2/s) |
---|
302 | !! the tau diff associated to HF tau (N/m2) at T-point (ln_taudif=T) |
---|
303 | !! (2) CALL blk_oce |
---|
304 | !! |
---|
305 | !! C A U T I O N : never mask the surface stress fields |
---|
306 | !! the stress is assumed to be in the (i,j) mesh referential |
---|
307 | !! |
---|
308 | !! ** Action : defined at each time-step at the air-sea interface |
---|
309 | !! - utau, vtau i- and j-component of the wind stress |
---|
310 | !! - taum wind stress module at T-point |
---|
311 | !! - wndm wind speed module at T-point over free ocean or leads in presence of sea-ice |
---|
312 | !! - qns, qsr non-solar and solar heat fluxes |
---|
313 | !! - emp upward mass flux (evapo. - precip.) |
---|
314 | !! - sfx salt flux due to freezing/melting (non-zero only if ice is present) |
---|
315 | !! |
---|
316 | !! ** References : Large & Yeager, 2004 / Large & Yeager, 2008 |
---|
317 | !! Brodeau et al. Ocean Modelling 2010 |
---|
318 | !!---------------------------------------------------------------------- |
---|
319 | INTEGER, INTENT(in) :: kt ! ocean time step |
---|
320 | !!--------------------------------------------------------------------- |
---|
321 | ! |
---|
322 | CALL fld_read( kt, nn_fsbc, sf ) ! input fields provided at the current time-step |
---|
323 | ! |
---|
324 | ! ! compute the surface ocean fluxes using bulk formulea |
---|
325 | IF( MOD( kt - 1, nn_fsbc ) == 0 ) CALL blk_oce( kt, sf, sst_m, ssu_m, ssv_m ) |
---|
326 | |
---|
327 | #if defined key_cice |
---|
328 | IF( MOD( kt - 1, nn_fsbc ) == 0 ) THEN |
---|
329 | qlw_ice(:,:,1) = sf(jp_qlw )%fnow(:,:,1) |
---|
330 | IF( ln_dm2dc ) THEN ; qsr_ice(:,:,1) = sbc_dcy( sf(jp_qsr)%fnow(:,:,1) ) |
---|
331 | ELSE ; qsr_ice(:,:,1) = sf(jp_qsr)%fnow(:,:,1) |
---|
332 | ENDIF |
---|
333 | tatm_ice(:,:) = sf(jp_tair)%fnow(:,:,1) |
---|
334 | qatm_ice(:,:) = sf(jp_humi)%fnow(:,:,1) |
---|
335 | tprecip(:,:) = sf(jp_prec)%fnow(:,:,1) * rn_pfac |
---|
336 | sprecip(:,:) = sf(jp_snow)%fnow(:,:,1) * rn_pfac |
---|
337 | wndi_ice(:,:) = sf(jp_wndi)%fnow(:,:,1) |
---|
338 | wndj_ice(:,:) = sf(jp_wndj)%fnow(:,:,1) |
---|
339 | ENDIF |
---|
340 | #endif |
---|
341 | ! |
---|
342 | END SUBROUTINE sbc_blk |
---|
343 | |
---|
344 | |
---|
345 | SUBROUTINE blk_oce( kt, sf, pst, pu, pv ) |
---|
346 | !!--------------------------------------------------------------------- |
---|
347 | !! *** ROUTINE blk_oce *** |
---|
348 | !! |
---|
349 | !! ** Purpose : provide the momentum, heat and freshwater fluxes at |
---|
350 | !! the ocean surface at each time step |
---|
351 | !! |
---|
352 | !! ** Method : bulk formulea for the ocean using atmospheric |
---|
353 | !! fields read in sbc_read |
---|
354 | !! |
---|
355 | !! ** Outputs : - utau : i-component of the stress at U-point (N/m2) |
---|
356 | !! - vtau : j-component of the stress at V-point (N/m2) |
---|
357 | !! - taum : Wind stress module at T-point (N/m2) |
---|
358 | !! - wndm : Wind speed module at T-point (m/s) |
---|
359 | !! - qsr : Solar heat flux over the ocean (W/m2) |
---|
360 | !! - qns : Non Solar heat flux over the ocean (W/m2) |
---|
361 | !! - emp : evaporation minus precipitation (kg/m2/s) |
---|
362 | !! |
---|
363 | !! ** Nota : sf has to be a dummy argument for AGRIF on NEC |
---|
364 | !!--------------------------------------------------------------------- |
---|
365 | INTEGER , INTENT(in ) :: kt ! time step index |
---|
366 | TYPE(fld), INTENT(inout), DIMENSION(:) :: sf ! input data |
---|
367 | REAL(wp) , INTENT(in) , DIMENSION(:,:) :: pst ! surface temperature [Celcius] |
---|
368 | REAL(wp) , INTENT(in) , DIMENSION(:,:) :: pu ! surface current at U-point (i-component) [m/s] |
---|
369 | REAL(wp) , INTENT(in) , DIMENSION(:,:) :: pv ! surface current at V-point (j-component) [m/s] |
---|
370 | ! |
---|
371 | INTEGER :: ji, jj ! dummy loop indices |
---|
372 | REAL(wp) :: zztmp ! local variable |
---|
373 | REAL(wp), DIMENSION(jpi,jpj) :: zwnd_i, zwnd_j ! wind speed components at T-point |
---|
374 | REAL(wp), DIMENSION(jpi,jpj) :: zsq ! specific humidity at pst |
---|
375 | REAL(wp), DIMENSION(jpi,jpj) :: zqlw, zqsb ! long wave and sensible heat fluxes |
---|
376 | REAL(wp), DIMENSION(jpi,jpj) :: zqla, zevap ! latent heat fluxes and evaporation |
---|
377 | REAL(wp), DIMENSION(jpi,jpj) :: zst ! surface temperature in Kelvin |
---|
378 | REAL(wp), DIMENSION(jpi,jpj) :: zU_zu ! bulk wind speed at height zu [m/s] |
---|
379 | REAL(wp), DIMENSION(jpi,jpj) :: ztpot ! potential temperature of air at z=rn_zqt [K] |
---|
380 | REAL(wp), DIMENSION(jpi,jpj) :: zrhoa ! density of air [kg/m^3] |
---|
381 | !!--------------------------------------------------------------------- |
---|
382 | ! |
---|
383 | ! local scalars ( place there for vector optimisation purposes) |
---|
384 | zst(:,:) = pst(:,:) + rt0 ! convert SST from Celcius to Kelvin (and set minimum value far above 0 K) |
---|
385 | |
---|
386 | ! ----------------------------------------------------------------------------- ! |
---|
387 | ! 0 Wind components and module at T-point relative to the moving ocean ! |
---|
388 | ! ----------------------------------------------------------------------------- ! |
---|
389 | |
---|
390 | ! ... components ( U10m - U_oce ) at T-point (unmasked) |
---|
391 | !!gm move zwnd_i (_j) set to zero inside the key_cyclone ??? |
---|
392 | zwnd_i(:,:) = 0._wp |
---|
393 | zwnd_j(:,:) = 0._wp |
---|
394 | #if defined key_cyclone |
---|
395 | CALL wnd_cyc( kt, zwnd_i, zwnd_j ) ! add analytical tropical cyclone (Vincent et al. JGR 2012) |
---|
396 | DO jj = 2, jpjm1 |
---|
397 | DO ji = fs_2, fs_jpim1 ! vect. opt. |
---|
398 | sf(jp_wndi)%fnow(ji,jj,1) = sf(jp_wndi)%fnow(ji,jj,1) + zwnd_i(ji,jj) |
---|
399 | sf(jp_wndj)%fnow(ji,jj,1) = sf(jp_wndj)%fnow(ji,jj,1) + zwnd_j(ji,jj) |
---|
400 | END DO |
---|
401 | END DO |
---|
402 | #endif |
---|
403 | DO jj = 2, jpjm1 |
---|
404 | DO ji = fs_2, fs_jpim1 ! vect. opt. |
---|
405 | zwnd_i(ji,jj) = ( sf(jp_wndi)%fnow(ji,jj,1) - rn_vfac * 0.5 * ( pu(ji-1,jj ) + pu(ji,jj) ) ) |
---|
406 | zwnd_j(ji,jj) = ( sf(jp_wndj)%fnow(ji,jj,1) - rn_vfac * 0.5 * ( pv(ji ,jj-1) + pv(ji,jj) ) ) |
---|
407 | END DO |
---|
408 | END DO |
---|
409 | CALL lbc_lnk_multi( zwnd_i, 'T', -1., zwnd_j, 'T', -1. ) |
---|
410 | ! ... scalar wind ( = | U10m - U_oce | ) at T-point (masked) |
---|
411 | wndm(:,:) = SQRT( zwnd_i(:,:) * zwnd_i(:,:) & |
---|
412 | & + zwnd_j(:,:) * zwnd_j(:,:) ) * tmask(:,:,1) |
---|
413 | |
---|
414 | ! ----------------------------------------------------------------------------- ! |
---|
415 | ! I Radiative FLUXES ! |
---|
416 | ! ----------------------------------------------------------------------------- ! |
---|
417 | |
---|
418 | ! ocean albedo assumed to be constant + modify now Qsr to include the diurnal cycle ! Short Wave |
---|
419 | zztmp = 1. - albo |
---|
420 | IF( ln_dm2dc ) THEN ; qsr(:,:) = zztmp * sbc_dcy( sf(jp_qsr)%fnow(:,:,1) ) * tmask(:,:,1) |
---|
421 | ELSE ; qsr(:,:) = zztmp * sf(jp_qsr)%fnow(:,:,1) * tmask(:,:,1) |
---|
422 | ENDIF |
---|
423 | |
---|
424 | zqlw(:,:) = ( sf(jp_qlw)%fnow(:,:,1) - Stef * zst(:,:)*zst(:,:)*zst(:,:)*zst(:,:) ) * tmask(:,:,1) ! Long Wave |
---|
425 | |
---|
426 | ! ----------------------------------------------------------------------------- ! |
---|
427 | ! II Turbulent FLUXES ! |
---|
428 | ! ----------------------------------------------------------------------------- ! |
---|
429 | |
---|
430 | ! ... specific humidity at SST and IST tmask( |
---|
431 | zsq(:,:) = 0.98 * q_sat( zst(:,:), sf(jp_slp)%fnow(:,:,1) ) |
---|
432 | !! |
---|
433 | !! Estimate of potential temperature at z=rn_zqt, based on adiabatic lapse-rate |
---|
434 | !! (see Josey, Gulev & Yu, 2013) / doi=10.1016/B978-0-12-391851-2.00005-2 |
---|
435 | !! (since reanalysis products provide T at z, not theta !) |
---|
436 | ztpot = sf(jp_tair)%fnow(:,:,1) + gamma_moist( sf(jp_tair)%fnow(:,:,1), sf(jp_humi)%fnow(:,:,1) ) * rn_zqt |
---|
437 | |
---|
438 | SELECT CASE( nblk ) !== transfer coefficients ==! Cd, Ch, Ce at T-point |
---|
439 | ! |
---|
440 | CASE( np_NCAR ) ; CALL turb_ncar ( rn_zqt, rn_zu, zst, ztpot, zsq, sf(jp_humi)%fnow, wndm, & ! NCAR-COREv2 |
---|
441 | & Cd_atm, Ch_atm, Ce_atm, t_zu, q_zu, zU_zu, cdn_oce, chn_oce, cen_oce ) |
---|
442 | CASE( np_COARE_3p0 ) ; CALL turb_coare ( rn_zqt, rn_zu, zst, ztpot, zsq, sf(jp_humi)%fnow, wndm, & ! COARE v3.0 |
---|
443 | & Cd_atm, Ch_atm, Ce_atm, t_zu, q_zu, zU_zu, cdn_oce, chn_oce, cen_oce ) |
---|
444 | CASE( np_COARE_3p5 ) ; CALL turb_coare3p5( rn_zqt, rn_zu, zst, ztpot, zsq, sf(jp_humi)%fnow, wndm, & ! COARE v3.5 |
---|
445 | & Cd_atm, Ch_atm, Ce_atm, t_zu, q_zu, zU_zu, cdn_oce, chn_oce, cen_oce ) |
---|
446 | CASE( np_ECMWF ) ; CALL turb_ecmwf ( rn_zqt, rn_zu, zst, ztpot, zsq, sf(jp_humi)%fnow, wndm, & ! ECMWF |
---|
447 | & Cd_atm, Ch_atm, Ce_atm, t_zu, q_zu, zU_zu, cdn_oce, chn_oce, cen_oce ) |
---|
448 | CASE DEFAULT |
---|
449 | CALL ctl_stop( 'STOP', 'sbc_oce: non-existing bulk formula selected' ) |
---|
450 | END SELECT |
---|
451 | |
---|
452 | ! ! Compute true air density : |
---|
453 | IF( ABS(rn_zu - rn_zqt) > 0.01 ) THEN ! At zu: (probably useless to remove zrho*grav*rn_zu from SLP...) |
---|
454 | zrhoa(:,:) = rho_air( t_zu(:,:) , q_zu(:,:) , sf(jp_slp)%fnow(:,:,1) ) |
---|
455 | ELSE ! At zt: |
---|
456 | zrhoa(:,:) = rho_air( sf(jp_tair)%fnow(:,:,1), sf(jp_humi)%fnow(:,:,1), sf(jp_slp)%fnow(:,:,1) ) |
---|
457 | END IF |
---|
458 | |
---|
459 | !! CALL iom_put( "Cd_oce", Cd_atm) ! output value of pure ocean-atm. transfer coef. |
---|
460 | !! CALL iom_put( "Ch_oce", Ch_atm) ! output value of pure ocean-atm. transfer coef. |
---|
461 | |
---|
462 | DO jj = 1, jpj ! tau module, i and j component |
---|
463 | DO ji = 1, jpi |
---|
464 | zztmp = zrhoa(ji,jj) * zU_zu(ji,jj) * Cd_atm(ji,jj) ! using bulk wind speed |
---|
465 | taum (ji,jj) = zztmp * wndm (ji,jj) |
---|
466 | zwnd_i(ji,jj) = zztmp * zwnd_i(ji,jj) |
---|
467 | zwnd_j(ji,jj) = zztmp * zwnd_j(ji,jj) |
---|
468 | END DO |
---|
469 | END DO |
---|
470 | |
---|
471 | ! ! add the HF tau contribution to the wind stress module |
---|
472 | IF( lhftau ) taum(:,:) = taum(:,:) + sf(jp_tdif)%fnow(:,:,1) |
---|
473 | |
---|
474 | CALL iom_put( "taum_oce", taum ) ! output wind stress module |
---|
475 | |
---|
476 | ! ... utau, vtau at U- and V_points, resp. |
---|
477 | ! Note the use of 0.5*(2-umask) in order to unmask the stress along coastlines |
---|
478 | ! Note the use of MAX(tmask(i,j),tmask(i+1,j) is to mask tau over ice shelves |
---|
479 | DO jj = 1, jpjm1 |
---|
480 | DO ji = 1, fs_jpim1 |
---|
481 | utau(ji,jj) = 0.5 * ( 2. - umask(ji,jj,1) ) * ( zwnd_i(ji,jj) + zwnd_i(ji+1,jj ) ) & |
---|
482 | & * MAX(tmask(ji,jj,1),tmask(ji+1,jj,1)) |
---|
483 | vtau(ji,jj) = 0.5 * ( 2. - vmask(ji,jj,1) ) * ( zwnd_j(ji,jj) + zwnd_j(ji ,jj+1) ) & |
---|
484 | & * MAX(tmask(ji,jj,1),tmask(ji,jj+1,1)) |
---|
485 | END DO |
---|
486 | END DO |
---|
487 | CALL lbc_lnk_multi( utau, 'U', -1., vtau, 'V', -1. ) |
---|
488 | |
---|
489 | ! Turbulent fluxes over ocean |
---|
490 | ! ----------------------------- |
---|
491 | |
---|
492 | ! zqla used as temporary array, for rho*U (common term of bulk formulae): |
---|
493 | zqla(:,:) = zrhoa(:,:) * zU_zu(:,:) * tmask(:,:,1) |
---|
494 | |
---|
495 | IF( ABS( rn_zu - rn_zqt) < 0.01_wp ) THEN |
---|
496 | !! q_air and t_air are given at 10m (wind reference height) |
---|
497 | zevap(:,:) = rn_efac*MAX( 0._wp, zqla(:,:)*Ce_atm(:,:)*(zsq(:,:) - sf(jp_humi)%fnow(:,:,1)) ) ! Evaporation, using bulk wind speed |
---|
498 | zqsb (:,:) = cp_air(sf(jp_humi)%fnow(:,:,1))*zqla(:,:)*Ch_atm(:,:)*(zst(:,:) - ztpot(:,:) ) ! Sensible Heat, using bulk wind speed |
---|
499 | ELSE |
---|
500 | !! q_air and t_air are not given at 10m (wind reference height) |
---|
501 | ! Values of temp. and hum. adjusted to height of wind during bulk algorithm iteration must be used!!! |
---|
502 | zevap(:,:) = rn_efac*MAX( 0._wp, zqla(:,:)*Ce_atm(:,:)*(zsq(:,:) - q_zu(:,:) ) ) ! Evaporation, using bulk wind speed |
---|
503 | zqsb (:,:) = cp_air(sf(jp_humi)%fnow(:,:,1))*zqla(:,:)*Ch_atm(:,:)*(zst(:,:) - t_zu(:,:) ) ! Sensible Heat, using bulk wind speed |
---|
504 | ENDIF |
---|
505 | |
---|
506 | zqla(:,:) = L_vap(zst(:,:)) * zevap(:,:) ! Latent Heat flux |
---|
507 | |
---|
508 | |
---|
509 | IF(ln_ctl) THEN |
---|
510 | CALL prt_ctl( tab2d_1=zqla , clinfo1=' blk_oce: zqla : ', tab2d_2=Ce_atm , clinfo2=' Ce_oce : ' ) |
---|
511 | CALL prt_ctl( tab2d_1=zqsb , clinfo1=' blk_oce: zqsb : ', tab2d_2=Ch_atm , clinfo2=' Ch_oce : ' ) |
---|
512 | CALL prt_ctl( tab2d_1=zqlw , clinfo1=' blk_oce: zqlw : ', tab2d_2=qsr, clinfo2=' qsr : ' ) |
---|
513 | CALL prt_ctl( tab2d_1=zsq , clinfo1=' blk_oce: zsq : ', tab2d_2=zst, clinfo2=' zst : ' ) |
---|
514 | CALL prt_ctl( tab2d_1=utau , clinfo1=' blk_oce: utau : ', mask1=umask, & |
---|
515 | & tab2d_2=vtau , clinfo2= ' vtau : ', mask2=vmask ) |
---|
516 | CALL prt_ctl( tab2d_1=wndm , clinfo1=' blk_oce: wndm : ') |
---|
517 | CALL prt_ctl( tab2d_1=zst , clinfo1=' blk_oce: zst : ') |
---|
518 | ENDIF |
---|
519 | |
---|
520 | ! ----------------------------------------------------------------------------- ! |
---|
521 | ! III Total FLUXES ! |
---|
522 | ! ----------------------------------------------------------------------------- ! |
---|
523 | ! |
---|
524 | emp (:,:) = ( zevap(:,:) & ! mass flux (evap. - precip.) |
---|
525 | & - sf(jp_prec)%fnow(:,:,1) * rn_pfac ) * tmask(:,:,1) |
---|
526 | ! |
---|
527 | qns(:,:) = zqlw(:,:) - zqsb(:,:) - zqla(:,:) & ! Downward Non Solar |
---|
528 | & - sf(jp_snow)%fnow(:,:,1) * rn_pfac * lfus & ! remove latent melting heat for solid precip |
---|
529 | & - zevap(:,:) * pst(:,:) * rcp & ! remove evap heat content at SST |
---|
530 | & + ( sf(jp_prec)%fnow(:,:,1) - sf(jp_snow)%fnow(:,:,1) ) * rn_pfac & ! add liquid precip heat content at Tair |
---|
531 | & * ( sf(jp_tair)%fnow(:,:,1) - rt0 ) * rcp & |
---|
532 | & + sf(jp_snow)%fnow(:,:,1) * rn_pfac & ! add solid precip heat content at min(Tair,Tsnow) |
---|
533 | & * ( MIN( sf(jp_tair)%fnow(:,:,1), rt0_snow ) - rt0 ) * cpic |
---|
534 | qns(:,:) = qns(:,:) * tmask(:,:,1) |
---|
535 | ! |
---|
536 | #if defined key_si3 |
---|
537 | qns_oce(:,:) = zqlw(:,:) - zqsb(:,:) - zqla(:,:) ! non solar without emp (only needed by SI3) |
---|
538 | qsr_oce(:,:) = qsr(:,:) |
---|
539 | #endif |
---|
540 | ! |
---|
541 | IF ( nn_ice == 0 ) THEN |
---|
542 | CALL iom_put( "qlw_oce" , zqlw ) ! output downward longwave heat over the ocean |
---|
543 | CALL iom_put( "qsb_oce" , - zqsb ) ! output downward sensible heat over the ocean |
---|
544 | CALL iom_put( "qla_oce" , - zqla ) ! output downward latent heat over the ocean |
---|
545 | CALL iom_put( "qemp_oce", qns-zqlw+zqsb+zqla ) ! output downward heat content of E-P over the ocean |
---|
546 | CALL iom_put( "qns_oce" , qns ) ! output downward non solar heat over the ocean |
---|
547 | CALL iom_put( "qsr_oce" , qsr ) ! output downward solar heat over the ocean |
---|
548 | CALL iom_put( "qt_oce" , qns+qsr ) ! output total downward heat over the ocean |
---|
549 | tprecip(:,:) = sf(jp_prec)%fnow(:,:,1) * rn_pfac * tmask(:,:,1) ! output total precipitation [kg/m2/s] |
---|
550 | sprecip(:,:) = sf(jp_snow)%fnow(:,:,1) * rn_pfac * tmask(:,:,1) ! output solid precipitation [kg/m2/s] |
---|
551 | CALL iom_put( 'snowpre', sprecip ) ! Snow |
---|
552 | CALL iom_put( 'precip' , tprecip ) ! Total precipitation |
---|
553 | ENDIF |
---|
554 | ! |
---|
555 | IF(ln_ctl) THEN |
---|
556 | CALL prt_ctl(tab2d_1=zqsb , clinfo1=' blk_oce: zqsb : ', tab2d_2=zqlw , clinfo2=' zqlw : ') |
---|
557 | CALL prt_ctl(tab2d_1=zqla , clinfo1=' blk_oce: zqla : ', tab2d_2=qsr , clinfo2=' qsr : ') |
---|
558 | CALL prt_ctl(tab2d_1=pst , clinfo1=' blk_oce: pst : ', tab2d_2=emp , clinfo2=' emp : ') |
---|
559 | CALL prt_ctl(tab2d_1=utau , clinfo1=' blk_oce: utau : ', mask1=umask, & |
---|
560 | & tab2d_2=vtau , clinfo2= ' vtau : ' , mask2=vmask ) |
---|
561 | ENDIF |
---|
562 | ! |
---|
563 | END SUBROUTINE blk_oce |
---|
564 | |
---|
565 | |
---|
566 | |
---|
567 | FUNCTION rho_air( ptak, pqa, pslp ) |
---|
568 | !!------------------------------------------------------------------------------- |
---|
569 | !! *** FUNCTION rho_air *** |
---|
570 | !! |
---|
571 | !! ** Purpose : compute density of (moist) air using the eq. of state of the atmosphere |
---|
572 | !! |
---|
573 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://sourceforge.net/p/aerobulk) |
---|
574 | !!------------------------------------------------------------------------------- |
---|
575 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak ! air temperature [K] |
---|
576 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! air specific humidity [kg/kg] |
---|
577 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pslp ! pressure in [Pa] |
---|
578 | REAL(wp), DIMENSION(jpi,jpj) :: rho_air ! density of moist air [kg/m^3] |
---|
579 | !!------------------------------------------------------------------------------- |
---|
580 | ! |
---|
581 | rho_air = pslp / ( R_dry*ptak * ( 1._wp + rctv0*pqa ) ) |
---|
582 | ! |
---|
583 | END FUNCTION rho_air |
---|
584 | |
---|
585 | |
---|
586 | FUNCTION cp_air( pqa ) |
---|
587 | !!------------------------------------------------------------------------------- |
---|
588 | !! *** FUNCTION cp_air *** |
---|
589 | !! |
---|
590 | !! ** Purpose : Compute specific heat (Cp) of moist air |
---|
591 | !! |
---|
592 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://sourceforge.net/p/aerobulk) |
---|
593 | !!------------------------------------------------------------------------------- |
---|
594 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! air specific humidity [kg/kg] |
---|
595 | REAL(wp), DIMENSION(jpi,jpj) :: cp_air ! specific heat of moist air [J/K/kg] |
---|
596 | !!------------------------------------------------------------------------------- |
---|
597 | ! |
---|
598 | Cp_air = Cp_dry + Cp_vap * pqa |
---|
599 | ! |
---|
600 | END FUNCTION cp_air |
---|
601 | |
---|
602 | |
---|
603 | FUNCTION q_sat( ptak, pslp ) |
---|
604 | !!---------------------------------------------------------------------------------- |
---|
605 | !! *** FUNCTION q_sat *** |
---|
606 | !! |
---|
607 | !! ** Purpose : Specific humidity at saturation in [kg/kg] |
---|
608 | !! Based on accurate estimate of "e_sat" |
---|
609 | !! aka saturation water vapor (Goff, 1957) |
---|
610 | !! |
---|
611 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://sourceforge.net/p/aerobulk) |
---|
612 | !!---------------------------------------------------------------------------------- |
---|
613 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak ! air temperature [K] |
---|
614 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pslp ! sea level atmospheric pressure [Pa] |
---|
615 | REAL(wp), DIMENSION(jpi,jpj) :: q_sat ! Specific humidity at saturation [kg/kg] |
---|
616 | ! |
---|
617 | INTEGER :: ji, jj ! dummy loop indices |
---|
618 | REAL(wp) :: ze_sat, ztmp ! local scalar |
---|
619 | !!---------------------------------------------------------------------------------- |
---|
620 | ! |
---|
621 | DO jj = 1, jpj |
---|
622 | DO ji = 1, jpi |
---|
623 | ! |
---|
624 | ztmp = rt0 / ptak(ji,jj) |
---|
625 | ! |
---|
626 | ! Vapour pressure at saturation [hPa] : WMO, (Goff, 1957) |
---|
627 | ze_sat = 10.**( 10.79574*(1. - ztmp) - 5.028*LOG10(ptak(ji,jj)/rt0) & |
---|
628 | & + 1.50475*10.**(-4)*(1. - 10.**(-8.2969*(ptak(ji,jj)/rt0 - 1.)) ) & |
---|
629 | & + 0.42873*10.**(-3)*(10.**(4.76955*(1. - ztmp)) - 1.) + 0.78614 ) |
---|
630 | ! |
---|
631 | q_sat(ji,jj) = reps0 * ze_sat/( 0.01_wp*pslp(ji,jj) - (1._wp - reps0)*ze_sat ) ! 0.01 because SLP is in [Pa] |
---|
632 | ! |
---|
633 | END DO |
---|
634 | END DO |
---|
635 | ! |
---|
636 | END FUNCTION q_sat |
---|
637 | |
---|
638 | |
---|
639 | FUNCTION gamma_moist( ptak, pqa ) |
---|
640 | !!---------------------------------------------------------------------------------- |
---|
641 | !! *** FUNCTION gamma_moist *** |
---|
642 | !! |
---|
643 | !! ** Purpose : Compute the moist adiabatic lapse-rate. |
---|
644 | !! => http://glossary.ametsoc.org/wiki/Moist-adiabatic_lapse_rate |
---|
645 | !! => http://www.geog.ucsb.edu/~joel/g266_s10/lecture_notes/chapt03/oh10_3_01/oh10_3_01.html |
---|
646 | !! |
---|
647 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://sourceforge.net/p/aerobulk) |
---|
648 | !!---------------------------------------------------------------------------------- |
---|
649 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: ptak ! air temperature [K] |
---|
650 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pqa ! specific humidity [kg/kg] |
---|
651 | REAL(wp), DIMENSION(jpi,jpj) :: gamma_moist ! moist adiabatic lapse-rate |
---|
652 | ! |
---|
653 | INTEGER :: ji, jj ! dummy loop indices |
---|
654 | REAL(wp) :: zrv, ziRT ! local scalar |
---|
655 | !!---------------------------------------------------------------------------------- |
---|
656 | ! |
---|
657 | DO jj = 1, jpj |
---|
658 | DO ji = 1, jpi |
---|
659 | zrv = pqa(ji,jj) / (1. - pqa(ji,jj)) |
---|
660 | ziRT = 1. / (R_dry*ptak(ji,jj)) ! 1/RT |
---|
661 | gamma_moist(ji,jj) = grav * ( 1. + cevap*zrv*ziRT ) / ( Cp_dry + cevap*cevap*zrv*reps0*ziRT/ptak(ji,jj) ) |
---|
662 | END DO |
---|
663 | END DO |
---|
664 | ! |
---|
665 | END FUNCTION gamma_moist |
---|
666 | |
---|
667 | |
---|
668 | FUNCTION L_vap( psst ) |
---|
669 | !!--------------------------------------------------------------------------------- |
---|
670 | !! *** FUNCTION L_vap *** |
---|
671 | !! |
---|
672 | !! ** Purpose : Compute the latent heat of vaporization of water from temperature |
---|
673 | !! |
---|
674 | !! ** Author: L. Brodeau, june 2016 / AeroBulk (https://sourceforge.net/p/aerobulk) |
---|
675 | !!---------------------------------------------------------------------------------- |
---|
676 | REAL(wp), DIMENSION(jpi,jpj) :: L_vap ! latent heat of vaporization [J/kg] |
---|
677 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: psst ! water temperature [K] |
---|
678 | !!---------------------------------------------------------------------------------- |
---|
679 | ! |
---|
680 | L_vap = ( 2.501 - 0.00237 * ( psst(:,:) - rt0) ) * 1.e6 |
---|
681 | ! |
---|
682 | END FUNCTION L_vap |
---|
683 | |
---|
684 | #if defined key_si3 |
---|
685 | !!---------------------------------------------------------------------- |
---|
686 | !! 'key_si3' SI3 sea-ice model |
---|
687 | !!---------------------------------------------------------------------- |
---|
688 | !! blk_ice_tau : provide the air-ice stress |
---|
689 | !! blk_ice_flx : provide the heat and mass fluxes at air-ice interface |
---|
690 | !! blk_ice_qcn : provide ice surface temperature and snow/ice conduction flux (emulating JULES coupler) |
---|
691 | !! Cdn10_Lupkes2012 : Lupkes et al. (2012) air-ice drag |
---|
692 | !! Cdn10_Lupkes2015 : Lupkes et al. (2015) air-ice drag |
---|
693 | !!---------------------------------------------------------------------- |
---|
694 | |
---|
695 | SUBROUTINE blk_ice_tau |
---|
696 | !!--------------------------------------------------------------------- |
---|
697 | !! *** ROUTINE blk_ice_tau *** |
---|
698 | !! |
---|
699 | !! ** Purpose : provide the surface boundary condition over sea-ice |
---|
700 | !! |
---|
701 | !! ** Method : compute momentum using bulk formulation |
---|
702 | !! formulea, ice variables and read atmospheric fields. |
---|
703 | !! NB: ice drag coefficient is assumed to be a constant |
---|
704 | !!--------------------------------------------------------------------- |
---|
705 | INTEGER :: ji, jj ! dummy loop indices |
---|
706 | REAL(wp) :: zwndi_f , zwndj_f, zwnorm_f ! relative wind module and components at F-point |
---|
707 | REAL(wp) :: zwndi_t , zwndj_t ! relative wind components at T-point |
---|
708 | REAL(wp), DIMENSION(jpi,jpj) :: zrhoa ! transfer coefficient for momentum (tau) |
---|
709 | !!--------------------------------------------------------------------- |
---|
710 | ! |
---|
711 | ! set transfer coefficients to default sea-ice values |
---|
712 | Cd_atm(:,:) = Cd_ice |
---|
713 | Ch_atm(:,:) = Cd_ice |
---|
714 | Ce_atm(:,:) = Cd_ice |
---|
715 | |
---|
716 | wndm_ice(:,:) = 0._wp !!gm brutal.... |
---|
717 | |
---|
718 | ! ------------------------------------------------------------ ! |
---|
719 | ! Wind module relative to the moving ice ( U10m - U_ice ) ! |
---|
720 | ! ------------------------------------------------------------ ! |
---|
721 | SELECT CASE( cp_ice_msh ) |
---|
722 | CASE( 'I' ) ! B-grid ice dynamics : I-point (i.e. F-point with sea-ice indexation) |
---|
723 | ! and scalar wind at T-point ( = | U10m - U_ice | ) (masked) |
---|
724 | DO jj = 2, jpjm1 |
---|
725 | DO ji = 2, jpim1 ! B grid : NO vector opt |
---|
726 | ! ... scalar wind at T-point (fld being at T-point) |
---|
727 | zwndi_t = sf(jp_wndi)%fnow(ji,jj,1) - rn_vfac * 0.25 * ( u_ice(ji,jj+1) + u_ice(ji+1,jj+1) & |
---|
728 | & + u_ice(ji,jj ) + u_ice(ji+1,jj ) ) |
---|
729 | zwndj_t = sf(jp_wndj)%fnow(ji,jj,1) - rn_vfac * 0.25 * ( v_ice(ji,jj+1) + v_ice(ji+1,jj+1) & |
---|
730 | & + v_ice(ji,jj ) + v_ice(ji+1,jj ) ) |
---|
731 | wndm_ice(ji,jj) = SQRT( zwndi_t * zwndi_t + zwndj_t * zwndj_t ) * tmask(ji,jj,1) |
---|
732 | END DO |
---|
733 | END DO |
---|
734 | CALL lbc_lnk( wndm_ice, 'T', 1. ) |
---|
735 | ! |
---|
736 | CASE( 'C' ) ! C-grid ice dynamics : U & V-points (same as ocean) |
---|
737 | DO jj = 2, jpjm1 |
---|
738 | DO ji = fs_2, fs_jpim1 ! vect. opt. |
---|
739 | zwndi_t = ( sf(jp_wndi)%fnow(ji,jj,1) - rn_vfac * 0.5 * ( u_ice(ji-1,jj ) + u_ice(ji,jj) ) ) |
---|
740 | zwndj_t = ( sf(jp_wndj)%fnow(ji,jj,1) - rn_vfac * 0.5 * ( v_ice(ji ,jj-1) + v_ice(ji,jj) ) ) |
---|
741 | wndm_ice(ji,jj) = SQRT( zwndi_t * zwndi_t + zwndj_t * zwndj_t ) * tmask(ji,jj,1) |
---|
742 | END DO |
---|
743 | END DO |
---|
744 | CALL lbc_lnk( wndm_ice, 'T', 1. ) |
---|
745 | ! |
---|
746 | END SELECT |
---|
747 | |
---|
748 | ! Make ice-atm. drag dependent on ice concentration |
---|
749 | IF ( ln_Cd_L12 ) THEN ! calculate new drag from Lupkes(2012) equations |
---|
750 | CALL Cdn10_Lupkes2012( Cd_atm ) |
---|
751 | Ch_atm(:,:) = Cd_atm(:,:) ! momentum and heat transfer coef. are considered identical |
---|
752 | ELSEIF( ln_Cd_L15 ) THEN ! calculate new drag from Lupkes(2015) equations |
---|
753 | CALL Cdn10_Lupkes2015( Cd_atm, Ch_atm ) |
---|
754 | ENDIF |
---|
755 | |
---|
756 | !! CALL iom_put( "Cd_ice", Cd_atm) ! output value of pure ice-atm. transfer coef. |
---|
757 | !! CALL iom_put( "Ch_ice", Ch_atm) ! output value of pure ice-atm. transfer coef. |
---|
758 | |
---|
759 | ! local scalars ( place there for vector optimisation purposes) |
---|
760 | ! Computing density of air! Way denser that 1.2 over sea-ice !!! |
---|
761 | zrhoa (:,:) = rho_air(sf(jp_tair)%fnow(:,:,1), sf(jp_humi)%fnow(:,:,1), sf(jp_slp)%fnow(:,:,1)) |
---|
762 | |
---|
763 | !!gm brutal.... |
---|
764 | utau_ice (:,:) = 0._wp |
---|
765 | vtau_ice (:,:) = 0._wp |
---|
766 | !!gm end |
---|
767 | |
---|
768 | ! ------------------------------------------------------------ ! |
---|
769 | ! Wind stress relative to the moving ice ( U10m - U_ice ) ! |
---|
770 | ! ------------------------------------------------------------ ! |
---|
771 | SELECT CASE( cp_ice_msh ) |
---|
772 | CASE( 'I' ) ! B-grid ice dynamics : I-point (i.e. F-point with sea-ice indexation) |
---|
773 | DO jj = 2, jpjm1 |
---|
774 | DO ji = 2, jpim1 ! B grid : NO vector opt |
---|
775 | ! ... scalar wind at I-point (fld being at T-point) |
---|
776 | zwndi_f = 0.25 * ( sf(jp_wndi)%fnow(ji-1,jj ,1) + sf(jp_wndi)%fnow(ji ,jj ,1) & |
---|
777 | & + sf(jp_wndi)%fnow(ji-1,jj-1,1) + sf(jp_wndi)%fnow(ji ,jj-1,1) ) - rn_vfac * u_ice(ji,jj) |
---|
778 | zwndj_f = 0.25 * ( sf(jp_wndj)%fnow(ji-1,jj ,1) + sf(jp_wndj)%fnow(ji ,jj ,1) & |
---|
779 | & + sf(jp_wndj)%fnow(ji-1,jj-1,1) + sf(jp_wndj)%fnow(ji ,jj-1,1) ) - rn_vfac * v_ice(ji,jj) |
---|
780 | ! ... ice stress at I-point |
---|
781 | zwnorm_f = zrhoa(ji,jj) * Cd_atm(ji,jj) * SQRT( zwndi_f * zwndi_f + zwndj_f * zwndj_f ) |
---|
782 | utau_ice(ji,jj) = zwnorm_f * zwndi_f |
---|
783 | vtau_ice(ji,jj) = zwnorm_f * zwndj_f |
---|
784 | END DO |
---|
785 | END DO |
---|
786 | CALL lbc_lnk_multi( utau_ice, 'I', -1., vtau_ice, 'I', -1. ) |
---|
787 | ! |
---|
788 | CASE( 'C' ) ! C-grid ice dynamics : U & V-points (same as ocean) |
---|
789 | DO jj = 2, jpjm1 |
---|
790 | DO ji = fs_2, fs_jpim1 ! vect. opt. |
---|
791 | utau_ice(ji,jj) = 0.5 * zrhoa(ji,jj) * Cd_atm(ji,jj) * ( wndm_ice(ji+1,jj ) + wndm_ice(ji,jj) ) & |
---|
792 | & * ( 0.5 * (sf(jp_wndi)%fnow(ji+1,jj,1) + sf(jp_wndi)%fnow(ji,jj,1) ) - rn_vfac * u_ice(ji,jj) ) |
---|
793 | vtau_ice(ji,jj) = 0.5 * zrhoa(ji,jj) * Cd_atm(ji,jj) * ( wndm_ice(ji,jj+1 ) + wndm_ice(ji,jj) ) & |
---|
794 | & * ( 0.5 * (sf(jp_wndj)%fnow(ji,jj+1,1) + sf(jp_wndj)%fnow(ji,jj,1) ) - rn_vfac * v_ice(ji,jj) ) |
---|
795 | END DO |
---|
796 | END DO |
---|
797 | CALL lbc_lnk_multi( utau_ice, 'U', -1., vtau_ice, 'V', -1. ) |
---|
798 | ! |
---|
799 | END SELECT |
---|
800 | ! |
---|
801 | IF(ln_ctl) THEN |
---|
802 | CALL prt_ctl(tab2d_1=utau_ice , clinfo1=' blk_ice: utau_ice : ', tab2d_2=vtau_ice , clinfo2=' vtau_ice : ') |
---|
803 | CALL prt_ctl(tab2d_1=wndm_ice , clinfo1=' blk_ice: wndm_ice : ') |
---|
804 | ENDIF |
---|
805 | ! |
---|
806 | END SUBROUTINE blk_ice_tau |
---|
807 | |
---|
808 | |
---|
809 | SUBROUTINE blk_ice_flx( ptsu, phs, phi, palb ) |
---|
810 | !!--------------------------------------------------------------------- |
---|
811 | !! *** ROUTINE blk_ice_flx *** |
---|
812 | !! |
---|
813 | !! ** Purpose : provide the heat and mass fluxes at air-ice interface |
---|
814 | !! |
---|
815 | !! ** Method : compute heat and freshwater exchanged |
---|
816 | !! between atmosphere and sea-ice using bulk formulation |
---|
817 | !! formulea, ice variables and read atmmospheric fields. |
---|
818 | !! |
---|
819 | !! caution : the net upward water flux has with mm/day unit |
---|
820 | !!--------------------------------------------------------------------- |
---|
821 | REAL(wp), DIMENSION(:,:,:), INTENT(in) :: ptsu ! sea ice surface temperature |
---|
822 | REAL(wp), DIMENSION(:,:,:), INTENT(in) :: phs ! snow thickness |
---|
823 | REAL(wp), DIMENSION(:,:,:), INTENT(in) :: phi ! ice thickness |
---|
824 | REAL(wp), DIMENSION(:,:,:), INTENT(in) :: palb ! ice albedo (all skies) |
---|
825 | !! |
---|
826 | INTEGER :: ji, jj, jl ! dummy loop indices |
---|
827 | REAL(wp) :: zst3 ! local variable |
---|
828 | REAL(wp) :: zcoef_dqlw, zcoef_dqla ! - - |
---|
829 | REAL(wp) :: zztmp, z1_lsub ! - - |
---|
830 | REAL(wp) :: zfr1, zfr2 ! local variables |
---|
831 | REAL(wp), DIMENSION(jpi,jpj,jpl) :: z1_st ! inverse of surface temperature |
---|
832 | REAL(wp), DIMENSION(jpi,jpj,jpl) :: z_qlw ! long wave heat flux over ice |
---|
833 | REAL(wp), DIMENSION(jpi,jpj,jpl) :: z_qsb ! sensible heat flux over ice |
---|
834 | REAL(wp), DIMENSION(jpi,jpj,jpl) :: z_dqlw ! long wave heat sensitivity over ice |
---|
835 | REAL(wp), DIMENSION(jpi,jpj,jpl) :: z_dqsb ! sensible heat sensitivity over ice |
---|
836 | REAL(wp), DIMENSION(jpi,jpj) :: zevap, zsnw ! evaporation and snw distribution after wind blowing (SI3) |
---|
837 | REAL(wp), DIMENSION(jpi,jpj) :: zrhoa |
---|
838 | !!--------------------------------------------------------------------- |
---|
839 | ! |
---|
840 | zcoef_dqlw = 4.0 * 0.95 * Stef ! local scalars |
---|
841 | zcoef_dqla = -Ls * 11637800. * (-5897.8) |
---|
842 | ! |
---|
843 | zrhoa(:,:) = rho_air( sf(jp_tair)%fnow(:,:,1), sf(jp_humi)%fnow(:,:,1), sf(jp_slp)%fnow(:,:,1) ) |
---|
844 | ! |
---|
845 | zztmp = 1. / ( 1. - albo ) |
---|
846 | WHERE( ptsu(:,:,:) /= 0._wp ) ; z1_st(:,:,:) = 1._wp / ptsu(:,:,:) |
---|
847 | ELSEWHERE ; z1_st(:,:,:) = 0._wp |
---|
848 | END WHERE |
---|
849 | ! ! ========================== ! |
---|
850 | DO jl = 1, jpl ! Loop over ice categories ! |
---|
851 | ! ! ========================== ! |
---|
852 | DO jj = 1 , jpj |
---|
853 | DO ji = 1, jpi |
---|
854 | ! ----------------------------! |
---|
855 | ! I Radiative FLUXES ! |
---|
856 | ! ----------------------------! |
---|
857 | zst3 = ptsu(ji,jj,jl) * ptsu(ji,jj,jl) * ptsu(ji,jj,jl) |
---|
858 | ! Short Wave (sw) |
---|
859 | qsr_ice(ji,jj,jl) = zztmp * ( 1. - palb(ji,jj,jl) ) * qsr(ji,jj) |
---|
860 | ! Long Wave (lw) |
---|
861 | z_qlw(ji,jj,jl) = 0.95 * ( sf(jp_qlw)%fnow(ji,jj,1) - Stef * ptsu(ji,jj,jl) * zst3 ) * tmask(ji,jj,1) |
---|
862 | ! lw sensitivity |
---|
863 | z_dqlw(ji,jj,jl) = zcoef_dqlw * zst3 |
---|
864 | |
---|
865 | ! ----------------------------! |
---|
866 | ! II Turbulent FLUXES ! |
---|
867 | ! ----------------------------! |
---|
868 | |
---|
869 | ! ... turbulent heat fluxes with Ch_atm recalculated in blk_ice_tau |
---|
870 | ! Sensible Heat |
---|
871 | z_qsb(ji,jj,jl) = zrhoa(ji,jj) * cpa * Ch_atm(ji,jj) * wndm_ice(ji,jj) * (ptsu(ji,jj,jl) - sf(jp_tair)%fnow(ji,jj,1)) |
---|
872 | ! Latent Heat |
---|
873 | qla_ice(ji,jj,jl) = rn_efac * MAX( 0.e0, zrhoa(ji,jj) * Ls * Ch_atm(ji,jj) * wndm_ice(ji,jj) * & |
---|
874 | & ( 11637800. * EXP( -5897.8 * z1_st(ji,jj,jl) ) / zrhoa(ji,jj) - sf(jp_humi)%fnow(ji,jj,1) ) ) |
---|
875 | ! Latent heat sensitivity for ice (Dqla/Dt) |
---|
876 | IF( qla_ice(ji,jj,jl) > 0._wp ) THEN |
---|
877 | dqla_ice(ji,jj,jl) = rn_efac * zcoef_dqla * Ch_atm(ji,jj) * wndm_ice(ji,jj) * & |
---|
878 | & z1_st(ji,jj,jl)*z1_st(ji,jj,jl) * EXP(-5897.8 * z1_st(ji,jj,jl)) |
---|
879 | ELSE |
---|
880 | dqla_ice(ji,jj,jl) = 0._wp |
---|
881 | ENDIF |
---|
882 | |
---|
883 | ! Sensible heat sensitivity (Dqsb_ice/Dtn_ice) |
---|
884 | z_dqsb(ji,jj,jl) = zrhoa(ji,jj) * cpa * Ch_atm(ji,jj) * wndm_ice(ji,jj) |
---|
885 | |
---|
886 | ! ----------------------------! |
---|
887 | ! III Total FLUXES ! |
---|
888 | ! ----------------------------! |
---|
889 | ! Downward Non Solar flux |
---|
890 | qns_ice (ji,jj,jl) = z_qlw (ji,jj,jl) - z_qsb (ji,jj,jl) - qla_ice (ji,jj,jl) |
---|
891 | ! Total non solar heat flux sensitivity for ice |
---|
892 | dqns_ice(ji,jj,jl) = - ( z_dqlw(ji,jj,jl) + z_dqsb(ji,jj,jl) + dqla_ice(ji,jj,jl) ) |
---|
893 | END DO |
---|
894 | ! |
---|
895 | END DO |
---|
896 | ! |
---|
897 | END DO |
---|
898 | ! |
---|
899 | tprecip(:,:) = sf(jp_prec)%fnow(:,:,1) * rn_pfac * tmask(:,:,1) ! total precipitation [kg/m2/s] |
---|
900 | sprecip(:,:) = sf(jp_snow)%fnow(:,:,1) * rn_pfac * tmask(:,:,1) ! solid precipitation [kg/m2/s] |
---|
901 | CALL iom_put( 'snowpre', sprecip ) ! Snow precipitation |
---|
902 | CALL iom_put( 'precip' , tprecip ) ! Total precipitation |
---|
903 | |
---|
904 | ! --- evaporation --- ! |
---|
905 | z1_lsub = 1._wp / Lsub |
---|
906 | evap_ice (:,:,:) = rn_efac * qla_ice (:,:,:) * z1_lsub ! sublimation |
---|
907 | devap_ice(:,:,:) = rn_efac * dqla_ice(:,:,:) * z1_lsub ! d(sublimation)/dT |
---|
908 | zevap (:,:) = rn_efac * ( emp(:,:) + tprecip(:,:) ) ! evaporation over ocean |
---|
909 | |
---|
910 | ! --- evaporation minus precipitation --- ! |
---|
911 | zsnw(:,:) = 0._wp |
---|
912 | CALL ice_thd_snwblow( (1.-at_i_b(:,:)), zsnw ) ! snow distribution over ice after wind blowing |
---|
913 | emp_oce(:,:) = ( 1._wp - at_i_b(:,:) ) * zevap(:,:) - ( tprecip(:,:) - sprecip(:,:) ) - sprecip(:,:) * (1._wp - zsnw ) |
---|
914 | emp_ice(:,:) = SUM( a_i_b(:,:,:) * evap_ice(:,:,:), dim=3 ) - sprecip(:,:) * zsnw |
---|
915 | emp_tot(:,:) = emp_oce(:,:) + emp_ice(:,:) |
---|
916 | |
---|
917 | ! --- heat flux associated with emp --- ! |
---|
918 | qemp_oce(:,:) = - ( 1._wp - at_i_b(:,:) ) * zevap(:,:) * sst_m(:,:) * rcp & ! evap at sst |
---|
919 | & + ( tprecip(:,:) - sprecip(:,:) ) * ( sf(jp_tair)%fnow(:,:,1) - rt0 ) * rcp & ! liquid precip at Tair |
---|
920 | & + sprecip(:,:) * ( 1._wp - zsnw ) * & ! solid precip at min(Tair,Tsnow) |
---|
921 | & ( ( MIN( sf(jp_tair)%fnow(:,:,1), rt0_snow ) - rt0 ) * cpic * tmask(:,:,1) - lfus ) |
---|
922 | qemp_ice(:,:) = sprecip(:,:) * zsnw * & ! solid precip (only) |
---|
923 | & ( ( MIN( sf(jp_tair)%fnow(:,:,1), rt0_snow ) - rt0 ) * cpic * tmask(:,:,1) - lfus ) |
---|
924 | |
---|
925 | ! --- total solar and non solar fluxes --- ! |
---|
926 | qns_tot(:,:) = ( 1._wp - at_i_b(:,:) ) * qns_oce(:,:) + SUM( a_i_b(:,:,:) * qns_ice(:,:,:), dim=3 ) & |
---|
927 | & + qemp_ice(:,:) + qemp_oce(:,:) |
---|
928 | qsr_tot(:,:) = ( 1._wp - at_i_b(:,:) ) * qsr_oce(:,:) + SUM( a_i_b(:,:,:) * qsr_ice(:,:,:), dim=3 ) |
---|
929 | |
---|
930 | ! --- heat content of precip over ice in J/m3 (to be used in 1D-thermo) --- ! |
---|
931 | qprec_ice(:,:) = rhosn * ( ( MIN( sf(jp_tair)%fnow(:,:,1), rt0_snow ) - rt0 ) * cpic * tmask(:,:,1) - lfus ) |
---|
932 | |
---|
933 | ! --- heat content of evap over ice in W/m2 (to be used in 1D-thermo) --- |
---|
934 | DO jl = 1, jpl |
---|
935 | qevap_ice(:,:,jl) = 0._wp ! should be -evap_ice(:,:,jl)*( ( Tice - rt0 ) * cpic * tmask(:,:,1) ) |
---|
936 | ! ! But we do not have Tice => consider it at 0degC => evap=0 |
---|
937 | END DO |
---|
938 | |
---|
939 | ! --- shortwave radiation transmitted below the surface (W/m2, see Grenfell Maykut 77) --- ! |
---|
940 | zfr1 = ( 0.18 * ( 1.0 - cldf_ice ) + 0.35 * cldf_ice ) ! transmission when hi>10cm |
---|
941 | zfr2 = ( 0.82 * ( 1.0 - cldf_ice ) + 0.65 * cldf_ice ) ! zfr2 such that zfr1 + zfr2 to equal 1 |
---|
942 | ! |
---|
943 | WHERE ( phs(:,:,:) <= 0._wp .AND. phi(:,:,:) < 0.1_wp ) ! linear decrease from hi=0 to 10cm |
---|
944 | qsr_ice_tr(:,:,:) = qsr_ice(:,:,:) * ( zfr1 + zfr2 * ( 1._wp - phi(:,:,:) * 10._wp ) ) |
---|
945 | ELSEWHERE( phs(:,:,:) <= 0._wp .AND. phi(:,:,:) >= 0.1_wp ) ! constant (zfr1) when hi>10cm |
---|
946 | qsr_ice_tr(:,:,:) = qsr_ice(:,:,:) * zfr1 |
---|
947 | ELSEWHERE ! zero when hs>0 |
---|
948 | qsr_ice_tr(:,:,:) = 0._wp |
---|
949 | END WHERE |
---|
950 | ! |
---|
951 | IF(ln_ctl) THEN |
---|
952 | CALL prt_ctl(tab3d_1=qla_ice , clinfo1=' blk_ice: qla_ice : ', tab3d_2=z_qsb , clinfo2=' z_qsb : ', kdim=jpl) |
---|
953 | CALL prt_ctl(tab3d_1=z_qlw , clinfo1=' blk_ice: z_qlw : ', tab3d_2=dqla_ice, clinfo2=' dqla_ice : ', kdim=jpl) |
---|
954 | CALL prt_ctl(tab3d_1=z_dqsb , clinfo1=' blk_ice: z_dqsb : ', tab3d_2=z_dqlw , clinfo2=' z_dqlw : ', kdim=jpl) |
---|
955 | CALL prt_ctl(tab3d_1=dqns_ice, clinfo1=' blk_ice: dqns_ice : ', tab3d_2=qsr_ice , clinfo2=' qsr_ice : ', kdim=jpl) |
---|
956 | CALL prt_ctl(tab3d_1=ptsu , clinfo1=' blk_ice: ptsu : ', tab3d_2=qns_ice , clinfo2=' qns_ice : ', kdim=jpl) |
---|
957 | CALL prt_ctl(tab2d_1=tprecip , clinfo1=' blk_ice: tprecip : ', tab2d_2=sprecip , clinfo2=' sprecip : ') |
---|
958 | ENDIF |
---|
959 | ! |
---|
960 | END SUBROUTINE blk_ice_flx |
---|
961 | |
---|
962 | |
---|
963 | SUBROUTINE blk_ice_qcn( k_virtual_itd, ptsu, ptb, phs, phi ) |
---|
964 | !!--------------------------------------------------------------------- |
---|
965 | !! *** ROUTINE blk_ice_qcn *** |
---|
966 | !! |
---|
967 | !! ** Purpose : Compute surface temperature and snow/ice conduction flux |
---|
968 | !! to force sea ice / snow thermodynamics |
---|
969 | !! in the case JULES coupler is emulated |
---|
970 | !! |
---|
971 | !! ** Method : compute surface energy balance assuming neglecting heat storage |
---|
972 | !! following the 0-layer Semtner (1976) approach |
---|
973 | !! |
---|
974 | !! ** Outputs : - ptsu : sea-ice / snow surface temperature (K) |
---|
975 | !! - qcn_ice : surface inner conduction flux (W/m2) |
---|
976 | !! |
---|
977 | !!--------------------------------------------------------------------- |
---|
978 | INTEGER , INTENT(in ) :: k_virtual_itd ! single-category option |
---|
979 | REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: ptsu ! sea ice / snow surface temperature |
---|
980 | REAL(wp), DIMENSION(:,:) , INTENT(in ) :: ptb ! sea ice base temperature |
---|
981 | REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: phs ! snow thickness |
---|
982 | REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: phi ! sea ice thickness |
---|
983 | ! |
---|
984 | INTEGER , PARAMETER :: nit = 10 ! number of iterations |
---|
985 | REAL(wp), PARAMETER :: zepsilon = 0.1_wp ! characteristic thickness for enhanced conduction |
---|
986 | ! |
---|
987 | INTEGER :: ji, jj, jl ! dummy loop indices |
---|
988 | INTEGER :: iter ! local integer |
---|
989 | REAL(wp) :: zfac, zfac2, zfac3 ! local scalars |
---|
990 | REAL(wp) :: zkeff_h, ztsu, ztsu0 ! |
---|
991 | REAL(wp) :: zqc, zqnet ! |
---|
992 | REAL(wp) :: zhe, zqa0 ! |
---|
993 | REAL(wp), DIMENSION(jpi,jpj,jpl) :: zgfac ! enhanced conduction factor |
---|
994 | !!--------------------------------------------------------------------- |
---|
995 | |
---|
996 | ! -------------------------------------! |
---|
997 | ! I Enhanced conduction factor ! |
---|
998 | ! -------------------------------------! |
---|
999 | ! Emulates the enhancement of conduction by unresolved thin ice (k_virtual_itd = 1/2) |
---|
1000 | ! Fichefet and Morales Maqueda, JGR 1997 |
---|
1001 | ! |
---|
1002 | zgfac(:,:,:) = 1._wp |
---|
1003 | |
---|
1004 | SELECT CASE ( k_virtual_itd ) |
---|
1005 | ! |
---|
1006 | CASE ( 1 , 2 ) |
---|
1007 | ! |
---|
1008 | zfac = 1._wp / ( rn_cnd_s + rcdic ) |
---|
1009 | zfac2 = EXP(1._wp) * 0.5_wp * zepsilon |
---|
1010 | zfac3 = 2._wp / zepsilon |
---|
1011 | ! |
---|
1012 | DO jl = 1, jpl |
---|
1013 | DO jj = 1 , jpj |
---|
1014 | DO ji = 1, jpi |
---|
1015 | zhe = ( rn_cnd_s * phi(ji,jj,jl) + rcdic * phs(ji,jj,jl) ) * zfac ! Effective thickness |
---|
1016 | IF( zhe >= zfac2 ) zgfac(ji,jj,jl) = MIN( 2._wp, 0.5_wp * ( 1._wp + LOG( zhe * zfac3 ) ) ) ! Enhanced conduction factor |
---|
1017 | END DO |
---|
1018 | END DO |
---|
1019 | END DO |
---|
1020 | ! |
---|
1021 | END SELECT |
---|
1022 | |
---|
1023 | ! -------------------------------------------------------------! |
---|
1024 | ! II Surface temperature and conduction flux ! |
---|
1025 | ! -------------------------------------------------------------! |
---|
1026 | ! |
---|
1027 | zfac = rcdic * rn_cnd_s |
---|
1028 | ! |
---|
1029 | DO jl = 1, jpl |
---|
1030 | DO jj = 1 , jpj |
---|
1031 | DO ji = 1, jpi |
---|
1032 | ! |
---|
1033 | zkeff_h = zfac * zgfac(ji,jj,jl) / & ! Effective conductivity of the snow-ice system divided by thickness |
---|
1034 | & ( rcdic * phs(ji,jj,jl) + rn_cnd_s * MAX( 0.01, phi(ji,jj,jl) ) ) |
---|
1035 | ztsu = ptsu(ji,jj,jl) ! Store current iteration temperature |
---|
1036 | ztsu0 = ptsu(ji,jj,jl) ! Store initial surface temperature |
---|
1037 | zqa0 = qsr_ice(ji,jj,jl) - qsr_ice_tr(ji,jj,jl) + qns_ice(ji,jj,jl) ! Net initial atmospheric heat flux |
---|
1038 | ! |
---|
1039 | DO iter = 1, nit ! --- Iterative loop |
---|
1040 | zqc = zkeff_h * ( ztsu - ptb(ji,jj) ) ! Conduction heat flux through snow-ice system (>0 downwards) |
---|
1041 | zqnet = zqa0 + dqns_ice(ji,jj,jl) * ( ztsu - ptsu(ji,jj,jl) ) - zqc ! Surface energy budget |
---|
1042 | ztsu = ztsu - zqnet / ( dqns_ice(ji,jj,jl) - zkeff_h ) ! Temperature update |
---|
1043 | END DO |
---|
1044 | ! |
---|
1045 | ptsu (ji,jj,jl) = MIN( rt0, ztsu ) |
---|
1046 | qcn_ice(ji,jj,jl) = zkeff_h * ( ptsu(ji,jj,jl) - ptb(ji,jj) ) |
---|
1047 | qns_ice(ji,jj,jl) = qns_ice(ji,jj,jl) + dqns_ice(ji,jj,jl) * ( ptsu(ji,jj,jl) - ztsu0 ) |
---|
1048 | qml_ice(ji,jj,jl) = ( qsr_ice(ji,jj,jl) - qsr_ice_tr(ji,jj,jl) + qns_ice(ji,jj,jl) - qcn_ice(ji,jj,jl) ) & |
---|
1049 | & * MAX( 0._wp , SIGN( 1._wp, ptsu(ji,jj,jl) - rt0 ) ) |
---|
1050 | |
---|
1051 | END DO |
---|
1052 | END DO |
---|
1053 | ! |
---|
1054 | END DO |
---|
1055 | ! |
---|
1056 | END SUBROUTINE blk_ice_qcn |
---|
1057 | |
---|
1058 | |
---|
1059 | SUBROUTINE Cdn10_Lupkes2012( Cd ) |
---|
1060 | !!---------------------------------------------------------------------- |
---|
1061 | !! *** ROUTINE Cdn10_Lupkes2012 *** |
---|
1062 | !! |
---|
1063 | !! ** Purpose : Recompute the neutral air-ice drag referenced at 10m |
---|
1064 | !! to make it dependent on edges at leads, melt ponds and flows. |
---|
1065 | !! After some approximations, this can be resumed to a dependency |
---|
1066 | !! on ice concentration. |
---|
1067 | !! |
---|
1068 | !! ** Method : The parameterization is taken from Lupkes et al. (2012) eq.(50) |
---|
1069 | !! with the highest level of approximation: level4, eq.(59) |
---|
1070 | !! The generic drag over a cell partly covered by ice can be re-written as follows: |
---|
1071 | !! |
---|
1072 | !! Cd = Cdw * (1-A) + Cdi * A + Ce * (1-A)**(nu+1/(10*beta)) * A**mu |
---|
1073 | !! |
---|
1074 | !! Ce = 2.23e-3 , as suggested by Lupkes (eq. 59) |
---|
1075 | !! nu = mu = beta = 1 , as suggested by Lupkes (eq. 59) |
---|
1076 | !! A is the concentration of ice minus melt ponds (if any) |
---|
1077 | !! |
---|
1078 | !! This new drag has a parabolic shape (as a function of A) starting at |
---|
1079 | !! Cdw(say 1.5e-3) for A=0, reaching 1.97e-3 for A~0.5 |
---|
1080 | !! and going down to Cdi(say 1.4e-3) for A=1 |
---|
1081 | !! |
---|
1082 | !! It is theoretically applicable to all ice conditions (not only MIZ) |
---|
1083 | !! => see Lupkes et al (2013) |
---|
1084 | !! |
---|
1085 | !! ** References : Lupkes et al. JGR 2012 (theory) |
---|
1086 | !! Lupkes et al. GRL 2013 (application to GCM) |
---|
1087 | !! |
---|
1088 | !!---------------------------------------------------------------------- |
---|
1089 | REAL(wp), DIMENSION(:,:), INTENT(inout) :: Cd |
---|
1090 | REAL(wp), PARAMETER :: zCe = 2.23e-03_wp |
---|
1091 | REAL(wp), PARAMETER :: znu = 1._wp |
---|
1092 | REAL(wp), PARAMETER :: zmu = 1._wp |
---|
1093 | REAL(wp), PARAMETER :: zbeta = 1._wp |
---|
1094 | REAL(wp) :: zcoef |
---|
1095 | !!---------------------------------------------------------------------- |
---|
1096 | zcoef = znu + 1._wp / ( 10._wp * zbeta ) |
---|
1097 | |
---|
1098 | ! generic drag over a cell partly covered by ice |
---|
1099 | !!Cd(:,:) = Cd_oce(:,:) * ( 1._wp - at_i_b(:,:) ) + & ! pure ocean drag |
---|
1100 | !! & Cd_ice * at_i_b(:,:) + & ! pure ice drag |
---|
1101 | !! & zCe * ( 1._wp - at_i_b(:,:) )**zcoef * at_i_b(:,:)**zmu ! change due to sea-ice morphology |
---|
1102 | |
---|
1103 | ! ice-atm drag |
---|
1104 | Cd(:,:) = Cd_ice + & ! pure ice drag |
---|
1105 | & zCe * ( 1._wp - at_i_b(:,:) )**zcoef * at_i_b(:,:)**(zmu-1._wp) ! change due to sea-ice morphology |
---|
1106 | |
---|
1107 | END SUBROUTINE Cdn10_Lupkes2012 |
---|
1108 | |
---|
1109 | |
---|
1110 | SUBROUTINE Cdn10_Lupkes2015( Cd, Ch ) |
---|
1111 | !!---------------------------------------------------------------------- |
---|
1112 | !! *** ROUTINE Cdn10_Lupkes2015 *** |
---|
1113 | !! |
---|
1114 | !! ** pUrpose : Alternative turbulent transfert coefficients formulation |
---|
1115 | !! between sea-ice and atmosphere with distinct momentum |
---|
1116 | !! and heat coefficients depending on sea-ice concentration |
---|
1117 | !! and atmospheric stability (no meltponds effect for now). |
---|
1118 | !! |
---|
1119 | !! ** Method : The parameterization is adapted from Lupkes et al. (2015) |
---|
1120 | !! and ECHAM6 atmospheric model. Compared to Lupkes2012 scheme, |
---|
1121 | !! it considers specific skin and form drags (Andreas et al. 2010) |
---|
1122 | !! to compute neutral transfert coefficients for both heat and |
---|
1123 | !! momemtum fluxes. Atmospheric stability effect on transfert |
---|
1124 | !! coefficient is also taken into account following Louis (1979). |
---|
1125 | !! |
---|
1126 | !! ** References : Lupkes et al. JGR 2015 (theory) |
---|
1127 | !! Lupkes et al. ECHAM6 documentation 2015 (implementation) |
---|
1128 | !! |
---|
1129 | !!---------------------------------------------------------------------- |
---|
1130 | ! |
---|
1131 | REAL(wp), DIMENSION(:,:), INTENT(inout) :: Cd |
---|
1132 | REAL(wp), DIMENSION(:,:), INTENT(inout) :: Ch |
---|
1133 | REAL(wp), DIMENSION(jpi,jpj) :: zst, zqo_sat, zqi_sat |
---|
1134 | ! |
---|
1135 | ! ECHAM6 constants |
---|
1136 | REAL(wp), PARAMETER :: z0_skin_ice = 0.69e-3_wp ! Eq. 43 [m] |
---|
1137 | REAL(wp), PARAMETER :: z0_form_ice = 0.57e-3_wp ! Eq. 42 [m] |
---|
1138 | REAL(wp), PARAMETER :: z0_ice = 1.00e-3_wp ! Eq. 15 [m] |
---|
1139 | REAL(wp), PARAMETER :: zce10 = 2.80e-3_wp ! Eq. 41 |
---|
1140 | REAL(wp), PARAMETER :: zbeta = 1.1_wp ! Eq. 41 |
---|
1141 | REAL(wp), PARAMETER :: zc = 5._wp ! Eq. 13 |
---|
1142 | REAL(wp), PARAMETER :: zc2 = zc * zc |
---|
1143 | REAL(wp), PARAMETER :: zam = 2. * zc ! Eq. 14 |
---|
1144 | REAL(wp), PARAMETER :: zah = 3. * zc ! Eq. 30 |
---|
1145 | REAL(wp), PARAMETER :: z1_alpha = 1._wp / 0.2_wp ! Eq. 51 |
---|
1146 | REAL(wp), PARAMETER :: z1_alphaf = z1_alpha ! Eq. 56 |
---|
1147 | REAL(wp), PARAMETER :: zbetah = 1.e-3_wp ! Eq. 26 |
---|
1148 | REAL(wp), PARAMETER :: zgamma = 1.25_wp ! Eq. 26 |
---|
1149 | REAL(wp), PARAMETER :: z1_gamma = 1._wp / zgamma |
---|
1150 | REAL(wp), PARAMETER :: r1_3 = 1._wp / 3._wp |
---|
1151 | ! |
---|
1152 | INTEGER :: ji, jj ! dummy loop indices |
---|
1153 | REAL(wp) :: zthetav_os, zthetav_is, zthetav_zu |
---|
1154 | REAL(wp) :: zrib_o, zrib_i |
---|
1155 | REAL(wp) :: zCdn_skin_ice, zCdn_form_ice, zCdn_ice |
---|
1156 | REAL(wp) :: zChn_skin_ice, zChn_form_ice |
---|
1157 | REAL(wp) :: z0w, z0i, zfmi, zfmw, zfhi, zfhw |
---|
1158 | REAL(wp) :: zCdn_form_tmp |
---|
1159 | !!---------------------------------------------------------------------- |
---|
1160 | |
---|
1161 | ! Momentum Neutral Transfert Coefficients (should be a constant) |
---|
1162 | zCdn_form_tmp = zce10 * ( LOG( 10._wp / z0_form_ice + 1._wp ) / LOG( rn_zu / z0_form_ice + 1._wp ) )**2 ! Eq. 40 |
---|
1163 | zCdn_skin_ice = ( vkarmn / LOG( rn_zu / z0_skin_ice + 1._wp ) )**2 ! Eq. 7 |
---|
1164 | zCdn_ice = zCdn_skin_ice ! Eq. 7 (cf Lupkes email for details) |
---|
1165 | !zCdn_ice = 1.89e-3 ! old ECHAM5 value (cf Eq. 32) |
---|
1166 | |
---|
1167 | ! Heat Neutral Transfert Coefficients |
---|
1168 | zChn_skin_ice = vkarmn**2 / ( LOG( rn_zu / z0_ice + 1._wp ) * LOG( rn_zu * z1_alpha / z0_skin_ice + 1._wp ) ) ! Eq. 50 + Eq. 52 (cf Lupkes email for details) |
---|
1169 | |
---|
1170 | ! Atmospheric and Surface Variables |
---|
1171 | zst(:,:) = sst_m(:,:) + rt0 ! convert SST from Celcius to Kelvin |
---|
1172 | zqo_sat(:,:) = 0.98_wp * q_sat( zst(:,:) , sf(jp_slp)%fnow(:,:,1) ) ! saturation humidity over ocean [kg/kg] |
---|
1173 | zqi_sat(:,:) = 0.98_wp * q_sat( tm_su(:,:), sf(jp_slp)%fnow(:,:,1) ) ! saturation humidity over ice [kg/kg] |
---|
1174 | ! |
---|
1175 | DO jj = 2, jpjm1 ! reduced loop is necessary for reproducibility |
---|
1176 | DO ji = fs_2, fs_jpim1 |
---|
1177 | ! Virtual potential temperature [K] |
---|
1178 | zthetav_os = zst(ji,jj) * ( 1._wp + rctv0 * zqo_sat(ji,jj) ) ! over ocean |
---|
1179 | zthetav_is = tm_su(ji,jj) * ( 1._wp + rctv0 * zqi_sat(ji,jj) ) ! ocean ice |
---|
1180 | zthetav_zu = t_zu (ji,jj) * ( 1._wp + rctv0 * q_zu(ji,jj) ) ! at zu |
---|
1181 | |
---|
1182 | ! Bulk Richardson Number (could use Ri_bulk function from aerobulk instead) |
---|
1183 | zrib_o = grav / zthetav_os * ( zthetav_zu - zthetav_os ) * rn_zu / MAX( 0.5, wndm(ji,jj) )**2 ! over ocean |
---|
1184 | zrib_i = grav / zthetav_is * ( zthetav_zu - zthetav_is ) * rn_zu / MAX( 0.5, wndm_ice(ji,jj) )**2 ! over ice |
---|
1185 | |
---|
1186 | ! Momentum and Heat Neutral Transfert Coefficients |
---|
1187 | zCdn_form_ice = zCdn_form_tmp * at_i_b(ji,jj) * ( 1._wp - at_i_b(ji,jj) )**zbeta ! Eq. 40 |
---|
1188 | zChn_form_ice = zCdn_form_ice / ( 1._wp + ( LOG( z1_alphaf ) / vkarmn ) * SQRT( zCdn_form_ice ) ) ! Eq. 53 |
---|
1189 | |
---|
1190 | ! Momentum and Heat Stability functions (possibility to use psi_m_ecmwf instead) |
---|
1191 | z0w = rn_zu * EXP( -1._wp * vkarmn / SQRT( Cdn_oce(ji,jj) ) ) ! over water |
---|
1192 | z0i = z0_skin_ice ! over ice (cf Lupkes email for details) |
---|
1193 | IF( zrib_o <= 0._wp ) THEN |
---|
1194 | zfmw = 1._wp - zam * zrib_o / ( 1._wp + 3._wp * zc2 * Cdn_oce(ji,jj) * SQRT( -zrib_o * ( rn_zu / z0w + 1._wp ) ) ) ! Eq. 10 |
---|
1195 | zfhw = ( 1._wp + ( zbetah * ( zthetav_os - zthetav_zu )**r1_3 / ( Chn_oce(ji,jj) * MAX(0.01, wndm(ji,jj)) ) & ! Eq. 26 |
---|
1196 | & )**zgamma )**z1_gamma |
---|
1197 | ELSE |
---|
1198 | zfmw = 1._wp / ( 1._wp + zam * zrib_o / SQRT( 1._wp + zrib_o ) ) ! Eq. 12 |
---|
1199 | zfhw = 1._wp / ( 1._wp + zah * zrib_o / SQRT( 1._wp + zrib_o ) ) ! Eq. 28 |
---|
1200 | ENDIF |
---|
1201 | |
---|
1202 | IF( zrib_i <= 0._wp ) THEN |
---|
1203 | zfmi = 1._wp - zam * zrib_i / (1._wp + 3._wp * zc2 * zCdn_ice * SQRT( -zrib_i * ( rn_zu / z0i + 1._wp))) ! Eq. 9 |
---|
1204 | zfhi = 1._wp - zah * zrib_i / (1._wp + 3._wp * zc2 * zCdn_ice * SQRT( -zrib_i * ( rn_zu / z0i + 1._wp))) ! Eq. 25 |
---|
1205 | ELSE |
---|
1206 | zfmi = 1._wp / ( 1._wp + zam * zrib_i / SQRT( 1._wp + zrib_i ) ) ! Eq. 11 |
---|
1207 | zfhi = 1._wp / ( 1._wp + zah * zrib_i / SQRT( 1._wp + zrib_i ) ) ! Eq. 27 |
---|
1208 | ENDIF |
---|
1209 | |
---|
1210 | ! Momentum Transfert Coefficients (Eq. 38) |
---|
1211 | Cd(ji,jj) = zCdn_skin_ice * zfmi + & |
---|
1212 | & zCdn_form_ice * ( zfmi * at_i_b(ji,jj) + zfmw * ( 1._wp - at_i_b(ji,jj) ) ) / MAX( 1.e-06, at_i_b(ji,jj) ) |
---|
1213 | |
---|
1214 | ! Heat Transfert Coefficients (Eq. 49) |
---|
1215 | Ch(ji,jj) = zChn_skin_ice * zfhi + & |
---|
1216 | & zChn_form_ice * ( zfhi * at_i_b(ji,jj) + zfhw * ( 1._wp - at_i_b(ji,jj) ) ) / MAX( 1.e-06, at_i_b(ji,jj) ) |
---|
1217 | ! |
---|
1218 | END DO |
---|
1219 | END DO |
---|
1220 | CALL lbc_lnk_multi( Cd, 'T', 1., Ch, 'T', 1. ) |
---|
1221 | ! |
---|
1222 | END SUBROUTINE Cdn10_Lupkes2015 |
---|
1223 | |
---|
1224 | #endif |
---|
1225 | |
---|
1226 | !!====================================================================== |
---|
1227 | END MODULE sbcblk |
---|