1 | MODULE p4zfechem |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p4zfechem *** |
---|
4 | !! TOP : PISCES Compute iron chemistry and scavenging |
---|
5 | !!====================================================================== |
---|
6 | !! History : 3.5 ! 2012-07 (O. Aumont, A. Tagliabue, C. Ethe) Original code |
---|
7 | !! 3.6 ! 2015-05 (O. Aumont) PISCES quota |
---|
8 | !!---------------------------------------------------------------------- |
---|
9 | !! p4z_fechem : Compute remineralization/scavenging of iron |
---|
10 | !! p4z_fechem_init : Initialisation of parameters for remineralisation |
---|
11 | !! p4z_fechem_alloc : Allocate remineralisation variables |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
14 | USE trc ! passive tracers common variables |
---|
15 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
16 | USE p4zche ! chemical model |
---|
17 | USE p4zsbc ! Boundary conditions from sediments |
---|
18 | USE prtctl_trc ! print control for debugging |
---|
19 | USE iom ! I/O manager |
---|
20 | |
---|
21 | IMPLICIT NONE |
---|
22 | PRIVATE |
---|
23 | |
---|
24 | PUBLIC p4z_fechem ! called in p4zbio.F90 |
---|
25 | PUBLIC p4z_fechem_init ! called in trcsms_pisces.F90 |
---|
26 | |
---|
27 | LOGICAL :: ln_ligvar !: boolean for variable ligand concentration following Tagliabue and voelker |
---|
28 | REAL(wp), PUBLIC :: xlam1 !: scavenging rate of Iron |
---|
29 | REAL(wp), PUBLIC :: xlamdust !: scavenging rate of Iron by dust |
---|
30 | REAL(wp), PUBLIC :: ligand !: ligand concentration in the ocean |
---|
31 | REAL(wp), PUBLIC :: kfep !: rate constant for nanoparticle formation |
---|
32 | |
---|
33 | !!---------------------------------------------------------------------- |
---|
34 | !! NEMO/TOP 4.0 , NEMO Consortium (2018) |
---|
35 | !! $Id$ |
---|
36 | !! Software governed by the CeCILL license (see ./LICENSE) |
---|
37 | !!---------------------------------------------------------------------- |
---|
38 | CONTAINS |
---|
39 | |
---|
40 | SUBROUTINE p4z_fechem( kt, knt ) |
---|
41 | !!--------------------------------------------------------------------- |
---|
42 | !! *** ROUTINE p4z_fechem *** |
---|
43 | !! |
---|
44 | !! ** Purpose : Compute remineralization/scavenging of iron |
---|
45 | !! |
---|
46 | !! ** Method : A simple chemistry model of iron from Aumont and Bopp (2006) |
---|
47 | !! based on one ligand and one inorganic form |
---|
48 | !!--------------------------------------------------------------------- |
---|
49 | INTEGER, INTENT(in) :: kt, knt ! ocean time step |
---|
50 | ! |
---|
51 | INTEGER :: ji, jj, jk, jic, jn |
---|
52 | REAL(wp) :: zdep, zlam1a, zlam1b, zlamfac |
---|
53 | REAL(wp) :: zkeq, zfeequi, zfesatur, zfecoll, fe3sol |
---|
54 | REAL(wp) :: zdenom1, zscave, zaggdfea, zaggdfeb, zcoag |
---|
55 | REAL(wp) :: ztrc, zdust |
---|
56 | REAL(wp) :: zdenom2 |
---|
57 | REAL(wp) :: zzFeL1, zzFeL2, zzFe2, zzFeP, zzFe3, zzstrn2 |
---|
58 | REAL(wp) :: zrum, zcodel, zargu, zlight |
---|
59 | REAL(wp) :: zkox, zkph1, zkph2, zph, zionic, ztligand |
---|
60 | REAL(wp) :: za, zb, zc, zkappa1, zkappa2, za0, za1, za2 |
---|
61 | REAL(wp) :: zxs, zfunc, zp, zq, zd, zr, zphi, zfff, zp3, zq2 |
---|
62 | REAL(wp) :: ztfe, zoxy, zhplus, zxlam |
---|
63 | REAL(wp) :: zaggliga, zaggligb |
---|
64 | REAL(wp) :: dissol, zligco |
---|
65 | REAL(wp) :: zrfact2 |
---|
66 | CHARACTER (len=25) :: charout |
---|
67 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zTL1, zFe3, ztotlig, precip, zFeL1 |
---|
68 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zcoll3d, zscav3d, zlcoll3d |
---|
69 | !!--------------------------------------------------------------------- |
---|
70 | ! |
---|
71 | IF( ln_timing ) CALL timing_start('p4z_fechem') |
---|
72 | ! |
---|
73 | |
---|
74 | ! Total ligand concentration : Ligands can be chosen to be constant or variable |
---|
75 | ! Parameterization from Tagliabue and Voelker (2011) |
---|
76 | ! ------------------------------------------------- |
---|
77 | IF( ln_ligvar ) THEN |
---|
78 | ztotlig(:,:,:) = 0.09 * trb(:,:,:,jpdoc) * 1E6 + ligand * 1E9 |
---|
79 | ztotlig(:,:,:) = MIN( ztotlig(:,:,:), 10. ) |
---|
80 | ELSE |
---|
81 | IF( ln_ligand ) THEN ; ztotlig(:,:,:) = trb(:,:,:,jplgw) * 1E9 |
---|
82 | ELSE ; ztotlig(:,:,:) = ligand * 1E9 |
---|
83 | ENDIF |
---|
84 | ENDIF |
---|
85 | |
---|
86 | ! ------------------------------------------------------------ |
---|
87 | ! from Aumont and Bopp (2006) |
---|
88 | ! This model is based on one ligand and Fe' |
---|
89 | ! Chemistry is supposed to be fast enough to be at equilibrium |
---|
90 | ! ------------------------------------------------------------ |
---|
91 | DO jk = 1, jpkm1 |
---|
92 | DO jj = 1, jpj |
---|
93 | DO ji = 1, jpi |
---|
94 | zTL1(ji,jj,jk) = ztotlig(ji,jj,jk) |
---|
95 | zkeq = fekeq(ji,jj,jk) |
---|
96 | zfesatur = zTL1(ji,jj,jk) * 1E-9 |
---|
97 | ztfe = trb(ji,jj,jk,jpfer) |
---|
98 | ! Fe' is the root of a 2nd order polynom |
---|
99 | zFe3 (ji,jj,jk) = ( -( 1. + zfesatur * zkeq - zkeq * ztfe ) & |
---|
100 | & + SQRT( ( 1. + zfesatur * zkeq - zkeq * ztfe )**2 & |
---|
101 | & + 4. * ztfe * zkeq) ) / ( 2. * zkeq ) |
---|
102 | zFe3 (ji,jj,jk) = zFe3(ji,jj,jk) * 1E9 |
---|
103 | zFeL1(ji,jj,jk) = MAX( 0., trb(ji,jj,jk,jpfer) * 1E9 - zFe3(ji,jj,jk) ) |
---|
104 | END DO |
---|
105 | END DO |
---|
106 | END DO |
---|
107 | ! |
---|
108 | |
---|
109 | zdust = 0. ! if no dust available |
---|
110 | DO jk = 1, jpkm1 |
---|
111 | DO jj = 1, jpj |
---|
112 | DO ji = 1, jpi |
---|
113 | ! Scavenging rate of iron. This scavenging rate depends on the load of particles of sea water. |
---|
114 | ! This parameterization assumes a simple second order kinetics (k[Particles][Fe]). |
---|
115 | ! Scavenging onto dust is also included as evidenced from the DUNE experiments. |
---|
116 | ! -------------------------------------------------------------------------------------- |
---|
117 | zhplus = max( rtrn, hi(ji,jj,jk) ) |
---|
118 | fe3sol = fesol(ji,jj,jk,1) * ( zhplus**3 + fesol(ji,jj,jk,2) * zhplus**2 & |
---|
119 | & + fesol(ji,jj,jk,3) * zhplus + fesol(ji,jj,jk,4) & |
---|
120 | & + fesol(ji,jj,jk,5) / zhplus ) |
---|
121 | ! |
---|
122 | zfeequi = zFe3(ji,jj,jk) * 1E-9 |
---|
123 | zhplus = max( rtrn, hi(ji,jj,jk) ) |
---|
124 | fe3sol = fesol(ji,jj,jk,1) * ( zhplus**3 + fesol(ji,jj,jk,2) * zhplus**2 & |
---|
125 | & + fesol(ji,jj,jk,3) * zhplus + fesol(ji,jj,jk,4) & |
---|
126 | & + fesol(ji,jj,jk,5) / zhplus ) |
---|
127 | zfecoll = 0.5 * zFeL1(ji,jj,jk) * 1E-9 |
---|
128 | ! precipitation of Fe3+, creation of nanoparticles |
---|
129 | precip(ji,jj,jk) = MAX( 0., ( zFe3(ji,jj,jk) * 1E-9 - fe3sol ) ) * kfep * xstep |
---|
130 | ! |
---|
131 | ztrc = ( trb(ji,jj,jk,jppoc) + trb(ji,jj,jk,jpgoc) + trb(ji,jj,jk,jpcal) + trb(ji,jj,jk,jpgsi) ) * 1.e6 |
---|
132 | IF( ln_dust ) zdust = dust(ji,jj) / ( wdust / rday ) * tmask(ji,jj,jk) & |
---|
133 | & * EXP( -gdept_n(ji,jj,jk) / 540. ) |
---|
134 | IF (ln_ligand) THEN |
---|
135 | zxlam = xlam1 * MAX( 1.E-3, EXP(-2 * etot(ji,jj,jk) / 10. ) * (1. - EXP(-2 * trb(ji,jj,jk,jpoxy) / 100.E-6 ) )) |
---|
136 | ELSE |
---|
137 | zxlam = xlam1 * 1.0 |
---|
138 | ENDIF |
---|
139 | zlam1b = 3.e-5 + xlamdust * zdust + zxlam * ztrc |
---|
140 | zscave = zfeequi * zlam1b * xstep |
---|
141 | |
---|
142 | ! Compute the different ratios for scavenging of iron |
---|
143 | ! to later allocate scavenged iron to the different organic pools |
---|
144 | ! --------------------------------------------------------- |
---|
145 | zdenom1 = zxlam * trb(ji,jj,jk,jppoc) / zlam1b |
---|
146 | zdenom2 = zxlam * trb(ji,jj,jk,jpgoc) / zlam1b |
---|
147 | |
---|
148 | ! Increased scavenging for very high iron concentrations found near the coasts |
---|
149 | ! due to increased lithogenic particles and let say it is unknown processes (precipitation, ...) |
---|
150 | ! ----------------------------------------------------------- |
---|
151 | zlamfac = MAX( 0.e0, ( gphit(ji,jj) + 55.) / 30. ) |
---|
152 | zlamfac = MIN( 1. , zlamfac ) |
---|
153 | zdep = MIN( 1., 1000. / gdept_n(ji,jj,jk) ) |
---|
154 | zcoag = 1E-4 * ( 1. - zlamfac ) * zdep * xstep * trb(ji,jj,jk,jpfer) |
---|
155 | |
---|
156 | ! Compute the coagulation of colloidal iron. This parameterization |
---|
157 | ! could be thought as an equivalent of colloidal pumping. |
---|
158 | ! It requires certainly some more work as it is very poorly constrained. |
---|
159 | ! ---------------------------------------------------------------- |
---|
160 | zlam1a = ( 0.369 * 0.3 * trb(ji,jj,jk,jpdoc) + 102.4 * trb(ji,jj,jk,jppoc) ) * xdiss(ji,jj,jk) & |
---|
161 | & + ( 114. * 0.3 * trb(ji,jj,jk,jpdoc) ) |
---|
162 | zaggdfea = zlam1a * xstep * zfecoll |
---|
163 | ! |
---|
164 | zlam1b = 3.53E3 * trb(ji,jj,jk,jpgoc) * xdiss(ji,jj,jk) |
---|
165 | zaggdfeb = zlam1b * xstep * zfecoll |
---|
166 | ! |
---|
167 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - zscave - zaggdfea - zaggdfeb & |
---|
168 | & - zcoag - precip(ji,jj,jk) |
---|
169 | tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + zscave * zdenom1 + zaggdfea |
---|
170 | tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) + zscave * zdenom2 + zaggdfeb |
---|
171 | zscav3d(ji,jj,jk) = zscave |
---|
172 | zcoll3d(ji,jj,jk) = zaggdfea + zaggdfeb |
---|
173 | ! |
---|
174 | END DO |
---|
175 | END DO |
---|
176 | END DO |
---|
177 | ! |
---|
178 | ! Define the bioavailable fraction of iron |
---|
179 | ! ---------------------------------------- |
---|
180 | biron(:,:,:) = trb(:,:,:,jpfer) |
---|
181 | ! |
---|
182 | IF( ln_ligand ) THEN |
---|
183 | ! |
---|
184 | DO jk = 1, jpkm1 |
---|
185 | DO jj = 1, jpj |
---|
186 | DO ji = 1, jpi |
---|
187 | zlam1a = ( 0.369 * 0.3 * trb(ji,jj,jk,jpdoc) + 102.4 * trb(ji,jj,jk,jppoc) ) * xdiss(ji,jj,jk) & |
---|
188 | & + ( 114. * 0.3 * trb(ji,jj,jk,jpdoc) ) |
---|
189 | ! |
---|
190 | zlam1b = 3.53E3 * trb(ji,jj,jk,jpgoc) * xdiss(ji,jj,jk) |
---|
191 | zligco = 0.5 * trn(ji,jj,jk,jplgw) |
---|
192 | zaggliga = zlam1a * xstep * zligco |
---|
193 | zaggligb = zlam1b * xstep * zligco |
---|
194 | tra(ji,jj,jk,jplgw) = tra(ji,jj,jk,jplgw) - zaggliga - zaggligb |
---|
195 | zlcoll3d(ji,jj,jk) = zaggliga + zaggligb |
---|
196 | END DO |
---|
197 | END DO |
---|
198 | END DO |
---|
199 | ! |
---|
200 | plig(:,:,:) = MAX( 0., ( ( zFeL1(:,:,:) * 1E-9 ) / ( trb(:,:,:,jpfer) +rtrn ) ) ) |
---|
201 | ! |
---|
202 | ENDIF |
---|
203 | ! Output of some diagnostics variables |
---|
204 | ! --------------------------------- |
---|
205 | IF( lk_iomput ) THEN |
---|
206 | IF( knt == nrdttrc ) THEN |
---|
207 | zrfact2 = 1.e3 * rfact2r ! conversion from mol/L/timestep into mol/m3/s |
---|
208 | IF( iom_use("Fe3") ) THEN |
---|
209 | zFe3(:,:,jpk) = 0. ; CALL iom_put("Fe3" , zFe3(:,:,:) * tmask(:,:,:) ) ! Fe3+ |
---|
210 | ENDIF |
---|
211 | IF( iom_use("FeL1") ) THEN |
---|
212 | zFeL1(:,:,jpk) = 0. ; CALL iom_put("FeL1", zFeL1(:,:,:) * tmask(:,:,:) ) ! FeL1 |
---|
213 | ENDIF |
---|
214 | IF( iom_use("TL1") ) THEN |
---|
215 | zTL1(:,:,jpk) = 0. ; CALL iom_put("TL1" , zTL1(:,:,:) * tmask(:,:,:) ) ! TL1 |
---|
216 | ENDIF |
---|
217 | CALL iom_put("Totlig" , ztotlig(:,:,:) * tmask(:,:,:) ) ! TL |
---|
218 | CALL iom_put("Biron" , biron (:,:,:) * 1e9 * tmask(:,:,:) ) ! biron |
---|
219 | IF( iom_use("FESCAV") ) THEN |
---|
220 | zscav3d (:,:,jpk) = 0. ; CALL iom_put("FESCAV" , zscav3d(:,:,:) * 1e9 * tmask(:,:,:) * zrfact2 ) |
---|
221 | ENDIF |
---|
222 | IF( iom_use("FECOLL") ) THEN |
---|
223 | zcoll3d (:,:,jpk) = 0. ; CALL iom_put("FECOLL" , zcoll3d(:,:,:) * 1e9 * tmask(:,:,:) * zrfact2 ) |
---|
224 | ENDIF |
---|
225 | IF( iom_use("LGWCOLL")) THEN |
---|
226 | zlcoll3d(:,:,jpk) = 0. ; CALL iom_put("LGWCOLL", zlcoll3d(:,:,:) * 1e9 * tmask(:,:,:) * zrfact2 ) |
---|
227 | ENDIF |
---|
228 | ENDIF |
---|
229 | ENDIF |
---|
230 | |
---|
231 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
232 | WRITE(charout, FMT="('fechem')") |
---|
233 | CALL prt_ctl_trc_info(charout) |
---|
234 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
235 | ENDIF |
---|
236 | ! |
---|
237 | IF( ln_timing ) CALL timing_stop('p4z_fechem') |
---|
238 | ! |
---|
239 | END SUBROUTINE p4z_fechem |
---|
240 | |
---|
241 | |
---|
242 | SUBROUTINE p4z_fechem_init |
---|
243 | !!---------------------------------------------------------------------- |
---|
244 | !! *** ROUTINE p4z_fechem_init *** |
---|
245 | !! |
---|
246 | !! ** Purpose : Initialization of iron chemistry parameters |
---|
247 | !! |
---|
248 | !! ** Method : Read the nampisfer namelist and check the parameters |
---|
249 | !! called at the first timestep |
---|
250 | !! |
---|
251 | !! ** input : Namelist nampisfer |
---|
252 | !! |
---|
253 | !!---------------------------------------------------------------------- |
---|
254 | INTEGER :: ios ! Local integer |
---|
255 | !! |
---|
256 | NAMELIST/nampisfer/ ln_ligvar, xlam1, xlamdust, ligand, kfep |
---|
257 | !!---------------------------------------------------------------------- |
---|
258 | ! |
---|
259 | IF(lwp) THEN |
---|
260 | WRITE(numout,*) |
---|
261 | WRITE(numout,*) 'p4z_rem_init : Initialization of iron chemistry parameters' |
---|
262 | WRITE(numout,*) '~~~~~~~~~~~~' |
---|
263 | ENDIF |
---|
264 | ! |
---|
265 | REWIND( numnatp_ref ) |
---|
266 | READ ( numnatp_ref, nampisfer, IOSTAT = ios, ERR = 901) |
---|
267 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisfer in reference namelist' ) |
---|
268 | |
---|
269 | REWIND( numnatp_cfg ) |
---|
270 | READ ( numnatp_cfg, nampisfer, IOSTAT = ios, ERR = 902 ) |
---|
271 | 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nampisfer in configuration namelist' ) |
---|
272 | IF(lwm) WRITE( numonp, nampisfer ) |
---|
273 | |
---|
274 | IF(lwp) THEN ! control print |
---|
275 | WRITE(numout,*) ' Namelist : nampisfer' |
---|
276 | WRITE(numout,*) ' variable concentration of ligand ln_ligvar =', ln_ligvar |
---|
277 | WRITE(numout,*) ' scavenging rate of Iron xlam1 =', xlam1 |
---|
278 | WRITE(numout,*) ' scavenging rate of Iron by dust xlamdust =', xlamdust |
---|
279 | WRITE(numout,*) ' ligand concentration in the ocean ligand =', ligand |
---|
280 | WRITE(numout,*) ' rate constant for nanoparticle formation kfep =', kfep |
---|
281 | ENDIF |
---|
282 | ! |
---|
283 | END SUBROUTINE p4z_fechem_init |
---|
284 | |
---|
285 | !!====================================================================== |
---|
286 | END MODULE p4zfechem |
---|