1 | MODULE domvvl |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE domvvl *** |
---|
4 | !! Ocean : |
---|
5 | !!====================================================================== |
---|
6 | !! History : 2.0 ! 2006-06 (B. Levier, L. Marie) original code |
---|
7 | !! 3.1 ! 2009-02 (G. Madec, M. Leclair, R. Benshila) pure z* coordinate |
---|
8 | !! 3.3 ! 2011-10 (M. Leclair) totally rewrote domvvl: |
---|
9 | !! vvl option includes z_star and z_tilde coordinates |
---|
10 | !! 3.6 ! 2014-11 (P. Mathiot) add ice shelf capability |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | !! dom_vvl_init : define initial vertical scale factors, depths and column thickness |
---|
15 | !! dom_vvl_sf_nxt : Compute next vertical scale factors |
---|
16 | !! dom_vvl_sf_swp : Swap vertical scale factors and update the vertical grid |
---|
17 | !! dom_vvl_interpol : Interpolate vertical scale factors from one grid point to another |
---|
18 | !! dom_vvl_rst : read/write restart file |
---|
19 | !! dom_vvl_ctl : Check the vvl options |
---|
20 | !!---------------------------------------------------------------------- |
---|
21 | USE oce ! ocean dynamics and tracers |
---|
22 | USE phycst ! physical constant |
---|
23 | USE dom_oce ! ocean space and time domain |
---|
24 | ! |
---|
25 | USE in_out_manager ! I/O manager |
---|
26 | USE iom ! I/O manager library |
---|
27 | USE lib_mpp ! distributed memory computing library |
---|
28 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
29 | USE wrk_nemo ! Memory allocation |
---|
30 | USE timing ! Timing |
---|
31 | |
---|
32 | IMPLICIT NONE |
---|
33 | PRIVATE |
---|
34 | |
---|
35 | PUBLIC dom_vvl_init ! called by domain.F90 |
---|
36 | |
---|
37 | ! !!* Namelist nam_vvl |
---|
38 | LOGICAL , PUBLIC :: ln_vvl_zstar = .FALSE. ! zstar vertical coordinate |
---|
39 | LOGICAL , PUBLIC :: ln_vvl_ztilde = .FALSE. ! ztilde vertical coordinate |
---|
40 | LOGICAL , PUBLIC :: ln_vvl_layer = .FALSE. ! level vertical coordinate |
---|
41 | LOGICAL , PUBLIC :: ln_vvl_ztilde_as_zstar = .FALSE. ! ztilde vertical coordinate |
---|
42 | LOGICAL , PUBLIC :: ln_vvl_zstar_at_eqtor = .FALSE. ! ztilde vertical coordinate |
---|
43 | LOGICAL , PUBLIC :: ln_vvl_kepe = .FALSE. ! kinetic/potential energy transfer |
---|
44 | ! ! conservation: not used yet |
---|
45 | REAL(wp) :: rn_ahe3 ! thickness diffusion coefficient |
---|
46 | REAL(wp) :: rn_rst_e3t ! ztilde to zstar restoration timescale [days] |
---|
47 | REAL(wp) :: rn_lf_cutoff ! cutoff frequency for low-pass filter [days] |
---|
48 | REAL(wp) :: rn_zdef_max ! maximum fractional e3t deformation |
---|
49 | LOGICAL , PUBLIC :: ln_vvl_dbg = .FALSE. ! debug control prints |
---|
50 | |
---|
51 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: un_td, vn_td ! thickness diffusion transport |
---|
52 | REAL(wp) , ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: hdiv_lf ! low frequency part of hz divergence |
---|
53 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: tilde_e3t_b, tilde_e3t_n ! baroclinic scale factors |
---|
54 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: tilde_e3t_a, dtilde_e3t_a ! baroclinic scale factors |
---|
55 | REAL(wp) , ALLOCATABLE, SAVE, DIMENSION(:,:) :: frq_rst_e3t ! retoring period for scale factors |
---|
56 | REAL(wp) , ALLOCATABLE, SAVE, DIMENSION(:,:) :: frq_rst_hdv ! retoring period for low freq. divergence |
---|
57 | |
---|
58 | !! * Substitutions |
---|
59 | !!---------------------------------------------------------------------- |
---|
60 | !! *** vectopt_loop_substitute *** |
---|
61 | !!---------------------------------------------------------------------- |
---|
62 | !! ** purpose : substitute the inner loop start/end indices with CPP macro |
---|
63 | !! allow unrolling of do-loop (useful with vector processors) |
---|
64 | !!---------------------------------------------------------------------- |
---|
65 | !!---------------------------------------------------------------------- |
---|
66 | !! NEMO/OPA 3.7 , NEMO Consortium (2014) |
---|
67 | !! $Id: vectopt_loop_substitute.h90 4990 2014-12-15 16:42:49Z timgraham $ |
---|
68 | !! Software governed by the CeCILL licence (./LICENSE) |
---|
69 | !!---------------------------------------------------------------------- |
---|
70 | !!---------------------------------------------------------------------- |
---|
71 | !! NEMO/OPA 3.7 , NEMO-Consortium (2015) |
---|
72 | !! $Id: domvvl.F90 6351 2016-02-24 18:50:11Z cetlod $ |
---|
73 | !! Software governed by the CeCILL licence (./LICENSE) |
---|
74 | !!---------------------------------------------------------------------- |
---|
75 | CONTAINS |
---|
76 | |
---|
77 | INTEGER FUNCTION dom_vvl_alloc() |
---|
78 | !!---------------------------------------------------------------------- |
---|
79 | !! *** FUNCTION dom_vvl_alloc *** |
---|
80 | !!---------------------------------------------------------------------- |
---|
81 | IF( ln_vvl_zstar ) dom_vvl_alloc = 0 |
---|
82 | IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN |
---|
83 | ALLOCATE( tilde_e3t_b(jpi,jpj,jpk) , tilde_e3t_n(jpi,jpj,jpk) , tilde_e3t_a(jpi,jpj,jpk) , & |
---|
84 | & dtilde_e3t_a(jpi,jpj,jpk) , un_td (jpi,jpj,jpk) , vn_td (jpi,jpj,jpk) , & |
---|
85 | & STAT = dom_vvl_alloc ) |
---|
86 | IF( lk_mpp ) CALL mpp_sum ( dom_vvl_alloc ) |
---|
87 | IF( dom_vvl_alloc /= 0 ) CALL ctl_warn('dom_vvl_alloc: failed to allocate arrays') |
---|
88 | un_td = 0._wp |
---|
89 | vn_td = 0._wp |
---|
90 | ENDIF |
---|
91 | IF( ln_vvl_ztilde ) THEN |
---|
92 | ALLOCATE( frq_rst_e3t(jpi,jpj) , frq_rst_hdv(jpi,jpj) , hdiv_lf(jpi,jpj,jpk) , STAT= dom_vvl_alloc ) |
---|
93 | IF( lk_mpp ) CALL mpp_sum ( dom_vvl_alloc ) |
---|
94 | IF( dom_vvl_alloc /= 0 ) CALL ctl_warn('dom_vvl_alloc: failed to allocate arrays') |
---|
95 | ENDIF |
---|
96 | ! |
---|
97 | END FUNCTION dom_vvl_alloc |
---|
98 | |
---|
99 | |
---|
100 | SUBROUTINE dom_vvl_init |
---|
101 | !!---------------------------------------------------------------------- |
---|
102 | !! *** ROUTINE dom_vvl_init *** |
---|
103 | !! |
---|
104 | !! ** Purpose : Initialization of all scale factors, depths |
---|
105 | !! and water column heights |
---|
106 | !! |
---|
107 | !! ** Method : - use restart file and/or initialize |
---|
108 | !! - interpolate scale factors |
---|
109 | !! |
---|
110 | !! ** Action : - e3t_(n/b) and tilde_e3t_(n/b) |
---|
111 | !! - Regrid: e3(u/v)_n |
---|
112 | !! e3(u/v)_b |
---|
113 | !! e3w_n |
---|
114 | !! e3(u/v)w_b |
---|
115 | !! e3(u/v)w_n |
---|
116 | !! gdept_n, gdepw_n and gde3w_n |
---|
117 | !! - h(t/u/v)_0 |
---|
118 | !! - frq_rst_e3t and frq_rst_hdv |
---|
119 | !! |
---|
120 | !! Reference : Leclair, M., and G. Madec, 2011, Ocean Modelling. |
---|
121 | !!---------------------------------------------------------------------- |
---|
122 | INTEGER :: ji, jj, jk |
---|
123 | INTEGER :: ii0, ii1, ij0, ij1 |
---|
124 | REAL(wp):: zcoef |
---|
125 | !!---------------------------------------------------------------------- |
---|
126 | ! |
---|
127 | IF( nn_timing == 1 ) CALL timing_start('dom_vvl_init') |
---|
128 | ! |
---|
129 | IF(lwp) WRITE(numout,*) |
---|
130 | IF(lwp) WRITE(numout,*) 'dom_vvl_init : Variable volume activated' |
---|
131 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~' |
---|
132 | ! |
---|
133 | CALL dom_vvl_ctl ! choose vertical coordinate (z_star, z_tilde or layer) |
---|
134 | ! |
---|
135 | ! ! Allocate module arrays |
---|
136 | IF( dom_vvl_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'dom_vvl_init : unable to allocate arrays' ) |
---|
137 | ! |
---|
138 | ! ! Read or initialize e3t_(b/n), tilde_e3t_(b/n) and hdiv_lf |
---|
139 | e3t_a(:,:,jpk) = e3t_0(:,:,jpk) ! last level always inside the sea floor set one for all |
---|
140 | ! |
---|
141 | ! !== Set of all other vertical scale factors ==! (now and before) |
---|
142 | ! ! Horizontal interpolation of e3t |
---|
143 | CALL dom_vvl_interpol( e3t_b(:,:,:), e3u_b(:,:,:), 'U' ) ! from T to U |
---|
144 | CALL dom_vvl_interpol( e3t_n(:,:,:), e3u_n(:,:,:), 'U' ) |
---|
145 | CALL dom_vvl_interpol( e3t_b(:,:,:), e3v_b(:,:,:), 'V' ) ! from T to V |
---|
146 | CALL dom_vvl_interpol( e3t_n(:,:,:), e3v_n(:,:,:), 'V' ) |
---|
147 | CALL dom_vvl_interpol( e3u_n(:,:,:), e3f_n(:,:,:), 'F' ) ! from U to F |
---|
148 | ! ! Vertical interpolation of e3t,u,v |
---|
149 | CALL dom_vvl_interpol( e3t_n(:,:,:), e3w_n (:,:,:), 'W' ) ! from T to W |
---|
150 | CALL dom_vvl_interpol( e3t_b(:,:,:), e3w_b (:,:,:), 'W' ) |
---|
151 | CALL dom_vvl_interpol( e3u_n(:,:,:), e3uw_n(:,:,:), 'UW' ) ! from U to UW |
---|
152 | CALL dom_vvl_interpol( e3u_b(:,:,:), e3uw_b(:,:,:), 'UW' ) |
---|
153 | CALL dom_vvl_interpol( e3v_n(:,:,:), e3vw_n(:,:,:), 'VW' ) ! from V to UW |
---|
154 | CALL dom_vvl_interpol( e3v_b(:,:,:), e3vw_b(:,:,:), 'VW' ) |
---|
155 | ! |
---|
156 | ! !== depth of t and w-point ==! (set the isf depth as it is in the initial timestep) |
---|
157 | gdept_n(:,:,1) = 0.5_wp * e3w_n(:,:,1) ! reference to the ocean surface (used for MLD and light penetration) |
---|
158 | gdepw_n(:,:,1) = 0.0_wp |
---|
159 | gde3w_n(:,:,1) = gdept_n(:,:,1) - sshn(:,:) ! reference to a common level z=0 for hpg |
---|
160 | gdept_b(:,:,1) = 0.5_wp * e3w_b(:,:,1) |
---|
161 | gdepw_b(:,:,1) = 0.0_wp |
---|
162 | DO jk = 2, jpk ! vertical sum |
---|
163 | DO jj = 1,jpj |
---|
164 | DO ji = 1,jpi |
---|
165 | ! zcoef = tmask - wmask ! 0 everywhere tmask = wmask, ie everywhere expect at jk = mikt |
---|
166 | ! ! 1 everywhere from mbkt to mikt + 1 or 1 (if no isf) |
---|
167 | ! ! 0.5 where jk = mikt |
---|
168 | !!gm ??????? BUG ? gdept_n as well as gde3w_n does not include the thickness of ISF ?? |
---|
169 | zcoef = ( tmask(ji,jj,jk) - wmask(ji,jj,jk) ) |
---|
170 | gdepw_n(ji,jj,jk) = gdepw_n(ji,jj,jk-1) + e3t_n(ji,jj,jk-1) |
---|
171 | gdept_n(ji,jj,jk) = zcoef * ( gdepw_n(ji,jj,jk ) + 0.5 * e3w_n(ji,jj,jk)) & |
---|
172 | & + (1-zcoef) * ( gdept_n(ji,jj,jk-1) + e3w_n(ji,jj,jk)) |
---|
173 | gde3w_n(ji,jj,jk) = gdept_n(ji,jj,jk) - sshn(ji,jj) |
---|
174 | gdepw_b(ji,jj,jk) = gdepw_b(ji,jj,jk-1) + e3t_b(ji,jj,jk-1) |
---|
175 | gdept_b(ji,jj,jk) = zcoef * ( gdepw_b(ji,jj,jk ) + 0.5 * e3w_b(ji,jj,jk)) & |
---|
176 | & + (1-zcoef) * ( gdept_b(ji,jj,jk-1) + e3w_b(ji,jj,jk)) |
---|
177 | END DO |
---|
178 | END DO |
---|
179 | END DO |
---|
180 | ! |
---|
181 | ! !== thickness of the water column !! (ocean portion only) |
---|
182 | ht_n(:,:) = e3t_n(:,:,1) * tmask(:,:,1) !!gm BUG : this should be 1/2 * e3w(k=1) .... |
---|
183 | hu_b(:,:) = e3u_b(:,:,1) * umask(:,:,1) |
---|
184 | hu_n(:,:) = e3u_n(:,:,1) * umask(:,:,1) |
---|
185 | hv_b(:,:) = e3v_b(:,:,1) * vmask(:,:,1) |
---|
186 | hv_n(:,:) = e3v_n(:,:,1) * vmask(:,:,1) |
---|
187 | DO jk = 2, jpkm1 |
---|
188 | ht_n(:,:) = ht_n(:,:) + e3t_n(:,:,jk) * tmask(:,:,jk) |
---|
189 | hu_b(:,:) = hu_b(:,:) + e3u_b(:,:,jk) * umask(:,:,jk) |
---|
190 | hu_n(:,:) = hu_n(:,:) + e3u_n(:,:,jk) * umask(:,:,jk) |
---|
191 | hv_b(:,:) = hv_b(:,:) + e3v_b(:,:,jk) * vmask(:,:,jk) |
---|
192 | hv_n(:,:) = hv_n(:,:) + e3v_n(:,:,jk) * vmask(:,:,jk) |
---|
193 | END DO |
---|
194 | ! |
---|
195 | ! !== inverse of water column thickness ==! (u- and v- points) |
---|
196 | r1_hu_b(:,:) = ssumask(:,:) / ( hu_b(:,:) + 1._wp - ssumask(:,:) ) ! _i mask due to ISF |
---|
197 | r1_hu_n(:,:) = ssumask(:,:) / ( hu_n(:,:) + 1._wp - ssumask(:,:) ) |
---|
198 | r1_hv_b(:,:) = ssvmask(:,:) / ( hv_b(:,:) + 1._wp - ssvmask(:,:) ) |
---|
199 | r1_hv_n(:,:) = ssvmask(:,:) / ( hv_n(:,:) + 1._wp - ssvmask(:,:) ) |
---|
200 | |
---|
201 | ! !== z_tilde coordinate case ==! (Restoring frequencies) |
---|
202 | IF( ln_vvl_ztilde ) THEN |
---|
203 | !!gm : idea: add here a READ in a file of custumized restoring frequency |
---|
204 | ! ! Values in days provided via the namelist |
---|
205 | ! ! use rsmall to avoid possible division by zero errors with faulty settings |
---|
206 | frq_rst_e3t(:,:) = 2._wp * rpi / ( MAX( rn_rst_e3t , rsmall ) * 86400.0_wp ) |
---|
207 | frq_rst_hdv(:,:) = 2._wp * rpi / ( MAX( rn_lf_cutoff, rsmall ) * 86400.0_wp ) |
---|
208 | ! |
---|
209 | IF( ln_vvl_ztilde_as_zstar ) THEN ! z-star emulation using z-tile |
---|
210 | frq_rst_e3t(:,:) = 0._wp !Ignore namelist settings |
---|
211 | frq_rst_hdv(:,:) = 1._wp / rdt |
---|
212 | ENDIF |
---|
213 | IF ( ln_vvl_zstar_at_eqtor ) THEN ! use z-star in vicinity of the Equator |
---|
214 | DO jj = 1, jpj |
---|
215 | DO ji = 1, jpi |
---|
216 | !!gm case |gphi| >= 6 degrees is useless initialized just above by default |
---|
217 | IF( ABS(gphit(ji,jj)) >= 6.) THEN |
---|
218 | ! values outside the equatorial band and transition zone (ztilde) |
---|
219 | frq_rst_e3t(ji,jj) = 2.0_wp * rpi / ( MAX( rn_rst_e3t , rsmall ) * 86400.e0_wp ) |
---|
220 | frq_rst_hdv(ji,jj) = 2.0_wp * rpi / ( MAX( rn_lf_cutoff, rsmall ) * 86400.e0_wp ) |
---|
221 | ELSEIF( ABS(gphit(ji,jj)) <= 2.5) THEN ! Equator strip ==> z-star |
---|
222 | ! values inside the equatorial band (ztilde as zstar) |
---|
223 | frq_rst_e3t(ji,jj) = 0.0_wp |
---|
224 | frq_rst_hdv(ji,jj) = 1.0_wp / rdt |
---|
225 | ELSE ! transition band (2.5 to 6 degrees N/S) |
---|
226 | ! ! (linearly transition from z-tilde to z-star) |
---|
227 | frq_rst_e3t(ji,jj) = 0.0_wp + (frq_rst_e3t(ji,jj)-0.0_wp)*0.5_wp & |
---|
228 | & * ( 1.0_wp - COS( rad*(ABS(gphit(ji,jj))-2.5_wp) & |
---|
229 | & * 180._wp / 3.5_wp ) ) |
---|
230 | frq_rst_hdv(ji,jj) = (1.0_wp / rdt) & |
---|
231 | & + ( frq_rst_hdv(ji,jj)-(1.e0_wp / rdt) )*0.5_wp & |
---|
232 | & * ( 1._wp - COS( rad*(ABS(gphit(ji,jj))-2.5_wp) & |
---|
233 | & * 180._wp / 3.5_wp ) ) |
---|
234 | ENDIF |
---|
235 | END DO |
---|
236 | END DO |
---|
237 | IF( cp_cfg == "orca" .AND. jp_cfg == 3 ) THEN ! ORCA2: Suppress ztilde in the Foxe Basin for ORCA2 |
---|
238 | ii0 = 103 ; ii1 = 111 |
---|
239 | ij0 = 128 ; ij1 = 135 ; |
---|
240 | frq_rst_e3t( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1) ) = 0.0_wp |
---|
241 | frq_rst_hdv( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1) ) = 1.e0_wp / rdt |
---|
242 | ENDIF |
---|
243 | ENDIF |
---|
244 | ENDIF |
---|
245 | ! |
---|
246 | IF( nn_timing == 1 ) CALL timing_stop('dom_vvl_init') |
---|
247 | ! |
---|
248 | END SUBROUTINE dom_vvl_init |
---|
249 | |
---|
250 | |
---|
251 | SUBROUTINE dom_vvl_interpol( pe3_in, pe3_out, pout ) |
---|
252 | !!--------------------------------------------------------------------- |
---|
253 | !! *** ROUTINE dom_vvl__interpol *** |
---|
254 | !! |
---|
255 | !! ** Purpose : interpolate scale factors from one grid point to another |
---|
256 | !! |
---|
257 | !! ** Method : e3_out = e3_0 + interpolation(e3_in - e3_0) |
---|
258 | !! - horizontal interpolation: grid cell surface averaging |
---|
259 | !! - vertical interpolation: simple averaging |
---|
260 | !!---------------------------------------------------------------------- |
---|
261 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(in ) :: pe3_in ! input e3 to be interpolated |
---|
262 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pe3_out ! output interpolated e3 |
---|
263 | CHARACTER(LEN=*) , INTENT(in ) :: pout ! grid point of out scale factors |
---|
264 | ! ! = 'U', 'V', 'W, 'F', 'UW' or 'VW' |
---|
265 | ! |
---|
266 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
267 | REAL(wp) :: zlnwd ! =1./0. when ln_wd = T/F |
---|
268 | !!---------------------------------------------------------------------- |
---|
269 | ! |
---|
270 | IF( nn_timing == 1 ) CALL timing_start('dom_vvl_interpol') |
---|
271 | ! |
---|
272 | zlnwd = 0.0_wp |
---|
273 | ! |
---|
274 | SELECT CASE ( pout ) !== type of interpolation ==! |
---|
275 | ! |
---|
276 | CASE( 'U' ) !* from T- to U-point : hor. surface weighted mean |
---|
277 | DO jk = 1, jpk |
---|
278 | DO jj = 1, jpjm1 |
---|
279 | DO ji = 1, jpim1 ! vector opt. |
---|
280 | pe3_out(ji,jj,jk) = 0.5_wp * ( umask(ji,jj,jk) * (1.0_wp - zlnwd) + zlnwd ) * r1_e1e2u(ji,jj) & |
---|
281 | & * ( e1e2t(ji ,jj) * ( pe3_in(ji ,jj,jk) - e3t_0(ji ,jj,jk) ) & |
---|
282 | & + e1e2t(ji+1,jj) * ( pe3_in(ji+1,jj,jk) - e3t_0(ji+1,jj,jk) ) ) |
---|
283 | END DO |
---|
284 | END DO |
---|
285 | END DO |
---|
286 | CALL lbc_lnk( pe3_out(:,:,:), 'U', 1._wp ) |
---|
287 | pe3_out(:,:,:) = pe3_out(:,:,:) + e3u_0(:,:,:) |
---|
288 | ! |
---|
289 | CASE( 'V' ) !* from T- to V-point : hor. surface weighted mean |
---|
290 | DO jk = 1, jpk |
---|
291 | DO jj = 1, jpjm1 |
---|
292 | DO ji = 1, jpim1 ! vector opt. |
---|
293 | pe3_out(ji,jj,jk) = 0.5_wp * ( vmask(ji,jj,jk) * (1.0_wp - zlnwd) + zlnwd ) * r1_e1e2v(ji,jj) & |
---|
294 | & * ( e1e2t(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3t_0(ji,jj ,jk) ) & |
---|
295 | & + e1e2t(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3t_0(ji,jj+1,jk) ) ) |
---|
296 | END DO |
---|
297 | END DO |
---|
298 | END DO |
---|
299 | CALL lbc_lnk( pe3_out(:,:,:), 'V', 1._wp ) |
---|
300 | pe3_out(:,:,:) = pe3_out(:,:,:) + e3v_0(:,:,:) |
---|
301 | ! |
---|
302 | CASE( 'F' ) !* from U-point to F-point : hor. surface weighted mean |
---|
303 | DO jk = 1, jpk |
---|
304 | DO jj = 1, jpjm1 |
---|
305 | DO ji = 1, jpim1 ! vector opt. |
---|
306 | pe3_out(ji,jj,jk) = 0.5_wp * ( umask(ji,jj,jk) * umask(ji,jj+1,jk) * (1.0_wp - zlnwd) + zlnwd ) & |
---|
307 | & * r1_e1e2f(ji,jj) & |
---|
308 | & * ( e1e2u(ji,jj ) * ( pe3_in(ji,jj ,jk) - e3u_0(ji,jj ,jk) ) & |
---|
309 | & + e1e2u(ji,jj+1) * ( pe3_in(ji,jj+1,jk) - e3u_0(ji,jj+1,jk) ) ) |
---|
310 | END DO |
---|
311 | END DO |
---|
312 | END DO |
---|
313 | CALL lbc_lnk( pe3_out(:,:,:), 'F', 1._wp ) |
---|
314 | pe3_out(:,:,:) = pe3_out(:,:,:) + e3f_0(:,:,:) |
---|
315 | ! |
---|
316 | CASE( 'W' ) !* from T- to W-point : vertical simple mean |
---|
317 | ! |
---|
318 | pe3_out(:,:,1) = e3w_0(:,:,1) + pe3_in(:,:,1) - e3t_0(:,:,1) |
---|
319 | ! - ML - The use of mask in this formulea enables the special treatment of the last w-point without indirect adressing |
---|
320 | !!gm BUG? use here wmask in case of ISF ? to be checked |
---|
321 | DO jk = 2, jpk |
---|
322 | pe3_out(:,:,jk) = e3w_0(:,:,jk) + ( 1.0_wp - 0.5_wp * ( tmask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) ) & |
---|
323 | & * ( pe3_in(:,:,jk-1) - e3t_0(:,:,jk-1) ) & |
---|
324 | & + 0.5_wp * ( tmask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) & |
---|
325 | & * ( pe3_in(:,:,jk ) - e3t_0(:,:,jk ) ) |
---|
326 | END DO |
---|
327 | ! |
---|
328 | CASE( 'UW' ) !* from U- to UW-point : vertical simple mean |
---|
329 | ! |
---|
330 | pe3_out(:,:,1) = e3uw_0(:,:,1) + pe3_in(:,:,1) - e3u_0(:,:,1) |
---|
331 | ! - ML - The use of mask in this formaula enables the special treatment of the last w- point without indirect adressing |
---|
332 | !!gm BUG? use here wumask in case of ISF ? to be checked |
---|
333 | DO jk = 2, jpk |
---|
334 | pe3_out(:,:,jk) = e3uw_0(:,:,jk) + ( 1.0_wp - 0.5_wp * ( umask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) ) & |
---|
335 | & * ( pe3_in(:,:,jk-1) - e3u_0(:,:,jk-1) ) & |
---|
336 | & + 0.5_wp * ( umask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) & |
---|
337 | & * ( pe3_in(:,:,jk ) - e3u_0(:,:,jk ) ) |
---|
338 | END DO |
---|
339 | ! |
---|
340 | CASE( 'VW' ) !* from V- to VW-point : vertical simple mean |
---|
341 | ! |
---|
342 | pe3_out(:,:,1) = e3vw_0(:,:,1) + pe3_in(:,:,1) - e3v_0(:,:,1) |
---|
343 | ! - ML - The use of mask in this formaula enables the special treatment of the last w- point without indirect adressing |
---|
344 | !!gm BUG? use here wvmask in case of ISF ? to be checked |
---|
345 | DO jk = 2, jpk |
---|
346 | pe3_out(:,:,jk) = e3vw_0(:,:,jk) + ( 1.0_wp - 0.5_wp * ( vmask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) ) & |
---|
347 | & * ( pe3_in(:,:,jk-1) - e3v_0(:,:,jk-1) ) & |
---|
348 | & + 0.5_wp * ( vmask(:,:,jk) * (1.0_wp - zlnwd) + zlnwd ) & |
---|
349 | & * ( pe3_in(:,:,jk ) - e3v_0(:,:,jk ) ) |
---|
350 | END DO |
---|
351 | END SELECT |
---|
352 | ! |
---|
353 | IF( nn_timing == 1 ) CALL timing_stop('dom_vvl_interpol') |
---|
354 | ! |
---|
355 | END SUBROUTINE dom_vvl_interpol |
---|
356 | |
---|
357 | |
---|
358 | SUBROUTINE dom_vvl_ctl |
---|
359 | !!--------------------------------------------------------------------- |
---|
360 | !! *** ROUTINE dom_vvl_ctl *** |
---|
361 | !! |
---|
362 | !! ** Purpose : Control the consistency between namelist options |
---|
363 | !! for vertical coordinate |
---|
364 | !!---------------------------------------------------------------------- |
---|
365 | INTEGER :: ioptio, ios |
---|
366 | !! |
---|
367 | NAMELIST/nam_vvl/ ln_vvl_zstar, ln_vvl_ztilde, ln_vvl_layer, ln_vvl_ztilde_as_zstar, & |
---|
368 | & ln_vvl_zstar_at_eqtor , rn_ahe3 , rn_rst_e3t , & |
---|
369 | & rn_lf_cutoff , rn_zdef_max , ln_vvl_dbg ! not yet implemented: ln_vvl_kepe |
---|
370 | !!---------------------------------------------------------------------- |
---|
371 | ! |
---|
372 | REWIND( numnam_ref ) ! Namelist nam_vvl in reference namelist : |
---|
373 | READ ( numnam_ref, nam_vvl, IOSTAT = ios, ERR = 901) |
---|
374 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nam_vvl in reference namelist', lwp ) |
---|
375 | ! |
---|
376 | REWIND( numnam_cfg ) ! Namelist nam_vvl in configuration namelist : Parameters of the run |
---|
377 | READ ( numnam_cfg, nam_vvl, IOSTAT = ios, ERR = 902 ) |
---|
378 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nam_vvl in configuration namelist', lwp ) |
---|
379 | IF(lwm) WRITE ( numond, nam_vvl ) |
---|
380 | ! |
---|
381 | IF(lwp) THEN ! Namelist print |
---|
382 | WRITE(numout,*) |
---|
383 | WRITE(numout,*) 'dom_vvl_ctl : choice/control of the variable vertical coordinate' |
---|
384 | WRITE(numout,*) '~~~~~~~~~~~' |
---|
385 | WRITE(numout,*) ' Namelist nam_vvl : chose a vertical coordinate' |
---|
386 | WRITE(numout,*) ' zstar ln_vvl_zstar = ', ln_vvl_zstar |
---|
387 | WRITE(numout,*) ' ztilde ln_vvl_ztilde = ', ln_vvl_ztilde |
---|
388 | WRITE(numout,*) ' layer ln_vvl_layer = ', ln_vvl_layer |
---|
389 | WRITE(numout,*) ' ztilde as zstar ln_vvl_ztilde_as_zstar = ', ln_vvl_ztilde_as_zstar |
---|
390 | WRITE(numout,*) ' ztilde near the equator ln_vvl_zstar_at_eqtor = ', ln_vvl_zstar_at_eqtor |
---|
391 | ! WRITE(numout,*) ' Namelist nam_vvl : chose kinetic-to-potential energy conservation' |
---|
392 | ! WRITE(numout,*) ' ln_vvl_kepe = ', ln_vvl_kepe |
---|
393 | WRITE(numout,*) ' Namelist nam_vvl : thickness diffusion coefficient' |
---|
394 | WRITE(numout,*) ' rn_ahe3 = ', rn_ahe3 |
---|
395 | WRITE(numout,*) ' Namelist nam_vvl : maximum e3t deformation fractional change' |
---|
396 | WRITE(numout,*) ' rn_zdef_max = ', rn_zdef_max |
---|
397 | IF( ln_vvl_ztilde_as_zstar ) THEN |
---|
398 | WRITE(numout,*) ' ztilde running in zstar emulation mode; ' |
---|
399 | WRITE(numout,*) ' ignoring namelist timescale parameters and using:' |
---|
400 | WRITE(numout,*) ' hard-wired : z-tilde to zstar restoration timescale (days)' |
---|
401 | WRITE(numout,*) ' rn_rst_e3t = 0.0' |
---|
402 | WRITE(numout,*) ' hard-wired : z-tilde cutoff frequency of low-pass filter (days)' |
---|
403 | WRITE(numout,*) ' rn_lf_cutoff = 1.0/rdt' |
---|
404 | ELSE |
---|
405 | WRITE(numout,*) ' Namelist nam_vvl : z-tilde to zstar restoration timescale (days)' |
---|
406 | WRITE(numout,*) ' rn_rst_e3t = ', rn_rst_e3t |
---|
407 | WRITE(numout,*) ' Namelist nam_vvl : z-tilde cutoff frequency of low-pass filter (days)' |
---|
408 | WRITE(numout,*) ' rn_lf_cutoff = ', rn_lf_cutoff |
---|
409 | ENDIF |
---|
410 | WRITE(numout,*) ' Namelist nam_vvl : debug prints' |
---|
411 | WRITE(numout,*) ' ln_vvl_dbg = ', ln_vvl_dbg |
---|
412 | ENDIF |
---|
413 | ! |
---|
414 | ioptio = 0 ! Parameter control |
---|
415 | IF( ln_vvl_ztilde_as_zstar ) ln_vvl_ztilde = .true. |
---|
416 | IF( ln_vvl_zstar ) ioptio = ioptio + 1 |
---|
417 | IF( ln_vvl_ztilde ) ioptio = ioptio + 1 |
---|
418 | IF( ln_vvl_layer ) ioptio = ioptio + 1 |
---|
419 | ! |
---|
420 | IF( ioptio /= 1 ) CALL ctl_stop( 'Choose ONE vertical coordinate in namelist nam_vvl' ) |
---|
421 | ! |
---|
422 | IF(lwp) THEN ! Print the choice |
---|
423 | WRITE(numout,*) |
---|
424 | IF( ln_vvl_zstar ) WRITE(numout,*) ' zstar vertical coordinate is used' |
---|
425 | IF( ln_vvl_ztilde ) WRITE(numout,*) ' ztilde vertical coordinate is used' |
---|
426 | IF( ln_vvl_layer ) WRITE(numout,*) ' layer vertical coordinate is used' |
---|
427 | IF( ln_vvl_ztilde_as_zstar ) WRITE(numout,*) ' to emulate a zstar coordinate' |
---|
428 | ! - ML - Option not developed yet |
---|
429 | ! IF( ln_vvl_kepe ) WRITE(numout,*) ' kinetic to potential energy transfer : option used' |
---|
430 | ! IF( .NOT. ln_vvl_kepe ) WRITE(numout,*) ' kinetic to potential energy transfer : option not used' |
---|
431 | ENDIF |
---|
432 | ! |
---|
433 | ! |
---|
434 | END SUBROUTINE dom_vvl_ctl |
---|
435 | |
---|
436 | !!====================================================================== |
---|
437 | END MODULE domvvl |
---|