1 | MODULE zpshde_tam |
---|
2 | #ifdef key_tam |
---|
3 | !!============================================================================== |
---|
4 | !! *** MODULE zpshde_tam *** |
---|
5 | !! z-coordinate - partial step : Horizontal Derivative |
---|
6 | !! Tangent and Adjoint Module |
---|
7 | !!============================================================================== |
---|
8 | |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | !! zps_hde : Horizontal DErivative of T, S and rd at the last |
---|
11 | !! ocean level (Z-coord. with Partial Steps) |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! * Modules used |
---|
14 | USE par_kind |
---|
15 | USE par_oce |
---|
16 | USE oce |
---|
17 | USE oce_tam |
---|
18 | USE dom_oce |
---|
19 | USE in_out_manager |
---|
20 | USE eosbn2_tam |
---|
21 | USE lbclnk |
---|
22 | USE lbclnk_tam |
---|
23 | USE gridrandom |
---|
24 | USE dotprodfld |
---|
25 | USE tstool_tam |
---|
26 | USE lib_mpp |
---|
27 | USE lib_mpp_tam |
---|
28 | USE wrk_nemo |
---|
29 | USE timing |
---|
30 | |
---|
31 | IMPLICIT NONE |
---|
32 | PRIVATE |
---|
33 | |
---|
34 | !! * Routine accessibility |
---|
35 | PUBLIC zps_hde_tan ! routine called by step_tam.F90 |
---|
36 | PUBLIC zps_hde_adj ! routine called by step_tam.F90 |
---|
37 | !PUBLIC zps_hde_adj_tst ! routine called by tst.F90 |
---|
38 | |
---|
39 | !! * Substitutions |
---|
40 | # include "domzgr_substitute.h90" |
---|
41 | # include "vectopt_loop_substitute.h90" |
---|
42 | |
---|
43 | CONTAINS |
---|
44 | |
---|
45 | SUBROUTINE zps_hde_tan ( kt, kjpt, pta, & |
---|
46 | & pta_tl, prd_tl, & |
---|
47 | & pgtu_tl, pgru_tl, & |
---|
48 | & pgtv_tl, pgrv_tl ) |
---|
49 | !!---------------------------------------------------------------------- |
---|
50 | !! *** ROUTINE zps_hde_tan *** |
---|
51 | !! |
---|
52 | !! ** Purpose of the direct routine: |
---|
53 | !! Compute the horizontal derivative of T, S and rd |
---|
54 | !! at u- and v-points with a linear interpolation for z-coordinate |
---|
55 | !! with partial steps. |
---|
56 | !! |
---|
57 | !! ** Method of the direct routine: |
---|
58 | !! In z-coord with partial steps, scale factors on last |
---|
59 | !! levels are different for each grid point, so that T, S and rd |
---|
60 | !! points are not at the same depth as in z-coord. To have horizontal |
---|
61 | !! gradients again, we interpolate T and S at the good depth : |
---|
62 | !! Linear interpolation of T, S |
---|
63 | !! Computation of di(tb) and dj(tb) by vertical interpolation: |
---|
64 | !! di(t) = t~ - t(i,j,k) or t(i+1,j,k) - t~ |
---|
65 | !! dj(t) = t~ - t(i,j,k) or t(i,j+1,k) - t~ |
---|
66 | !! This formulation computes the two cases: |
---|
67 | !! CASE 1 CASE 2 |
---|
68 | !! k-1 ___ ___________ k-1 ___ ___________ |
---|
69 | !! Ti T~ T~ Ti+1 |
---|
70 | !! _____ _____ |
---|
71 | !! k | |Ti+1 k Ti | | |
---|
72 | !! | |____ ____| | |
---|
73 | !! ___ | | | ___ | | | |
---|
74 | !! |
---|
75 | !! case 1-> e3w(i+1) >= e3w(i) ( and e3w(j+1) >= e3w(j) ) then |
---|
76 | !! t~ = t(i+1,j ,k) + (e3w(i+1) - e3w(i)) * dk(Ti+1)/e3w(i+1) |
---|
77 | !! ( t~ = t(i ,j+1,k) + (e3w(j+1) - e3w(j)) * dk(Tj+1)/e3w(j+1) ) |
---|
78 | !! or |
---|
79 | !! case 2-> e3w(i+1) <= e3w(i) ( and e3w(j+1) <= e3w(j) ) then |
---|
80 | !! t~ = t(i,j,k) + (e3w(i) - e3w(i+1)) * dk(Ti)/e3w(i ) |
---|
81 | !! ( t~ = t(i,j,k) + (e3w(j) - e3w(j+1)) * dk(Tj)/e3w(j ) ) |
---|
82 | !! Idem for di(s) and dj(s) |
---|
83 | !! |
---|
84 | !! For rho, we call eos_insitu_2d which will compute rd~(t~,s~) at |
---|
85 | !! the good depth zh from interpolated T and S for the different |
---|
86 | !! formulation of the equation of state (eos). |
---|
87 | !! Gradient formulation for rho : |
---|
88 | !! di(rho) = rd~ - rd(i,j,k) or rd (i+1,j,k) - rd~ |
---|
89 | !! |
---|
90 | !! ** Action : - pgtu, pgsu, pgru: horizontal gradient of T, S |
---|
91 | !! and rd at U-points |
---|
92 | !! - pgtv, pgsv, pgrv: horizontal gradient of T, S |
---|
93 | !! and rd at V-points |
---|
94 | !! |
---|
95 | !! History of the direct routine: |
---|
96 | !! 8.5 ! 02-04 (A. Bozec) Original code |
---|
97 | !! 8.5 ! 02-08 (G. Madec E. Durand) Optimization and Free form |
---|
98 | !! History of the TAM routine: |
---|
99 | !! 9.0 ! 08-06 (A. Vidard) Skeleton |
---|
100 | !! ! 08-06 (A. Vidard) tangent of the 02-08 version |
---|
101 | !!---------------------------------------------------------------------- |
---|
102 | !! * Arguments |
---|
103 | INTEGER, INTENT( in ) :: kt, kjpt ! ocean time-step index |
---|
104 | REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT( in ) :: & |
---|
105 | pta, pta_tl ! 3D T, S and rd direct fields |
---|
106 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( inout ), OPTIONAL :: & |
---|
107 | prd_tl |
---|
108 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( out ), OPTIONAL :: & |
---|
109 | pgtu_tl, pgtv_tl ! 3D T, S and rd tangent fields |
---|
110 | REAL(wp), DIMENSION(jpi,jpj), INTENT( out ), OPTIONAL :: & |
---|
111 | pgru_tl, & ! horizontal grad. of T, S and rd at u- |
---|
112 | pgrv_tl ! and v-points of the partial step level |
---|
113 | !! * Local declarations |
---|
114 | INTEGER :: ji, jj,jk, jn, & ! Dummy loop indices |
---|
115 | & iku,ikv, ikum1, ikvm1 ! partial step level at u- and v-points |
---|
116 | REAL(wp), POINTER, DIMENSION(:,:) :: & |
---|
117 | zri, zrj, & ! and rd |
---|
118 | zritl, zrjtl, & ! and rdtl |
---|
119 | zhi, zhj ! depth of interpolation for eos2d |
---|
120 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zti, ztj, ztitl, ztjtl ! interpolated value of tracer |
---|
121 | REAL(wp) :: & |
---|
122 | ze3wu, ze3wv, & ! temporary scalars |
---|
123 | zmaxu, zmaxu2, & ! " " |
---|
124 | zmaxv, zmaxv2 ! " " |
---|
125 | !!--------------------------------------------------------------------- |
---|
126 | ! |
---|
127 | IF( nn_timing == 1 ) CALL timing_start( 'zps_hde_tan') |
---|
128 | ! |
---|
129 | CALL wrk_alloc( jpi, jpj, zri, zrj, zhi, zhj, zritl, zrjtl ) |
---|
130 | CALL wrk_alloc( jpi, jpj, kjpt, zti, ztj, ztitl, ztjtl ) |
---|
131 | ! |
---|
132 | DO jn = 1, kjpt |
---|
133 | ! Interpolation of T and S at the last ocean level |
---|
134 | # if defined key_vectopt_loop |
---|
135 | jj = 1 |
---|
136 | DO ji = 1, jpij-jpi ! vector opt. (forced unrolled) |
---|
137 | # else |
---|
138 | DO jj = 1, jpjm1 |
---|
139 | DO ji = 1, jpim1 |
---|
140 | # endif |
---|
141 | iku = mbku(ji,jj) ; ikum1 = MAX( iku - 1 , 1 ) ! last and before last ocean level at u- & v-points |
---|
142 | ikv = mbkv(ji,jj) ; ikvm1 = MAX( ikv - 1 , 1 ) ! if level first is a p-step, ik.m1=1 |
---|
143 | ze3wu = fse3w(ji+1,jj ,iku) - fse3w(ji,jj,iku) |
---|
144 | ze3wv = fse3w(ji ,jj+1,ikv) - fse3w(ji,jj,ikv) |
---|
145 | ! |
---|
146 | ! i- direction |
---|
147 | IF( ze3wu >= 0. ) THEN ! case 1 |
---|
148 | zmaxu = ze3wu / fse3w(ji+1,jj,iku) |
---|
149 | ! interpolated values of T and S |
---|
150 | zti(ji,jj,jn) = pta(ji+1,jj,iku,jn) & |
---|
151 | & + zmaxu * ( pta(ji+1,jj,ikum1,jn) - pta(ji+1,jj,iku,jn) ) |
---|
152 | ztitl(ji,jj,jn) = pta_tl(ji+1,jj,iku,jn) & |
---|
153 | & + zmaxu * ( pta_tl(ji+1,jj,ikum1,jn) - pta_tl(ji+1,jj,iku,jn) ) |
---|
154 | ! gradient of T and S |
---|
155 | pgtu_tl(ji,jj,jn) = umask(ji,jj,1) * ( ztitl(ji,jj,jn) - pta_tl(ji,jj,iku,jn) ) |
---|
156 | ELSE ! case 2 |
---|
157 | zmaxu = -ze3wu / fse3w(ji,jj,iku) |
---|
158 | ! interpolated values of T and S |
---|
159 | zti(ji,jj,jn) = pta(ji,jj,iku,jn) & |
---|
160 | & + zmaxu * ( pta(ji,jj,ikum1,jn) - pta(ji,jj,iku,jn) ) |
---|
161 | ! interpolated values of T and S |
---|
162 | ztitl(ji,jj,jn) = pta_tl(ji,jj,iku,jn) & |
---|
163 | & + zmaxu * ( pta_tl(ji,jj,ikum1,jn) - pta_tl(ji,jj,iku,jn) ) |
---|
164 | ! gradient of T and S |
---|
165 | pgtu_tl(ji,jj,jn) = umask(ji,jj,1) * ( pta_tl(ji+1,jj,iku,jn) - ztitl (ji,jj,jn) ) |
---|
166 | ENDIF |
---|
167 | ! j- direction |
---|
168 | IF( ze3wv >= 0. ) THEN ! case 1 |
---|
169 | ! interpolated values of direct T and S |
---|
170 | zmaxv = ze3wv / fse3w(ji,jj+1,ikv) |
---|
171 | ztj(ji,jj,jn) = pta(ji,jj+1,ikv,jn) & |
---|
172 | & + zmaxv * ( pta(ji,jj+1,ikvm1,jn) - pta(ji,jj+1,ikv,jn) ) |
---|
173 | ! interpolated values of tangent T and S |
---|
174 | ztjtl(ji,jj,jn) = pta_tl(ji,jj+1,ikv,jn) & |
---|
175 | & + zmaxv * ( pta_tl(ji,jj+1,ikvm1,jn) - pta_tl(ji,jj+1,ikv,jn) ) |
---|
176 | ! gradient of T and S |
---|
177 | pgtv_tl(ji,jj,jn) = vmask(ji,jj,1) * ( ztjtl(ji,jj,jn) - pta_tl(ji,jj,ikv,jn) ) |
---|
178 | ELSE ! case 2 |
---|
179 | zmaxv = -ze3wv / fse3w(ji,jj,ikv) |
---|
180 | ! interpolated values of T and S |
---|
181 | ztj(ji,jj,jn) = pta(ji,jj,ikv,jn) & |
---|
182 | & + zmaxv * ( pta(ji,jj,ikvm1,jn) - pta(ji,jj,ikv,jn) ) |
---|
183 | ! interpolated values of T and S |
---|
184 | ztjtl(ji,jj,jn) = pta_tl(ji,jj,ikv,jn) & |
---|
185 | & + zmaxv * ( pta_tl(ji,jj,ikvm1,jn) - pta_tl(ji,jj,ikv,jn) ) |
---|
186 | ! gradient of T and S |
---|
187 | pgtv_tl(ji,jj,jn) = vmask(ji,jj,1) * ( pta_tl(ji,jj+1,ikv,jn) - ztjtl(ji,jj,jn) ) |
---|
188 | ENDIF |
---|
189 | # if ! defined key_vectopt_loop |
---|
190 | END DO |
---|
191 | # endif |
---|
192 | END DO |
---|
193 | CALL lbc_lnk( pgtu_tl(:,:,jn), 'U', -1. ) ; CALL lbc_lnk( pgtv_tl(:,:,jn), 'V', -1. ) ! Lateral boundary cond. |
---|
194 | ! |
---|
195 | END DO |
---|
196 | ! |
---|
197 | ! horizontal derivative of density anomalies (rd) |
---|
198 | IF( PRESENT( prd_tl ) ) THEN ! depth of the partial step level |
---|
199 | # if defined key_vectopt_loop |
---|
200 | jj = 1 |
---|
201 | DO ji = 1, jpij-jpi ! vector opt. (forced unrolled) |
---|
202 | # else |
---|
203 | DO jj = 1, jpjm1 |
---|
204 | DO ji = 1, jpim1 |
---|
205 | # endif |
---|
206 | iku = mbku(ji,jj) |
---|
207 | ikv = mbkv(ji,jj) |
---|
208 | ze3wu = fse3w(ji+1,jj ,iku) - fse3w(ji,jj,iku) |
---|
209 | ze3wv = fse3w(ji ,jj+1,ikv) - fse3w(ji,jj,ikv) |
---|
210 | IF( ze3wu >= 0._wp ) THEN ; zhi(ji,jj) = fsdept(ji ,jj,iku) ! i-direction: case 1 |
---|
211 | ELSE ; zhi(ji,jj) = fsdept(ji+1,jj,iku) ! - - case 2 |
---|
212 | ENDIF |
---|
213 | IF( ze3wv >= 0._wp ) THEN ; zhj(ji,jj) = fsdept(ji,jj ,ikv) ! j-direction: case 1 |
---|
214 | ELSE ; zhj(ji,jj) = fsdept(ji,jj+1,ikv) ! - - case 2 |
---|
215 | ENDIF |
---|
216 | # if ! defined key_vectopt_loop |
---|
217 | END DO |
---|
218 | # endif |
---|
219 | END DO |
---|
220 | ! Compute interpolated rd from zti, zsi, ztj, zsj for the 2 cases at the depth of the partial |
---|
221 | ! step and store it in zri, zrj for each case |
---|
222 | CALL eos_tan( zti, zhi, ztitl, zritl ) |
---|
223 | CALL eos_tan( ztj, zhj, ztjtl, zrjtl ) |
---|
224 | |
---|
225 | |
---|
226 | ! Gradient of density at the last level |
---|
227 | # if defined key_vectopt_loop |
---|
228 | jj = 1 |
---|
229 | DO ji = 1, jpij-jpi ! vector opt. (forced unrolled) |
---|
230 | # else |
---|
231 | DO jj = 1, jpjm1 |
---|
232 | DO ji = 1, jpim1 |
---|
233 | # endif |
---|
234 | iku = mbku(ji,jj) |
---|
235 | ikv = mbkv(ji,jj) |
---|
236 | ze3wu = fse3w(ji+1,jj ,iku) - fse3w(ji,jj,iku) |
---|
237 | ze3wv = fse3w(ji ,jj+1,ikv) - fse3w(ji,jj,ikv) |
---|
238 | IF( ze3wu >= 0. ) THEN ! i-direction: case 1 |
---|
239 | pgru_tl(ji,jj) = umask(ji,jj,1) * ( zritl(ji,jj) - prd_tl(ji,jj,iku) ) |
---|
240 | ELSE ! i-direction: case 2 |
---|
241 | pgru_tl(ji,jj) = umask(ji,jj,1) * ( prd_tl(ji+1,jj,iku) - zritl(ji,jj) ) |
---|
242 | ENDIF |
---|
243 | IF( ze3wv >= 0. ) THEN ! j-direction: case 1 |
---|
244 | pgrv_tl(ji,jj) = vmask(ji,jj,1) * ( zrjtl(ji,jj) - prd_tl(ji,jj,ikv) ) |
---|
245 | ELSE ! j-direction: case 2 |
---|
246 | pgrv_tl(ji,jj) = vmask(ji,jj,1) * ( prd_tl(ji,jj+1,ikv) - zrjtl(ji,jj) ) |
---|
247 | ENDIF |
---|
248 | # if ! defined key_vectopt_loop |
---|
249 | END DO |
---|
250 | # endif |
---|
251 | END DO |
---|
252 | ! Lateral boundary conditions on each gradient |
---|
253 | CALL lbc_lnk( pgru_tl , 'U', -1.0_wp ) ; CALL lbc_lnk( pgrv_tl , 'V', -1.0_wp ) |
---|
254 | END IF |
---|
255 | ! |
---|
256 | CALL wrk_dealloc( jpi, jpj, zri, zrj, zhi, zhj, zritl, zrjtl ) |
---|
257 | CALL wrk_dealloc( jpi, jpj, kjpt, zti, ztj, ztitl, ztjtl ) |
---|
258 | ! |
---|
259 | IF( nn_timing == 1 ) CALL timing_stop( 'zps_hde_tan') |
---|
260 | ! |
---|
261 | END SUBROUTINE zps_hde_tan |
---|
262 | |
---|
263 | SUBROUTINE zps_hde_adj ( kt, kjpt, pta, pgtu, pgtv, & |
---|
264 | & pta_ad, prd_ad, & |
---|
265 | & pgtu_ad, pgru_ad, & |
---|
266 | & pgtv_ad, pgrv_ad ) |
---|
267 | !!---------------------------------------------------------------------- |
---|
268 | !! *** ROUTINE zps_hde_adj *** |
---|
269 | !! |
---|
270 | !! ** Purpose of the direct routine: |
---|
271 | !! Compute the horizontal derivative of T, S and rd |
---|
272 | !! at u- and v-points with a linear interpolation for z-coordinate |
---|
273 | !! with partial steps. |
---|
274 | !! |
---|
275 | !! ** Method of the direct routine: |
---|
276 | !! In z-coord with partial steps, scale factors on last |
---|
277 | !! levels are different for each grid point, so that T, S and rd |
---|
278 | !! points are not at the same depth as in z-coord. To have horizontal |
---|
279 | !! gradients again, we interpolate T and S at the good depth : |
---|
280 | !! Linear interpolation of T, S |
---|
281 | !! Computation of di(tb) and dj(tb) by vertical interpolation: |
---|
282 | !! di(t) = t~ - t(i,j,k) or t(i+1,j,k) - t~ |
---|
283 | !! dj(t) = t~ - t(i,j,k) or t(i,j+1,k) - t~ |
---|
284 | !! This formulation computes the two cases: |
---|
285 | !! CASE 1 CASE 2 |
---|
286 | !! k-1 ___ ___________ k-1 ___ ___________ |
---|
287 | !! Ti T~ T~ Ti+1 |
---|
288 | !! _____ _____ |
---|
289 | !! k | |Ti+1 k Ti | | |
---|
290 | !! | |____ ____| | |
---|
291 | !! ___ | | | ___ | | | |
---|
292 | !! |
---|
293 | !! case 1-> e3w(i+1) >= e3w(i) ( and e3w(j+1) >= e3w(j) ) then |
---|
294 | !! t~ = t(i+1,j ,k) + (e3w(i+1) - e3w(i)) * dk(Ti+1)/e3w(i+1) |
---|
295 | !! ( t~ = t(i ,j+1,k) + (e3w(j+1) - e3w(j)) * dk(Tj+1)/e3w(j+1) ) |
---|
296 | !! or |
---|
297 | !! case 2-> e3w(i+1) <= e3w(i) ( and e3w(j+1) <= e3w(j) ) then |
---|
298 | !! t~ = t(i,j,k) + (e3w(i) - e3w(i+1)) * dk(Ti)/e3w(i ) |
---|
299 | !! ( t~ = t(i,j,k) + (e3w(j) - e3w(j+1)) * dk(Tj)/e3w(j ) ) |
---|
300 | !! Idem for di(s) and dj(s) |
---|
301 | !! |
---|
302 | !! For rho, we call eos_insitu_2d which will compute rd~(t~,s~) at |
---|
303 | !! the good depth zh from interpolated T and S for the different |
---|
304 | !! formulation of the equation of state (eos). |
---|
305 | !! Gradient formulation for rho : |
---|
306 | !! di(rho) = rd~ - rd(i,j,k) or rd (i+1,j,k) - rd~ |
---|
307 | !! |
---|
308 | !! ** Action : - pgtu, pgsu, pgru: horizontal gradient of T, S |
---|
309 | !! and rd at U-points |
---|
310 | !! - pgtv, pgsv, pgrv: horizontal gradient of T, S |
---|
311 | !! and rd at V-points |
---|
312 | !! |
---|
313 | !! History of the direct routine: |
---|
314 | !! 8.5 ! 02-04 (A. Bozec) Original code |
---|
315 | !! 8.5 ! 02-08 (G. Madec E. Durand) Optimization and Free form |
---|
316 | !! History of the TAM routine: |
---|
317 | !! 9.0 ! 08-06 (A. Vidard) Skeleton |
---|
318 | !! ! 08-08 (A. Vidard) adjoint of the 02-08 version |
---|
319 | !!---------------------------------------------------------------------- |
---|
320 | !! * Arguments |
---|
321 | INTEGER, INTENT( in ) :: kt, kjpt ! ocean time-step index |
---|
322 | REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT( inout ) :: & |
---|
323 | pta, pta_ad ! 3D T, S and rd direct fields |
---|
324 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( inout ), OPTIONAL :: & |
---|
325 | prd_ad ! 3D T, S and rd tangent fields |
---|
326 | REAL(wp), DIMENSION(jpi,jpj,kjpt), INTENT( inout ), OPTIONAL :: & |
---|
327 | pgtu, pgtv, pgtu_ad, pgtv_ad ! 3D T, S and rd tangent fields |
---|
328 | REAL(wp), DIMENSION(jpi,jpj), INTENT( inout ), OPTIONAL :: & |
---|
329 | pgru_ad, & ! horizontal grad. of T, S and rd at u- |
---|
330 | pgrv_ad ! and v-points of the partial step level |
---|
331 | !! * Local declarations |
---|
332 | INTEGER :: ji, jj,jk, jn, & ! Dummy loop indices |
---|
333 | & iku,ikv, ikum1, ikvm1 ! partial step level at u- and v-points |
---|
334 | REAL(wp), POINTER, DIMENSION(:,:) :: & |
---|
335 | zri, zrj, & ! and rd |
---|
336 | zriad, zrjad, & ! and rdtl |
---|
337 | zhi, zhj ! depth of interpolation for eos2d |
---|
338 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zti, ztj, ztiad, ztjad ! interpolated value of tracer |
---|
339 | REAL(wp) :: & |
---|
340 | ze3wu, ze3wv, & ! temporary scalars |
---|
341 | zmaxu, zmaxu2, & ! " " |
---|
342 | zmaxv, zmaxv2 ! " " |
---|
343 | !!--------------------------------------------------------------------- |
---|
344 | ! |
---|
345 | IF( nn_timing == 1 ) CALL timing_start( 'zps_hde_adj') |
---|
346 | ! |
---|
347 | CALL wrk_alloc( jpi, jpj, zri, zrj, zhi, zhj, zriad, zrjad ) |
---|
348 | CALL wrk_alloc( jpi, jpj, kjpt, zti, ztj, ztiad, ztjad ) |
---|
349 | ! |
---|
350 | ! 1. Direct model recomputation |
---|
351 | DO jn = 1, kjpt !== Interpolation of tracers at the last ocean level ==! |
---|
352 | ! |
---|
353 | # if defined key_vectopt_loop |
---|
354 | jj = 1 |
---|
355 | DO ji = 1, jpij-jpi ! vector opt. (forced unrolled) |
---|
356 | # else |
---|
357 | DO jj = 1, jpjm1 |
---|
358 | DO ji = 1, jpim1 |
---|
359 | # endif |
---|
360 | iku = mbku(ji,jj) ; ikum1 = MAX( iku - 1 , 1 ) ! last and before last ocean level at u- & v-points |
---|
361 | ikv = mbkv(ji,jj) ; ikvm1 = MAX( ikv - 1 , 1 ) ! if level first is a p-step, ik.m1=1 |
---|
362 | ze3wu = fse3w(ji+1,jj ,iku) - fse3w(ji,jj,iku) |
---|
363 | ze3wv = fse3w(ji ,jj+1,ikv) - fse3w(ji,jj,ikv) |
---|
364 | ! |
---|
365 | ! i- direction |
---|
366 | IF( ze3wu >= 0._wp ) THEN ! case 1 |
---|
367 | zmaxu = ze3wu / fse3w(ji+1,jj,iku) |
---|
368 | ! interpolated values of tracers |
---|
369 | zti(ji,jj,jn) = pta(ji+1,jj,iku,jn) + zmaxu * ( pta(ji+1,jj,ikum1,jn) - pta(ji+1,jj,iku,jn) ) |
---|
370 | ! gradient of tracers |
---|
371 | pgtu(ji,jj,jn) = umask(ji,jj,1) * ( zti(ji,jj,jn) - pta(ji,jj,iku,jn) ) |
---|
372 | ELSE ! case 2 |
---|
373 | zmaxu = -ze3wu / fse3w(ji,jj,iku) |
---|
374 | ! interpolated values of tracers |
---|
375 | zti(ji,jj,jn) = pta(ji,jj,iku,jn) + zmaxu * ( pta(ji,jj,ikum1,jn) - pta(ji,jj,iku,jn) ) |
---|
376 | ! gradient of tracers |
---|
377 | pgtu(ji,jj,jn) = umask(ji,jj,1) * ( pta(ji+1,jj,iku,jn) - zti(ji,jj,jn) ) |
---|
378 | ENDIF |
---|
379 | ! |
---|
380 | ! j- direction |
---|
381 | IF( ze3wv >= 0._wp ) THEN ! case 1 |
---|
382 | zmaxv = ze3wv / fse3w(ji,jj+1,ikv) |
---|
383 | ! interpolated values of tracers |
---|
384 | ztj(ji,jj,jn) = pta(ji,jj+1,ikv,jn) + zmaxv * ( pta(ji,jj+1,ikvm1,jn) - pta(ji,jj+1,ikv,jn) ) |
---|
385 | ! gradient of tracers |
---|
386 | pgtv(ji,jj,jn) = vmask(ji,jj,1) * ( ztj(ji,jj,jn) - pta(ji,jj,ikv,jn) ) |
---|
387 | ELSE ! case 2 |
---|
388 | zmaxv = -ze3wv / fse3w(ji,jj,ikv) |
---|
389 | ! interpolated values of tracers |
---|
390 | ztj(ji,jj,jn) = pta(ji,jj,ikv,jn) + zmaxv * ( pta(ji,jj,ikvm1,jn) - pta(ji,jj,ikv,jn) ) |
---|
391 | ! gradient of tracers |
---|
392 | pgtv(ji,jj,jn) = vmask(ji,jj,1) * ( pta(ji,jj+1,ikv,jn) - ztj(ji,jj,jn) ) |
---|
393 | ENDIF |
---|
394 | # if ! defined key_vectopt_loop |
---|
395 | END DO |
---|
396 | # endif |
---|
397 | END DO |
---|
398 | CALL lbc_lnk( pgtu(:,:,jn), 'U', -1. ) ; CALL lbc_lnk( pgtv(:,:,jn), 'V', -1. ) ! Lateral boundary cond. |
---|
399 | ! |
---|
400 | END DO |
---|
401 | |
---|
402 | !2. Adjoint model counterpart |
---|
403 | ztiad = 0.0_wp ; ztjad = 0.0_wp |
---|
404 | zriad = 0.0_wp ; zrjad = 0.0_wp |
---|
405 | ! horizontal derivative of density anomalies (rd) |
---|
406 | IF( PRESENT( prd_ad ) ) THEN ! depth of the partial step level |
---|
407 | ! Lateral boundary conditions on each gradient |
---|
408 | CALL lbc_lnk_adj( pgru_ad , 'U', -1.0_wp ) |
---|
409 | CALL lbc_lnk_adj( pgrv_ad , 'V', -1.0_wp ) |
---|
410 | # if defined key_vectopt_loop |
---|
411 | jj = 1 |
---|
412 | DO ji = 1, jpij-jpi ! vector opt. (forced unrolled) |
---|
413 | # else |
---|
414 | DO jj = 1, jpjm1 |
---|
415 | DO ji = 1, jpim1 |
---|
416 | # endif |
---|
417 | iku = mbku(ji,jj) |
---|
418 | ikv = mbkv(ji,jj) |
---|
419 | ze3wu = fse3w(ji+1,jj ,iku) - fse3w(ji,jj,iku) |
---|
420 | ze3wv = fse3w(ji ,jj+1,ikv) - fse3w(ji,jj,ikv) |
---|
421 | IF( ze3wu >= 0._wp ) THEN ; zhi(ji,jj) = fsdept(ji ,jj,iku) ! i-direction: case 1 |
---|
422 | ELSE ; zhi(ji,jj) = fsdept(ji+1,jj,iku) ! - - case 2 |
---|
423 | ENDIF |
---|
424 | IF( ze3wv >= 0._wp ) THEN ; zhj(ji,jj) = fsdept(ji,jj ,ikv) ! j-direction: case 1 |
---|
425 | ELSE ; zhj(ji,jj) = fsdept(ji,jj+1,ikv) ! - - case 2 |
---|
426 | ENDIF |
---|
427 | # if ! defined key_vectopt_loop |
---|
428 | END DO |
---|
429 | # endif |
---|
430 | END DO |
---|
431 | ! Gradient of density at the last level |
---|
432 | # if defined key_vectopt_loop |
---|
433 | jj = 1 |
---|
434 | DO ji = jpij-jpi, -1 ! vector opt. (forced unrolled) |
---|
435 | # else |
---|
436 | DO jj = jpjm1, 1, -1 |
---|
437 | DO ji = jpim1, 1, -1 |
---|
438 | # endif |
---|
439 | iku = mbku(ji,jj) |
---|
440 | ikv = mbkv(ji,jj) |
---|
441 | ze3wu = fse3w(ji+1,jj ,iku) - fse3w(ji,jj,iku) |
---|
442 | ze3wv = fse3w(ji ,jj+1,ikv) - fse3w(ji,jj,ikv) |
---|
443 | IF( ze3wv >= 0. ) THEN ! j-direction: case 1 |
---|
444 | zrjad(ji,jj) = zrjad(ji,jj) & |
---|
445 | & + pgrv_ad(ji,jj) * vmask(ji,jj,1) |
---|
446 | prd_ad(ji,jj,ikv) = prd_ad(ji,jj,ikv) & |
---|
447 | & - pgrv_ad(ji,jj) * vmask(ji,jj,1) |
---|
448 | pgrv_ad(ji,jj) = 0.0_wp |
---|
449 | ELSE ! j-direction: case 2 |
---|
450 | prd_ad(ji,jj+1,ikv) = prd_ad(ji,jj+1,ikv) & |
---|
451 | & + pgrv_ad(ji,jj) * vmask(ji,jj,1) |
---|
452 | zrjad(ji,jj) = zrjad(ji,jj) & |
---|
453 | & - pgrv_ad(ji,jj) * vmask(ji,jj,1) |
---|
454 | pgrv_ad(ji,jj) = 0.0_wp |
---|
455 | ENDIF |
---|
456 | IF( ze3wu >= 0. ) THEN ! i-direction: case 1 |
---|
457 | zriad(ji,jj) = zriad(ji,jj) & |
---|
458 | & + pgru_ad(ji,jj) * umask(ji,jj,1) |
---|
459 | prd_ad(ji,jj,iku) = prd_ad(ji,jj,iku) & |
---|
460 | & - pgru_ad(ji,jj) * umask(ji,jj,1) |
---|
461 | pgru_ad(ji,jj) = 0.0_wp |
---|
462 | ELSE ! i-direction: case 2 |
---|
463 | prd_ad(ji+1,jj,iku) = prd_ad(ji+1,jj,iku) & |
---|
464 | & + pgru_ad(ji,jj) * umask(ji,jj,1) |
---|
465 | zriad(ji,jj) = zriad(ji,jj) & |
---|
466 | & - pgru_ad(ji,jj) * umask(ji,jj,1) |
---|
467 | pgru_ad(ji,jj) = 0.0_wp |
---|
468 | ENDIF |
---|
469 | |
---|
470 | # if ! defined key_vectopt_loop |
---|
471 | END DO |
---|
472 | # endif |
---|
473 | END DO |
---|
474 | |
---|
475 | ! Compute interpolated rd from zti, zsi, ztj, zsj for the 2 cases at the depth of the partial |
---|
476 | ! step and store it in zri, zrj for each case |
---|
477 | CALL eos_adj( ztj, zhj, ztjad, zrjad ) |
---|
478 | CALL eos_adj( zti, zhi, ztiad, zriad ) |
---|
479 | END IF |
---|
480 | |
---|
481 | DO jn = 1, kjpt |
---|
482 | CALL lbc_lnk_adj( pgtu_ad(:,:,jn), 'U', -1. ) ; CALL lbc_lnk_adj( pgtv_ad(:,:,jn), 'V', -1. ) ! Lateral boundary cond. |
---|
483 | # if defined key_vectopt_loop |
---|
484 | jj = 1 |
---|
485 | DO ji = jpij-jpi, 1, -1 ! vector opt. (forced unrolled) |
---|
486 | # else |
---|
487 | DO jj = jpjm1, 1, -1 |
---|
488 | DO ji = jpim1, 1, -1 |
---|
489 | # endif |
---|
490 | iku = mbku(ji,jj) ; ikum1 = MAX( iku - 1 , 1 ) ! last and before last ocean level at u- & v-points |
---|
491 | ikv = mbkv(ji,jj) ; ikvm1 = MAX( ikv - 1 , 1 ) ! if level first is a p-step, ik.m1=1 |
---|
492 | ze3wu = fse3w(ji+1,jj ,iku) - fse3w(ji,jj,iku) |
---|
493 | ze3wv = fse3w(ji ,jj+1,ikv) - fse3w(ji,jj,ikv) |
---|
494 | ! |
---|
495 | ! j- direction |
---|
496 | IF( ze3wv >= 0. ) THEN ! case 1 |
---|
497 | zmaxv = ze3wv / fse3w(ji,jj+1,ikv) |
---|
498 | ! gradient of T and S |
---|
499 | ztjad(ji,jj,jn) = ztjad(ji,jj,jn) & |
---|
500 | & + pgtv_ad(ji,jj,jn) * vmask(ji,jj,1) |
---|
501 | pta_ad(ji,jj,ikv,jn) = pta_ad(ji,jj,ikv,jn) & |
---|
502 | & - pgtv_ad(ji,jj,jn) * vmask(ji,jj,1) |
---|
503 | pgtv_ad(ji,jj,jn) = 0.0_wp |
---|
504 | ! interpolated values of T and S |
---|
505 | pta_ad(ji,jj+1,ikv,jn) = pta_ad(ji,jj+1,ikv,jn) & |
---|
506 | & + ztjad(ji,jj,jn) * (1 - zmaxv) |
---|
507 | pta_ad(ji,jj+1,ikv-1,jn) = pta_ad(ji,jj+1,ikv-1,jn) & |
---|
508 | & + ztjad(ji,jj,jn)* zmaxv |
---|
509 | ztjad(ji,jj,jn) = 0.0_wp |
---|
510 | ELSE ! case 2 |
---|
511 | zmaxv = -ze3wv / fse3w(ji,jj,ikv) |
---|
512 | ! gradient of T and S |
---|
513 | pta_ad(ji,jj+1,ikv,jn) = pta_ad(ji,jj+1,ikv,jn) & |
---|
514 | & + pgtv_ad(ji,jj,jn) * vmask(ji,jj,1) |
---|
515 | ztjad(ji,jj,jn) = ztjad(ji,jj,jn) & |
---|
516 | & - pgtv_ad(ji,jj,jn) * vmask(ji,jj,1) |
---|
517 | pgtv_ad(ji,jj,jn) = 0.0_wp |
---|
518 | |
---|
519 | ! interpolated values of T and S |
---|
520 | pta_ad(ji,jj,ikv,jn) = pta_ad(ji,jj,ikv,jn) & |
---|
521 | & + ztjad(ji,jj,jn) * (1 - zmaxv) |
---|
522 | pta_ad(ji,jj,ikv-1,jn) = pta_ad(ji,jj,ikv-1,jn) & |
---|
523 | & + ztjad(ji,jj,jn) * zmaxv |
---|
524 | ztjad(ji,jj,jn) = 0.0_wp |
---|
525 | ENDIF |
---|
526 | ! i- direction |
---|
527 | IF( ze3wu >= 0. ) THEN ! case 1 |
---|
528 | zmaxu = ze3wu / fse3w(ji+1,jj,iku) |
---|
529 | ! gradient of T and S |
---|
530 | ztiad(ji,jj,jn) = ztiad(ji,jj,jn) & |
---|
531 | & + pgtu_ad(ji,jj,jn) * umask(ji,jj,1) |
---|
532 | pta_ad(ji,jj,iku,jn) = pta_ad(ji,jj,iku,jn) & |
---|
533 | & - pgtu_ad(ji,jj,jn) * umask(ji,jj,1) |
---|
534 | pgtu_ad(ji,jj,jn) = 0.0_wp |
---|
535 | ! interpolated values of T and S |
---|
536 | pta_ad(ji+1,jj,iku,jn) = pta_ad(ji+1,jj,iku,jn) & |
---|
537 | & + ztiad(ji,jj,jn) * (1 - zmaxu) |
---|
538 | pta_ad(ji+1,jj,iku-1,jn) = pta_ad(ji+1,jj,iku-1,jn) & |
---|
539 | & + ztiad(ji,jj,jn) * zmaxu |
---|
540 | ztiad(ji,jj,jn) = 0.0_wp |
---|
541 | ELSE ! case 2 |
---|
542 | zmaxu = -ze3wu / fse3w(ji,jj,iku) |
---|
543 | ! gradient of T and S |
---|
544 | pta_ad(ji+1,jj,iku,jn) = pta_ad(ji+1,jj,iku,jn) & |
---|
545 | & + pgtu_ad(ji,jj,jn) * umask(ji,jj,1) |
---|
546 | ztiad (ji,jj,jn) = ztiad (ji,jj,jn) & |
---|
547 | & - pgtu_ad(ji,jj,jn) * umask(ji,jj,1) |
---|
548 | pgtu_ad(ji,jj,jn) = 0.0_wp |
---|
549 | ! interpolated values of T and S |
---|
550 | pta_ad(ji,jj,iku,jn) = pta_ad(ji,jj,iku,jn) & |
---|
551 | & + ztiad(ji,jj,jn) * (1 - zmaxu) |
---|
552 | pta_ad(ji,jj,iku-1,jn) = pta_ad(ji,jj,iku-1,jn) & |
---|
553 | & + ztiad(ji,jj,jn) * zmaxu |
---|
554 | ztiad(ji,jj,jn) = 0.0_wp |
---|
555 | ENDIF |
---|
556 | # if ! defined key_vectopt_loop |
---|
557 | END DO |
---|
558 | # endif |
---|
559 | END DO |
---|
560 | END DO |
---|
561 | ! |
---|
562 | CALL wrk_dealloc( jpi, jpj, zri, zrj, zhi, zhj, zriad, zrjad ) |
---|
563 | CALL wrk_dealloc( jpi, jpj, kjpt, zti, ztj, ztiad, ztjad ) |
---|
564 | ! |
---|
565 | IF( nn_timing == 1 ) CALL timing_stop( 'zps_hde_adj') |
---|
566 | ! |
---|
567 | END SUBROUTINE zps_hde_adj |
---|
568 | !SUBROUTINE zps_hde_adj_tst( kumadt ) |
---|
569 | !!!----------------------------------------------------------------------- |
---|
570 | !!! |
---|
571 | !!! *** ROUTINE zps_hde_adj_tst *** |
---|
572 | !!! |
---|
573 | !!! ** Purpose : Test the adjoint routine. |
---|
574 | !!! |
---|
575 | !!! ** Method : Verify the scalar product |
---|
576 | !!! |
---|
577 | !!! ( L dx )^T W dy = dx^T L^T W dy |
---|
578 | !!! |
---|
579 | !!! where L = tangent routine |
---|
580 | !!! L^T = adjoint routine |
---|
581 | !!! W = diagonal matrix of scale factors |
---|
582 | !!! dx = input perturbation (random field) |
---|
583 | !!! dy = L dx |
---|
584 | !!! |
---|
585 | !!! |
---|
586 | !!! History : |
---|
587 | !!! ! 08-08 (A. Vidard) |
---|
588 | !!!----------------------------------------------------------------------- |
---|
589 | !!! * Modules used |
---|
590 | |
---|
591 | !!! * Arguments |
---|
592 | !INTEGER, INTENT(IN) :: & |
---|
593 | !& kumadt ! Output unit |
---|
594 | |
---|
595 | !INTEGER :: & |
---|
596 | !& ji, & ! dummy loop indices |
---|
597 | !& jj, & |
---|
598 | !& jk, & |
---|
599 | !& kt, & |
---|
600 | !& jn |
---|
601 | |
---|
602 | !!! * Local declarations |
---|
603 | !REAL(KIND=wp), DIMENSION(:,:,:,:), ALLOCATABLE :: & |
---|
604 | !& zts, & ! Direct field : temperature |
---|
605 | !& zts_tlin, & ! Tangent input: temperature |
---|
606 | !& zts_adout, & ! Adjoint output: temperature |
---|
607 | !& zats ! 3D random field for t |
---|
608 | |
---|
609 | !REAL(KIND=wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
610 | !& zgtu_tlout, & ! Tangent output: horizontal gradient |
---|
611 | !& zgtv_tlout, & ! Tangent output: horizontal gradient |
---|
612 | !& zrd_adout, & ! Adjoint output: |
---|
613 | !& zar, & ! 3D random field for rd |
---|
614 | !& zrd_tlin, & ! Tangent input: |
---|
615 | !& zgtu_adin, & ! Adjoint input : horizontal gradient |
---|
616 | !& zgtv_adin ! Adjoint input : horizontal gradient |
---|
617 | |
---|
618 | !REAL(KIND=wp), DIMENSION(:,:), ALLOCATABLE :: & |
---|
619 | !& zgru_tlout, & ! Tangent output: horizontal gradient |
---|
620 | !& zgrv_tlout, & ! Tangent output: horizontal gradient |
---|
621 | !& zgru_adin, & ! Adjoint input : horizontal gradient |
---|
622 | !& zgrv_adin ! Adjoint input : horizontal gradient |
---|
623 | |
---|
624 | !REAL(KIND=wp) :: & |
---|
625 | !! random field standard deviation for: |
---|
626 | !& zsp1, & ! scalar product involving the tangent routine |
---|
627 | !& zsp1_1, & ! scalar product components |
---|
628 | !& zsp1_2, & |
---|
629 | !& zsp1_3, & ! scalar product components |
---|
630 | !& zsp1_4, & |
---|
631 | !& zsp1_5, & ! scalar product components |
---|
632 | !& zsp1_6, & |
---|
633 | !& zsp2, & ! scalar product involving the adjoint routine |
---|
634 | !& zsp2_1, & ! scalar product components |
---|
635 | !& zsp2_2, & |
---|
636 | !& zsp2_3 |
---|
637 | !CHARACTER (LEN=14) :: & |
---|
638 | !& cl_name |
---|
639 | |
---|
640 | !kt = nit000 |
---|
641 | !! Allocate memory |
---|
642 | !ALLOCATE( & |
---|
643 | !& zts(jpi,jpj,jpk,jpts), & |
---|
644 | !& zts_tlin(jpi,jpj,jpk,jpts), & |
---|
645 | !& zrd_tlin(jpi,jpj,jpk), & |
---|
646 | !& zts_adout(jpi,jpj,jpk,jpts), & |
---|
647 | !& zrd_adout(jpi,jpj,jpk), & |
---|
648 | !& zar(jpi,jpj,jpk), & |
---|
649 | !& zats(jpi,jpj,jpk,jpts), & |
---|
650 | !& zgtu_tlout(jpi,jpj,jpts), & |
---|
651 | !& zgtv_tlout(jpi,jpj,jpts), & |
---|
652 | !& zgru_tlout(jpi,jpj), & |
---|
653 | !& zgrv_tlout(jpi,jpj), & |
---|
654 | !& zgtu_adin(jpi,jpj,jpts), & |
---|
655 | !& zgtv_adin(jpi,jpj,jpts), & |
---|
656 | !& zgru_adin(jpi,jpj), & |
---|
657 | !& zgrv_adin(jpi,jpj) & |
---|
658 | !& ) |
---|
659 | !! Initialize random field standard deviationsthe reference state |
---|
660 | !zts = tsn(:,:,:,:) |
---|
661 | |
---|
662 | !!============================================================= |
---|
663 | !! 1) dx = ( T ) and dy = ( T ) |
---|
664 | !!============================================================= |
---|
665 | |
---|
666 | !!-------------------------------------------------------------------- |
---|
667 | !! Reset the tangent and adjoint variables |
---|
668 | !!-------------------------------------------------------------------- |
---|
669 | !zts_tlin(:,:,:,:) = 0.0_wp |
---|
670 | !zrd_tlin(:,:,:) = 0.0_wp |
---|
671 | !zts_adout(:,:,:,:) = 0.0_wp |
---|
672 | !zrd_adout(:,:,:) = 0.0_wp |
---|
673 | !zgtu_tlout(:,:,:) = 0.0_wp |
---|
674 | !zgtv_tlout(:,:,:) = 0.0_wp |
---|
675 | !zgru_tlout(:,:) = 0.0_wp |
---|
676 | !zgrv_tlout(:,:) = 0.0_wp |
---|
677 | !zgtu_adin(:,:,:) = 0.0_wp |
---|
678 | !zgtv_adin(:,:,:) = 0.0_wp |
---|
679 | !zgru_adin(:,:) = 0.0_wp |
---|
680 | !zgrv_adin(:,:) = 0.0_wp |
---|
681 | |
---|
682 | !!-------------------------------------------------------------------- |
---|
683 | !! Initialize the tangent input with random noise: dx |
---|
684 | !!-------------------------------------------------------------------- |
---|
685 | !DO jn = 1, jpts |
---|
686 | !CALL grid_random( zats(:,:,:,jn), 'T', 0.0_wp, stdt ) |
---|
687 | !END DO |
---|
688 | !CALL grid_random( zar, 'T', 0.0_wp, stdr ) |
---|
689 | |
---|
690 | !zts_tlin(:,:,:,:) = zats(:,:,:,:) |
---|
691 | !zrd_tlin(:,:,:) = zar(:,:,:) |
---|
692 | !CALL zps_hde_tan ( nit000, jpts, zts, & |
---|
693 | !& zts_tlin , zrd_tlin , & |
---|
694 | !& zgtu_tlout, zgru_tlout, & |
---|
695 | !& zgtv_tlout, zgrv_tlout ) |
---|
696 | !DO jn = 1, jpts |
---|
697 | !DO jj = nldj, nlej |
---|
698 | !DO ji = nldi, nlei |
---|
699 | !jk = mbku(ji,jj) |
---|
700 | !zgtu_adin(ji,jj,jn) = zgtu_tlout(ji,jj,jn) & |
---|
701 | !& * e1u(ji,jj) * e2u(ji,jj) * fse3u(ji,jj,jk) & |
---|
702 | !& * umask(ji,jj,jk) |
---|
703 | !jk = mbkv(ji,jj) |
---|
704 | !zgtv_adin(ji,jj,jn) = zgtv_tlout(ji,jj,jn) & |
---|
705 | !& * e1v(ji,jj) * e2v(ji,jj) * fse3v(ji,jj,jk) & |
---|
706 | !& * vmask(ji,jj,jk) |
---|
707 | !END DO |
---|
708 | !END DO |
---|
709 | !END DO |
---|
710 | !DO jj = nldj, nlej |
---|
711 | !DO ji = nldi, nlei |
---|
712 | !jk = mbku(ji,jj) |
---|
713 | !zgru_adin(ji,jj) = zgru_tlout(ji,jj) & |
---|
714 | !& * e1u(ji,jj) * e2u(ji,jj) * fse3u(ji,jj,jk) & |
---|
715 | !& * umask(ji,jj,jk) |
---|
716 | !jk = mbkv(ji,jj) |
---|
717 | !zgrv_adin(ji,jj) = zgrv_tlout(ji,jj) & |
---|
718 | !& * e1v(ji,jj) * e2v(ji,jj) * fse3v(ji,jj,jk) & |
---|
719 | !& * vmask(ji,jj,jk) |
---|
720 | !END DO |
---|
721 | !END DO |
---|
722 | !!-------------------------------------------------------------------- |
---|
723 | !! Compute the scalar product: ( L dx )^T W dy |
---|
724 | !!-------------------------------------------------------------------- |
---|
725 | |
---|
726 | !zsp1_1 = DOT_PRODUCT( zgtu_adin(:,:,jp_tem), zgtu_tlout(:,:,jp_tem) ) |
---|
727 | !zsp1_2 = DOT_PRODUCT( zgtu_adin(:,:,jp_sal), zgtu_tlout(:,:,jp_sal) ) |
---|
728 | !zsp1_3 = DOT_PRODUCT( zgru_adin, zgru_tlout ) |
---|
729 | !zsp1_4 = DOT_PRODUCT( zgtv_adin(:,:,jp_tem), zgtv_tlout(:,:,jp_tem) ) |
---|
730 | !zsp1_5 = DOT_PRODUCT( zgtv_adin(:,:,jp_sal), zgtv_tlout(:,:,jp_sal) ) |
---|
731 | !zsp1_6 = DOT_PRODUCT( zgrv_adin, zgrv_tlout ) |
---|
732 | !zsp1 = zsp1_1 + zsp1_2 + zsp1_3 + zsp1_4 + zsp1_5 + zsp1_6 |
---|
733 | |
---|
734 | |
---|
735 | !!-------------------------------------------------------------------- |
---|
736 | !! Call the adjoint routine: dx^* = L^T dy^* |
---|
737 | !!-------------------------------------------------------------------- |
---|
738 | !CALL zps_hde_adj ( kt, jpts, zts, gtsu, gtsv , & |
---|
739 | !& tsa_ad, , & |
---|
740 | !& zgtu_adin , zgru_adin , & |
---|
741 | !& zgtv_adin , zgrv_adin ) |
---|
742 | |
---|
743 | !zsp2_1 = DOT_PRODUCT( zts_tlin(:,:,:,jp_tem), zts_adout(:,:,:,jp_tem) ) |
---|
744 | !zsp2_2 = DOT_PRODUCT( zts_tlin(:,:,:,jp_sal), zts_adout(:,:,:,jp_sal) ) |
---|
745 | !zsp2_3 = DOT_PRODUCT( zrd_tlin , zrd_adout ) |
---|
746 | !zsp2 = zsp2_1 + zsp2_2 + zsp2_3 |
---|
747 | |
---|
748 | !! Compare the scalar products |
---|
749 | |
---|
750 | !cl_name = 'zps_hde_adj ' |
---|
751 | !CALL prntst_adj( cl_name, kumadt, zsp1, zsp2 ) |
---|
752 | |
---|
753 | !! Deallocate memory |
---|
754 | !DEALLOCATE( & |
---|
755 | !& zts, & |
---|
756 | !& zts_tlin, & |
---|
757 | !& zrd_tlin, & |
---|
758 | !& zts_adout, & |
---|
759 | !& zrd_adout, & |
---|
760 | !& zar, & |
---|
761 | !& zats, & |
---|
762 | !& zgtu_tlout, & |
---|
763 | !& zgtv_tlout, & |
---|
764 | !& zgru_tlout, & |
---|
765 | !& zgrv_tlout, & |
---|
766 | !& zgtu_adin, & |
---|
767 | !& zgtv_adin, & |
---|
768 | !& zgru_adin, & |
---|
769 | !& zgrv_adin & |
---|
770 | !& ) |
---|
771 | |
---|
772 | !END SUBROUTINE zps_hde_adj_tst |
---|
773 | #endif |
---|
774 | END MODULE zpshde_tam |
---|