1 | MODULE trabbc |
---|
2 | !!============================================================================== |
---|
3 | !! *** MODULE trabbc *** |
---|
4 | !! Ocean active tracers: bottom boundary condition (geothermal heat flux) |
---|
5 | !!============================================================================== |
---|
6 | !! History : OPA ! 1999-10 (G. Madec) original code |
---|
7 | !! NEMO 1.0 ! 2002-08 (G. Madec) free form + modules |
---|
8 | !! - ! 2002-11 (A. Bozec) tra_bbc_init: original code |
---|
9 | !! 3.3 ! 2010-10 (G. Madec) dynamical allocation + suppression of key_trabbc |
---|
10 | !! - ! 2010-11 (G. Madec) use mbkt array (deepest ocean t-level) |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | !! tra_bbc : update the tracer trend at ocean bottom |
---|
15 | !! tra_bbc_init : initialization of geothermal heat flux trend |
---|
16 | !!---------------------------------------------------------------------- |
---|
17 | USE oce ! ocean variables |
---|
18 | USE dom_oce ! domain: ocean |
---|
19 | USE phycst ! physical constants |
---|
20 | USE trd_oce ! trends: ocean variables |
---|
21 | USE trdtra ! trends manager: tracers |
---|
22 | ! |
---|
23 | USE in_out_manager ! I/O manager |
---|
24 | USE iom ! xIOS |
---|
25 | USE fldread ! read input fields |
---|
26 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
27 | USE lib_mpp ! distributed memory computing library |
---|
28 | USE prtctl ! Print control |
---|
29 | USE timing ! Timing |
---|
30 | |
---|
31 | IMPLICIT NONE |
---|
32 | PRIVATE |
---|
33 | |
---|
34 | PUBLIC tra_bbc ! routine called by step.F90 |
---|
35 | PUBLIC tra_bbc_init ! routine called by opa.F90 |
---|
36 | |
---|
37 | ! !!* Namelist nambbc: bottom boundary condition * |
---|
38 | LOGICAL, PUBLIC :: ln_trabbc !: Geothermal heat flux flag |
---|
39 | INTEGER :: nn_geoflx ! Geothermal flux (=1:constant flux, =2:read in file ) |
---|
40 | REAL(wp) :: rn_geoflx_cst ! Constant value of geothermal heat flux |
---|
41 | |
---|
42 | REAL(wp), PUBLIC , ALLOCATABLE, DIMENSION(:,:) :: qgh_trd0 ! geothermal heating trend |
---|
43 | |
---|
44 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_qgh ! structure of input qgh (file informations, fields read) |
---|
45 | |
---|
46 | !! * Substitutions |
---|
47 | # include "do_loop_substitute.h90" |
---|
48 | !!---------------------------------------------------------------------- |
---|
49 | !! NEMO/OCE 4.0 , NEMO Consortium (2018) |
---|
50 | !! $Id$ |
---|
51 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
52 | !!---------------------------------------------------------------------- |
---|
53 | CONTAINS |
---|
54 | |
---|
55 | SUBROUTINE tra_bbc( kt, Kmm, pts, Krhs ) |
---|
56 | !!---------------------------------------------------------------------- |
---|
57 | !! *** ROUTINE tra_bbc *** |
---|
58 | !! |
---|
59 | !! ** Purpose : Compute the bottom boundary contition on temperature |
---|
60 | !! associated with geothermal heating and add it to the |
---|
61 | !! general trend of temperature equations. |
---|
62 | !! |
---|
63 | !! ** Method : The geothermal heat flux set to its constant value of |
---|
64 | !! 86.4 mW/m2 (Stein and Stein 1992, Huang 1999). |
---|
65 | !! The temperature trend associated to this heat flux through the |
---|
66 | !! ocean bottom can be computed once and is added to the temperature |
---|
67 | !! trend juste above the bottom at each time step: |
---|
68 | !! ta = ta + Qsf / (rau0 rcp e3T) for k= mbkt |
---|
69 | !! Where Qsf is the geothermal heat flux. |
---|
70 | !! |
---|
71 | !! ** Action : - update the temperature trends with geothermal heating trend |
---|
72 | !! - send the trend for further diagnostics (ln_trdtra=T) |
---|
73 | !! |
---|
74 | !! References : Stein, C. A., and S. Stein, 1992, Nature, 359, 123-129. |
---|
75 | !! Emile-Geay and Madec, 2009, Ocean Science. |
---|
76 | !!---------------------------------------------------------------------- |
---|
77 | INTEGER, INTENT(in ) :: kt ! ocean time-step index |
---|
78 | INTEGER, INTENT(in ) :: Kmm, Krhs ! time level indices |
---|
79 | REAL(wp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts ! active tracers and RHS of tracer equation |
---|
80 | ! |
---|
81 | INTEGER :: ji, jj ! dummy loop indices |
---|
82 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: ztrdt ! 3D workspace |
---|
83 | !!---------------------------------------------------------------------- |
---|
84 | ! |
---|
85 | IF( ln_timing ) CALL timing_start('tra_bbc') |
---|
86 | ! |
---|
87 | IF( l_trdtra ) THEN ! Save the input temperature trend |
---|
88 | ALLOCATE( ztrdt(jpi,jpj,jpk) ) |
---|
89 | ztrdt(:,:,:) = pts(:,:,:,jp_tem,Krhs) |
---|
90 | ENDIF |
---|
91 | ! ! Add the geothermal trend on temperature |
---|
92 | DO_2D_00_00 |
---|
93 | pts(ji,jj,mbkt(ji,jj),jp_tem,Krhs) = pts(ji,jj,mbkt(ji,jj),jp_tem,Krhs) + qgh_trd0(ji,jj) / e3t(ji,jj,mbkt(ji,jj),Kmm) |
---|
94 | END_2D |
---|
95 | ! |
---|
96 | CALL lbc_lnk( 'trabbc', pts(:,:,:,jp_tem,Krhs) , 'T', 1. ) |
---|
97 | ! |
---|
98 | IF( l_trdtra ) THEN ! Send the trend for diagnostics |
---|
99 | ztrdt(:,:,:) = pts(:,:,:,jp_tem,Krhs) - ztrdt(:,:,:) |
---|
100 | CALL trd_tra( kt, Kmm, Krhs, 'TRA', jp_tem, jptra_bbc, ztrdt ) |
---|
101 | DEALLOCATE( ztrdt ) |
---|
102 | ENDIF |
---|
103 | ! |
---|
104 | CALL iom_put ( "hfgeou" , rau0_rcp * qgh_trd0(:,:) ) |
---|
105 | IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=pts(:,:,:,jp_tem,Krhs), clinfo1=' bbc - Ta: ', mask1=tmask, clinfo3='tra-ta' ) |
---|
106 | ! |
---|
107 | IF( ln_timing ) CALL timing_stop('tra_bbc') |
---|
108 | ! |
---|
109 | END SUBROUTINE tra_bbc |
---|
110 | |
---|
111 | |
---|
112 | SUBROUTINE tra_bbc_init |
---|
113 | !!---------------------------------------------------------------------- |
---|
114 | !! *** ROUTINE tra_bbc_init *** |
---|
115 | !! |
---|
116 | !! ** Purpose : Compute once for all the trend associated with geothermal |
---|
117 | !! heating that will be applied at each time step at the |
---|
118 | !! last ocean level |
---|
119 | !! |
---|
120 | !! ** Method : Read the nambbc namelist and check the parameters. |
---|
121 | !! |
---|
122 | !! ** Input : - Namlist nambbc |
---|
123 | !! - NetCDF file : geothermal_heating.nc ( if necessary ) |
---|
124 | !! |
---|
125 | !! ** Action : - read/fix the geothermal heat qgh_trd0 |
---|
126 | !!---------------------------------------------------------------------- |
---|
127 | INTEGER :: ji, jj ! dummy loop indices |
---|
128 | INTEGER :: inum ! temporary logical unit |
---|
129 | INTEGER :: ios ! Local integer output status for namelist read |
---|
130 | INTEGER :: ierror ! local integer |
---|
131 | ! |
---|
132 | TYPE(FLD_N) :: sn_qgh ! informations about the geotherm. field to be read |
---|
133 | CHARACTER(len=256) :: cn_dir ! Root directory for location of ssr files |
---|
134 | !! |
---|
135 | NAMELIST/nambbc/ln_trabbc, nn_geoflx, rn_geoflx_cst, sn_qgh, cn_dir |
---|
136 | !!---------------------------------------------------------------------- |
---|
137 | ! |
---|
138 | READ ( numnam_ref, nambbc, IOSTAT = ios, ERR = 901) |
---|
139 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nambbc in reference namelist' ) |
---|
140 | ! |
---|
141 | READ ( numnam_cfg, nambbc, IOSTAT = ios, ERR = 902 ) |
---|
142 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nambbc in configuration namelist' ) |
---|
143 | IF(lwm) WRITE ( numond, nambbc ) |
---|
144 | ! |
---|
145 | IF(lwp) THEN ! Control print |
---|
146 | WRITE(numout,*) |
---|
147 | WRITE(numout,*) 'tra_bbc : Bottom Boundary Condition (bbc), apply a Geothermal heating' |
---|
148 | WRITE(numout,*) '~~~~~~~ ' |
---|
149 | WRITE(numout,*) ' Namelist nambbc : set bbc parameters' |
---|
150 | WRITE(numout,*) ' Apply a geothermal heating at ocean bottom ln_trabbc = ', ln_trabbc |
---|
151 | WRITE(numout,*) ' type of geothermal flux nn_geoflx = ', nn_geoflx |
---|
152 | WRITE(numout,*) ' Constant geothermal flux value rn_geoflx_cst = ', rn_geoflx_cst |
---|
153 | WRITE(numout,*) |
---|
154 | ENDIF |
---|
155 | ! |
---|
156 | IF( ln_trabbc ) THEN !== geothermal heating ==! |
---|
157 | ! |
---|
158 | ALLOCATE( qgh_trd0(jpi,jpj) ) ! allocation |
---|
159 | ! |
---|
160 | SELECT CASE ( nn_geoflx ) ! geothermal heat flux / (rauO * Cp) |
---|
161 | ! |
---|
162 | CASE ( 1 ) !* constant flux |
---|
163 | IF(lwp) WRITE(numout,*) ' ==>>> constant heat flux = ', rn_geoflx_cst |
---|
164 | qgh_trd0(:,:) = r1_rau0_rcp * rn_geoflx_cst |
---|
165 | ! |
---|
166 | CASE ( 2 ) !* variable geothermal heat flux : read the geothermal fluxes in mW/m2 |
---|
167 | IF(lwp) WRITE(numout,*) ' ==>>> variable geothermal heat flux' |
---|
168 | ! |
---|
169 | ALLOCATE( sf_qgh(1), STAT=ierror ) |
---|
170 | IF( ierror > 0 ) THEN |
---|
171 | CALL ctl_stop( 'tra_bbc_init: unable to allocate sf_qgh structure' ) ; |
---|
172 | RETURN |
---|
173 | ENDIF |
---|
174 | ALLOCATE( sf_qgh(1)%fnow(jpi,jpj,1) ) |
---|
175 | IF( sn_qgh%ln_tint ) ALLOCATE( sf_qgh(1)%fdta(jpi,jpj,1,2) ) |
---|
176 | ! fill sf_chl with sn_chl and control print |
---|
177 | CALL fld_fill( sf_qgh, (/ sn_qgh /), cn_dir, 'tra_bbc_init', & |
---|
178 | & 'bottom temperature boundary condition', 'nambbc', no_print ) |
---|
179 | |
---|
180 | CALL fld_read( nit000, 1, sf_qgh ) ! Read qgh data |
---|
181 | qgh_trd0(:,:) = r1_rau0_rcp * sf_qgh(1)%fnow(:,:,1) * 1.e-3 ! conversion in W/m2 |
---|
182 | ! |
---|
183 | CASE DEFAULT |
---|
184 | WRITE(ctmp1,*) ' bad flag value for nn_geoflx = ', nn_geoflx |
---|
185 | CALL ctl_stop( ctmp1 ) |
---|
186 | END SELECT |
---|
187 | ! |
---|
188 | ELSE |
---|
189 | IF(lwp) WRITE(numout,*) ' ==>>> no geothermal heat flux' |
---|
190 | ENDIF |
---|
191 | ! |
---|
192 | END SUBROUTINE tra_bbc_init |
---|
193 | |
---|
194 | !!====================================================================== |
---|
195 | END MODULE trabbc |
---|