source: NEMO/trunk/tests/DOME/EXPREF/namelist_cfg @ 14254

Last change on this file since 14254 was 14254, checked in by jchanut, 4 months ago

#2222, DOME test case: for completeness, add online domain definition. input parameters changes

File size: 16.5 KB
Line 
1!!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
2!! NEMO/OCE  Configuration namelist : used to overwrite defaults values defined in SHARED/namelist_ref
3!!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
4!
5!-----------------------------------------------------------------------
6&namusr_def    !   User defined :   OVERFLOW configuration
7!-----------------------------------------------------------------------
8   !                       !  type of vertical coordinate
9   ln_zco      = .false.      ! z-coordinate
10   ln_zps      = .true.       ! z-partial-step coordinate
11   ln_sco      = .false.      ! s-coordinate
12   rn_dx       =   5000.   !  horizontal resolution   [meters]
13   rn_dz       =     60.   !  vertical   resolution   [meters]
14   rn_f0       =  1.e-4    !  coriolis [s-1]
15/
16!-----------------------------------------------------------------------
17&namrun        !   parameters of the run
18!-----------------------------------------------------------------------
19   nn_no       =       0   !  job number (no more used...)
20   cn_exp      =    "DOME" !  experience name
21   nn_it000    =       1   !  first time step
22   nn_itend    =   11520   ! here 16h of simulation  (=5760 time-step) abort after 5802 for zps: pb of physics conditions
23   nn_stock    =       0   !  frequency of creation of a restart file (modulo referenced to 1)
24/
25!-----------------------------------------------------------------------
26&namcfg        !   parameters of the configuration
27!-----------------------------------------------------------------------
28   ln_read_cfg = .true.     !  (=T) read the domain configuration file
29      !                     !  (=F) user defined configuration           (F => create/check namusr_def)
30      cn_domcfg = "DOME_domcfg"  ! domain configuration filename
31      !
32/
33!-----------------------------------------------------------------------
34&namdom        !   space and time domain (bathymetry, mesh, timestep)
35!-----------------------------------------------------------------------
36   ln_linssh  = .true.
37   rn_Dt      =   300.    !  time step for the dynamics (and tracer if nn_acc=0)
38   rn_atfp    =    0.1    !  asselin time filter parameter
39   ln_meshmask = .false.  !  =T create a mesh file
40/
41!-----------------------------------------------------------------------
42&namtsd    !   data : Temperature  & Salinity
43!-----------------------------------------------------------------------
44/
45!-----------------------------------------------------------------------
46&namsbc        !   Surface Boundary Condition (surface module)
47!-----------------------------------------------------------------------
48  nn_fsbc     = 1         !  frequency of surface boundary condition computation
49                          !     (also = the frequency of sea-ice & iceberg model call)
50  ln_usr      = .true.    !  user defined formulation                  (T => check usrdef_sbc)
51  ln_blk      = .false.   !  Bulk formulation                          (T => fill namsbc_blk )
52  nn_ice      = 0         !  =0 no ice boundary condition   
53  ln_traqsr   = .false.   !  Light penetration in the ocean            (T => fill namtra_qsr )
54  ln_rnf      = .false.   !  runoffs                                   (T => fill namsbc_rnf)
55  ln_ssr      = .false.   !  Sea Surface Restoring on T and/or S       (T => fill namsbc_ssr)
56  nn_fwb      = 0         !  FreshWater Budget: =0 unchecked
57/
58!-----------------------------------------------------------------------
59&namlbc        !   lateral momentum boundary condition                  (default: NO selection)
60!-----------------------------------------------------------------------
61   rn_shlat    =    0.     !  free slip
62/
63!!======================================================================
64!!                ***  Top/Bottom boundary condition  ***             !!
65!!======================================================================
66!!   namdrg        top/bottom drag coefficient                          (default: NO selection)
67!!   namdrg_top    top    friction                                      (ln_isfcav=T)
68!!   namdrg_bot    bottom friction
69!!   nambbc        bottom temperature boundary condition                (default: OFF)
70!!   nambbl        bottom boundary layer scheme                         (default: OFF)
71!!======================================================================
72!
73!-----------------------------------------------------------------------
74&namdrg            !   top/bottom drag coefficient                      (default: NO selection)
75!-----------------------------------------------------------------------
76   ln_drg_OFF  = .false.   !  free-slip       : Cd = 0                  (F => fill namdrg_bot
77   ln_lin      = .false.   !      linear  drag: Cd = Cd0 Uc0                   &   namdrg_top)
78   ln_non_lin  = .true.    !  non-linear  drag: Cd = Cd0 |U|
79   ln_loglayer = .false.   !  logarithmic drag: Cd = vkarmn/log(z/z0) |U|
80   !
81   ln_drgimp   = .true.    !  implicit top/bottom friction flag
82/
83!-----------------------------------------------------------------------
84&namdrg_bot    !   BOTTOM friction                                      (ln_OFF =F)
85!-----------------------------------------------------------------------
86   rn_Cd0      =  2.e-3    !  drag coefficient [-]
87   rn_ke0      =  0.       !  background kinetic energy  [m2/s2] (non-linear cases)
88/
89!-----------------------------------------------------------------------
90&nameos        !   ocean physical parameters
91!-----------------------------------------------------------------------
92   ln_seos     = .true.       !  = Use simplified equation of state (S-EOS)
93   !                             !  rd(T,S,Z)*rau0 = -a0*(1+.5*lambda*dT+mu*Z+nu*dS)*dT+b0*dS
94   rn_a0       =  0.2         !  thermal expension coefficient (for simplified equation of state)
95   rn_b0       =  0.          !  saline  expension coefficient (for simplified equation of state)
96   rn_lambda1  =  0.          !  cabbeling coeff in T^2  (=0 for linear eos)
97   rn_lambda2  =  0.          !  cabbeling coeff in S^2  (=0 for linear eos)
98   rn_mu1      =  0.          !  thermobaric coeff. in T (=0 for linear eos)
99   rn_mu2      =  0.          !  thermobaric coeff. in S (=0 for linear eos)
100   rn_nu       =  0.          !  cabbeling coeff in T*S  (=0 for linear eos)
101/
102!-----------------------------------------------------------------------
103&namtra_adv    !   advection scheme for tracer
104!----------------------------------------------------------------------
105   ln_traadv_fct = .true. !  FCT scheme
106      nn_fct_h   =  2            !  =2/4, horizontal 2nd / 4th order
107      nn_fct_v   =  2            !  =2/4, vertical   2nd / COMPACT 4th order
108/
109!-----------------------------------------------------------------------
110&namtra_ldf    !   lateral diffusion scheme for tracers                 (default: NO selection)
111!-----------------------------------------------------------------------
112   !                       !  Operator type:
113   ln_traldf_OFF   = .true.    !  No explicit diffusion
114   ln_traldf_lap   = .false.   !    laplacian operator
115   ln_traldf_blp   = .false.   !  bilaplacian operator
116   !
117   !                       !  Direction of action:
118   ln_traldf_lev   = .false.   !  iso-level
119   ln_traldf_hor   = .true.    !  horizontal  (geopotential)
120   ln_traldf_iso   = .false.   !  iso-neutral (standard operator)
121   ln_traldf_triad = .false.   !  iso-neutral (triad    operator)
122   !
123   !                             !  iso-neutral options:
124   ln_traldf_msc   = .false.   !  Method of Stabilizing Correction      (both operators)
125   rn_slpmax       =  0.01     !  slope limit                           (both operators)
126   ln_triad_iso    = .false.   !  pure horizontal mixing in ML              (triad only)
127   rn_sw_triad     = 1         !  =1 switching triad ; =0 all 4 triads used (triad only)
128   ln_botmix_triad = .false.   !  lateral mixing on bottom                  (triad only)
129   !
130   !                       !  Coefficients:
131   nn_aht_ijk_t    = 20         !  space/time variation of eddy coefficient:
132      !                             !   =-20 (=-30)    read in eddy_diffusivity_2D.nc (..._3D.nc) file
133      !                             !   =  0           constant
134      !                             !   = 10 F(k)      =ldf_c1d
135      !                             !   = 20 F(i,j)    =ldf_c2d
136      !                             !   = 21 F(i,j,t)  =Treguier et al. JPO 1997 formulation
137      !                             !   = 30 F(i,j,k)  =ldf_c2d * ldf_c1d
138      !                             !   = 31 F(i,j,k,t)=F(local velocity and grid-spacing)
139      !                        !  time invariant coefficients:  aht0 = 1/2  Ud*Ld   (lap case)
140      !                             !                           or   = 1/12 Ud*Ld^3 (blp case)
141      rn_Ud        = 0.02           !  lateral diffusive velocity [m/s] (nn_aht_ijk_t= 0, 10, 20, 30)
142      rn_Ld        = 200.e+3        !  lateral diffusive length   [m]   (nn_aht_ijk_t= 0, 10)
143/
144!!======================================================================
145!!                      ***  Dynamics namelists  ***                  !!
146!!======================================================================
147!
148!-----------------------------------------------------------------------
149&namdyn_adv    !   formulation of the momentum advection                (default: NO selection)
150!-----------------------------------------------------------------------
151   ln_dynadv_OFF = .false. !  linear dynamics (no momentum advection)
152   ln_dynadv_vec = .false. !  vector form (T) or flux form (F)
153   nn_dynkeg     = 0       ! scheme for grad(KE): =0   C2  ;  =1   Hollingsworth correction
154   ln_dynadv_cen2 = .false. !  flux form - 2nd order centered scheme
155   ln_dynadv_ubs = .true.  !  flux form - 3rd order UBS      scheme
156/
157!-----------------------------------------------------------------------
158&nam_vvl    !   vertical coordinate options                             (default: zstar)
159!-----------------------------------------------------------------------
160   ln_vvl_zstar  = .true.           !  zstar vertical coordinate
161/
162!-----------------------------------------------------------------------
163&namdyn_vor    !   option of physics/algorithm
164!-----------------------------------------------------------------------
165   ln_dynvor_een = .true.  !  energy & enstrophy scheme
166   !
167   nn_e3f_typ = 1          !  type of e3f (EEN, ENE, ENS, MIX only)  =0  e3f = mi(mj(e3t))/4
168   !                       !                                         =1  e3f = mi(mj(e3t))/mi(mj( tmask))
169/
170!-----------------------------------------------------------------------
171&namdyn_hpg    !   Hydrostatic pressure gradient option
172!-----------------------------------------------------------------------
173   ln_hpg_zps  = .false.  !  z-coordinate - partial steps (interpolation)
174   ln_hpg_djc  = .true.   !  s-coordinate (standard jacobian formulation)
175/
176!-----------------------------------------------------------------------
177&namdyn_spg    !   Surface pressure gradient
178!-----------------------------------------------------------------------
179   ln_dynspg_ts  = .true.   ! split-explicit free surface
180      ln_bt_fw      = .true.     ! Forward integration of barotropic Eqs.
181      ln_bt_av      = .true.     ! Time filtering of barotropic variables
182         nn_bt_flt     = 1          ! Time filter choice  = 0 None
183         !                          !                     = 1 Boxcar over   nn_e sub-steps
184         !                          !                     = 2 Boxcar over 2*nn_e  "    "
185      ln_bt_auto    = .false.   ! Number of sub-step defined from:
186         nn_e      =  20         ! =F : the number of sub-step in rn_Dt seconds
187/
188!-----------------------------------------------------------------------
189&namdyn_ldf    !   lateral diffusion on momentum                        (default: NO selection)
190!-----------------------------------------------------------------------
191   !                       !  Type of the operator :
192   ln_dynldf_OFF =  .true.     !  No operator (i.e. no explicit diffusion)
193/
194!!======================================================================
195!!                     vertical physics namelists                     !!
196!!======================================================================
197!-----------------------------------------------------------------------
198&namzdf        !   vertical physics                                     (default: NO selection)
199!-----------------------------------------------------------------------
200   ln_zad_Aimp = .false.       !  Courant number dependent scheme (Shchepetkin 2015)
201   !                       ! type of vertical closure (required)
202   ln_zdfcst   = .false.      !  constant mixing
203   ln_zdfric   = .false.      !  local Richardson dependent formulation (T =>   fill namzdf_ric)
204   ln_zdftke   = .false.      !  Turbulent Kinetic Energy closure       (T =>   fill namzdf_tke)
205   ln_zdfgls   = .true.       !  Generic Length Scale closure           (T =>   fill namzdf_gls)
206   ln_zdfosm   = .false.      !  OSMOSIS BL closure                     (T =>   fill namzdf_osm)
207   !   
208   !                       ! convection
209   ln_zdfevd   = .false.      !  enhanced vertical diffusion
210      nn_evdm     =    0         ! apply on tracer (=0) or on tracer and momentum (=1)
211      rn_evd      =  100.        ! mixing coefficient [m2/s]
212   ln_zdfnpc   = .false.      !  Non-Penetrative Convective algorithm
213      nn_npc      =    1         ! frequency of application of npc
214      nn_npcp     =  365         ! npc control print frequency
215   !   
216   ln_zdfddm   = .false.   ! double diffusive mixing
217      rn_avts  =    1.e-4     !  maximum avs (vertical mixing on salinity)
218      rn_hsbfr =    1.6       !  heat/salt buoyancy flux ratio
219   !   
220   !                       ! gravity wave-driven vertical mixing
221   ln_zdfiwm   = .false.      ! internal wave-induced mixing            (T =>   fill namzdf_iwm)
222   ln_zdfswm   = .false.      ! surface  wave-induced mixing            (T => ln_wave=ln_sdw=T )
223   !   
224   !                       ! coefficients
225   rn_avm0     =   1.e-5     !  vertical eddy viscosity   [m2/s]       (background Kz if ln_zdfcst=F)
226   rn_avt0     =   1.e-6     !  vertical eddy diffusivity [m2/s]       (background Kz if ln_zdfcst=F)
227   nn_avb      =    0        !  profile for background avt & avm (=1) or not (=0)
228   nn_havtb    =    0        !  horizontal shape for avtb (=1) or not (=0)
229/
230!-----------------------------------------------------------------------
231&nambdy        !  unstructured open boundaries                          (default: OFF)
232!-----------------------------------------------------------------------
233   ln_bdy         = .true.    !  Use unstructured open boundaries
234   nb_bdy         =  2        !  number of open boundary sets
235   ln_coords_file = .false.,.false.   !  =T : read bdy coordinates from file
236   ln_mask_file   = .false.   !  =T : read mask from file
237   cn_dyn2d    = 'frs','frs'  !
238   nn_dyn2d_dta   =  0,0      !  = 0, bdy data are equal to the initial state
239      !                       !  = 1, bdy data are read in 'bdydata   .nc' files
240      !                       !  = 2, use tidal harmonic forcing data from files
241      !                       !  = 3, use external data AND tidal harmonic forcing
242   cn_dyn3d      =  'frs','frs'    !
243   nn_dyn3d_dta  =  0,0       !  = 0, bdy data are equal to the initial state
244   !                          !  = 1, bdy data are read in 'bdydata   .nc' files
245   cn_tra        =  'frs','frs'    !
246   nn_tra_dta    =  0,0       !  = 0, bdy data are equal to the initial state
247   !                          !  = 1, bdy data are read in 'bdydata   .nc' files
248   cn_ice        =  'none','none'  !
249   nn_ice_dta    =  0,0       !  = 0, bdy data are equal to the initial state
250   !                          !  = 1, bdy data are read in 'bdydata   .nc' files
251   !
252   ln_tra_dmp    =.false.,.false.     !  open boudaries conditions for tracers
253   ln_dyn3d_dmp  =.false.,.false.     !  open boundary condition for baroclinic velocities
254   rn_time_dmp   =  1.,1.     !  Damping time scale in days
255   rn_time_dmp_out = 5.,5.    !  Outflow damping time scale
256   nn_rimwidth   = 1,10       !  width of the relaxation zone
257   ln_vol        = .true. 
258/
259!-----------------------------------------------------------------------
260&nambdy_index   !  bdy segment definition     
261!-----------------------------------------------------------------------
262   ctypebdy='N'
263   nbdyind = -1 
264   nbdybeg = -1 
265   nbdyend = -1 
266/
267!-----------------------------------------------------------------------
268&nambdy_index   !  bdy segment definition         
269!-----------------------------------------------------------------------
270   ctypebdy='W'
271   nbdyind = 2 
272   nbdybeg = 1 
273   nbdyend = 164 
274/
Note: See TracBrowser for help on using the repository browser.