1 | MODULE eosbn2 |
---|
2 | !!============================================================================== |
---|
3 | !! *** MODULE eosbn2 *** |
---|
4 | !! Ocean diagnostic variable : equation of state - in situ and potential density |
---|
5 | !! - Brunt-Vaisala frequency |
---|
6 | !!============================================================================== |
---|
7 | !! History : OPA ! 1989-03 (O. Marti) Original code |
---|
8 | !! 6.0 ! 1994-07 (G. Madec, M. Imbard) add bn2 |
---|
9 | !! 6.0 ! 1994-08 (G. Madec) Add Jackett & McDougall eos |
---|
10 | !! 7.0 ! 1996-01 (G. Madec) statement function for e3 |
---|
11 | !! 8.1 ! 1997-07 (G. Madec) density instead of volumic mass |
---|
12 | !! - ! 1999-02 (G. Madec, N. Grima) semi-implicit pressure gradient |
---|
13 | !! 8.2 ! 2001-09 (M. Ben Jelloul) bugfix on linear eos |
---|
14 | !! NEMO 1.0 ! 2002-10 (G. Madec) add eos_init |
---|
15 | !! - ! 2002-11 (G. Madec, A. Bozec) partial step, eos_insitu_2d |
---|
16 | !! - ! 2003-08 (G. Madec) F90, free form |
---|
17 | !! 3.0 ! 2006-08 (G. Madec) add tfreez function |
---|
18 | !! 3.3 ! 2010-05 (C. Ethe, G. Madec) merge TRC-TRA |
---|
19 | !! - ! 2010-10 (G. Nurser, G. Madec) add eos_alpbet used in ldfslp |
---|
20 | !!---------------------------------------------------------------------- |
---|
21 | |
---|
22 | !!---------------------------------------------------------------------- |
---|
23 | !! eos : generic interface of the equation of state |
---|
24 | !! eos_insitu : Compute the in situ density |
---|
25 | !! eos_insitu_pot : Compute the insitu and surface referenced potential |
---|
26 | !! volumic mass |
---|
27 | !! eos_insitu_2d : Compute the in situ density for 2d fields |
---|
28 | !! eos_bn2 : Compute the Brunt-Vaisala frequency |
---|
29 | !! eos_alpbet : calculates the in situ thermal/haline expansion ratio |
---|
30 | !! tfreez : Compute the surface freezing temperature |
---|
31 | !! eos_init : set eos parameters (namelist) |
---|
32 | !!---------------------------------------------------------------------- |
---|
33 | USE dom_oce ! ocean space and time domain |
---|
34 | USE phycst ! physical constants |
---|
35 | USE zdfddm ! vertical physics: double diffusion |
---|
36 | USE in_out_manager ! I/O manager |
---|
37 | USE lib_mpp ! MPP library |
---|
38 | USE prtctl ! Print control |
---|
39 | USE wrk_nemo ! Memory Allocation |
---|
40 | USE timing ! Timing |
---|
41 | |
---|
42 | IMPLICIT NONE |
---|
43 | PRIVATE |
---|
44 | |
---|
45 | ! !! * Interface |
---|
46 | INTERFACE eos |
---|
47 | MODULE PROCEDURE eos_insitu, eos_insitu_pot, eos_insitu_2d |
---|
48 | END INTERFACE |
---|
49 | INTERFACE bn2 |
---|
50 | MODULE PROCEDURE eos_bn2 |
---|
51 | END INTERFACE |
---|
52 | |
---|
53 | PUBLIC eos ! called by step, istate, tranpc and zpsgrd modules |
---|
54 | PUBLIC eos_init ! called by istate module |
---|
55 | PUBLIC bn2 ! called by step module |
---|
56 | PUBLIC eos_alpbet ! called by ldfslp module |
---|
57 | PUBLIC tfreez ! called by sbcice_... modules |
---|
58 | |
---|
59 | ! !!* Namelist (nameos) * |
---|
60 | INTEGER , PUBLIC :: nn_eos = 0 !: = 0/1/2 type of eq. of state and Brunt-Vaisala frequ. |
---|
61 | REAL(wp), PUBLIC :: rn_alpha = 2.0e-4_wp !: thermal expension coeff. (linear equation of state) |
---|
62 | REAL(wp), PUBLIC :: rn_beta = 7.7e-4_wp !: saline expension coeff. (linear equation of state) |
---|
63 | |
---|
64 | REAL(wp), PUBLIC :: ralpbet !: alpha / beta ratio |
---|
65 | |
---|
66 | !! * Substitutions |
---|
67 | # include "domzgr_substitute.h90" |
---|
68 | # include "vectopt_loop_substitute.h90" |
---|
69 | !!---------------------------------------------------------------------- |
---|
70 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
71 | !! $Id$ |
---|
72 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
73 | !!---------------------------------------------------------------------- |
---|
74 | CONTAINS |
---|
75 | |
---|
76 | SUBROUTINE eos_insitu( pts, prd ) |
---|
77 | !!---------------------------------------------------------------------- |
---|
78 | !! *** ROUTINE eos_insitu *** |
---|
79 | !! |
---|
80 | !! ** Purpose : Compute the in situ density (ratio rho/rau0) from |
---|
81 | !! potential temperature and salinity using an equation of state |
---|
82 | !! defined through the namelist parameter nn_eos. |
---|
83 | !! |
---|
84 | !! ** Method : 3 cases: |
---|
85 | !! nn_eos = 0 : Jackett and McDougall (1994) equation of state. |
---|
86 | !! the in situ density is computed directly as a function of |
---|
87 | !! potential temperature relative to the surface (the opa t |
---|
88 | !! variable), salt and pressure (assuming no pressure variation |
---|
89 | !! along geopotential surfaces, i.e. the pressure p in decibars |
---|
90 | !! is approximated by the depth in meters. |
---|
91 | !! prd(t,s,p) = ( rho(t,s,p) - rau0 ) / rau0 |
---|
92 | !! with pressure p decibars |
---|
93 | !! potential temperature t deg celsius |
---|
94 | !! salinity s psu |
---|
95 | !! reference volumic mass rau0 kg/m**3 |
---|
96 | !! in situ volumic mass rho kg/m**3 |
---|
97 | !! in situ density anomalie prd no units |
---|
98 | !! Check value: rho = 1060.93298 kg/m**3 for p=10000 dbar, |
---|
99 | !! t = 40 deg celcius, s=40 psu |
---|
100 | !! nn_eos = 1 : linear equation of state function of temperature only |
---|
101 | !! prd(t) = 0.0285 - rn_alpha * t |
---|
102 | !! nn_eos = 2 : linear equation of state function of temperature and |
---|
103 | !! salinity |
---|
104 | !! prd(t,s) = rn_beta * s - rn_alpha * tn - 1. |
---|
105 | !! Note that no boundary condition problem occurs in this routine |
---|
106 | !! as pts are defined over the whole domain. |
---|
107 | !! |
---|
108 | !! ** Action : compute prd , the in situ density (no units) |
---|
109 | !! |
---|
110 | !! References : Jackett and McDougall, J. Atmos. Ocean. Tech., 1994 |
---|
111 | !!---------------------------------------------------------------------- |
---|
112 | !! |
---|
113 | REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pts ! 1 : potential temperature [Celcius] |
---|
114 | ! ! 2 : salinity [psu] |
---|
115 | REAL(wp), DIMENSION(:,:,:) , INTENT( out) :: prd ! in situ density [-] |
---|
116 | !! |
---|
117 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
118 | REAL(wp) :: zt , zs , zh , zsr ! local scalars |
---|
119 | REAL(wp) :: zr1, zr2, zr3, zr4 ! - - |
---|
120 | REAL(wp) :: zrhop, ze, zbw, zb ! - - |
---|
121 | REAL(wp) :: zd , zc , zaw, za ! - - |
---|
122 | REAL(wp) :: zb1, za1, zkw, zk0 ! - - |
---|
123 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zws |
---|
124 | !!---------------------------------------------------------------------- |
---|
125 | |
---|
126 | ! |
---|
127 | IF( nn_timing == 1 ) CALL timing_start('eos') |
---|
128 | ! |
---|
129 | CALL wrk_alloc( jpi, jpj, jpk, zws ) |
---|
130 | ! |
---|
131 | SELECT CASE( nn_eos ) |
---|
132 | ! |
---|
133 | CASE( 0 ) !== Jackett and McDougall (1994) formulation ==! |
---|
134 | !CDIR NOVERRCHK |
---|
135 | zws(:,:,:) = SQRT( ABS( pts(:,:,:,jp_sal) ) ) |
---|
136 | ! |
---|
137 | DO jk = 1, jpkm1 |
---|
138 | DO jj = 1, jpj |
---|
139 | DO ji = 1, jpi |
---|
140 | zt = pts (ji,jj,jk,jp_tem) |
---|
141 | zs = pts (ji,jj,jk,jp_sal) |
---|
142 | zh = fsdept(ji,jj,jk) ! depth |
---|
143 | zsr= zws (ji,jj,jk) ! square root salinity |
---|
144 | ! |
---|
145 | ! compute volumic mass pure water at atm pressure |
---|
146 | zr1= ( ( ( ( 6.536332e-9_wp *zt - 1.120083e-6_wp )*zt + 1.001685e-4_wp )*zt & |
---|
147 | & -9.095290e-3_wp )*zt + 6.793952e-2_wp )*zt + 999.842594_wp |
---|
148 | ! seawater volumic mass atm pressure |
---|
149 | zr2= ( ( ( 5.3875e-9_wp*zt-8.2467e-7_wp ) *zt+7.6438e-5_wp ) *zt & |
---|
150 | & -4.0899e-3_wp ) *zt+0.824493_wp |
---|
151 | zr3= ( -1.6546e-6_wp*zt+1.0227e-4_wp ) *zt-5.72466e-3_wp |
---|
152 | zr4= 4.8314e-4_wp |
---|
153 | ! |
---|
154 | ! potential volumic mass (reference to the surface) |
---|
155 | zrhop= ( zr4*zs + zr3*zsr + zr2 ) *zs + zr1 |
---|
156 | ! |
---|
157 | ! add the compression terms |
---|
158 | ze = ( -3.508914e-8_wp*zt-1.248266e-8_wp ) *zt-2.595994e-6_wp |
---|
159 | zbw= ( 1.296821e-6_wp*zt-5.782165e-9_wp ) *zt+1.045941e-4_wp |
---|
160 | zb = zbw + ze * zs |
---|
161 | ! |
---|
162 | zd = -2.042967e-2_wp |
---|
163 | zc = (-7.267926e-5_wp*zt+2.598241e-3_wp ) *zt+0.1571896_wp |
---|
164 | zaw= ( ( 5.939910e-6_wp*zt+2.512549e-3_wp ) *zt-0.1028859_wp ) *zt - 4.721788_wp |
---|
165 | za = ( zd*zsr + zc ) *zs + zaw |
---|
166 | ! |
---|
167 | zb1= (-0.1909078_wp*zt+7.390729_wp ) *zt-55.87545_wp |
---|
168 | za1= ( ( 2.326469e-3_wp*zt+1.553190_wp) *zt-65.00517_wp ) *zt+1044.077_wp |
---|
169 | zkw= ( ( (-1.361629e-4_wp*zt-1.852732e-2_wp ) *zt-30.41638_wp ) *zt + 2098.925_wp ) *zt+190925.6_wp |
---|
170 | zk0= ( zb1*zsr + za1 )*zs + zkw |
---|
171 | ! |
---|
172 | ! masked in situ density anomaly |
---|
173 | prd(ji,jj,jk) = ( zrhop / ( 1.0_wp - zh / ( zk0 - zh * ( za - zh * zb ) ) ) & |
---|
174 | & - rau0 ) * r1_rau0 * tmask(ji,jj,jk) |
---|
175 | END DO |
---|
176 | END DO |
---|
177 | END DO |
---|
178 | ! |
---|
179 | CASE( 1 ) !== Linear formulation function of temperature only ==! |
---|
180 | DO jk = 1, jpkm1 |
---|
181 | prd(:,:,jk) = ( 0.0285_wp - rn_alpha * pts(:,:,jk,jp_tem) ) * tmask(:,:,jk) |
---|
182 | END DO |
---|
183 | ! |
---|
184 | CASE( 2 ) !== Linear formulation function of temperature and salinity ==! |
---|
185 | DO jk = 1, jpkm1 |
---|
186 | prd(:,:,jk) = ( rn_beta * pts(:,:,jk,jp_sal) - rn_alpha * pts(:,:,jk,jp_tem) ) * tmask(:,:,jk) |
---|
187 | END DO |
---|
188 | ! |
---|
189 | END SELECT |
---|
190 | ! |
---|
191 | IF(ln_ctl) CALL prt_ctl( tab3d_1=prd, clinfo1=' eos : ', ovlap=1, kdim=jpk ) |
---|
192 | ! |
---|
193 | CALL wrk_dealloc( jpi, jpj, jpk, zws ) |
---|
194 | ! |
---|
195 | IF( nn_timing == 1 ) CALL timing_stop('eos') |
---|
196 | ! |
---|
197 | END SUBROUTINE eos_insitu |
---|
198 | |
---|
199 | |
---|
200 | SUBROUTINE eos_insitu_pot( pts, prd, prhop ) |
---|
201 | !!---------------------------------------------------------------------- |
---|
202 | !! *** ROUTINE eos_insitu_pot *** |
---|
203 | !! |
---|
204 | !! ** Purpose : Compute the in situ density (ratio rho/rau0) and the |
---|
205 | !! potential volumic mass (Kg/m3) from potential temperature and |
---|
206 | !! salinity fields using an equation of state defined through the |
---|
207 | !! namelist parameter nn_eos. |
---|
208 | !! |
---|
209 | !! ** Method : |
---|
210 | !! nn_eos = 0 : Jackett and McDougall (1994) equation of state. |
---|
211 | !! the in situ density is computed directly as a function of |
---|
212 | !! potential temperature relative to the surface (the opa t |
---|
213 | !! variable), salt and pressure (assuming no pressure variation |
---|
214 | !! along geopotential surfaces, i.e. the pressure p in decibars |
---|
215 | !! is approximated by the depth in meters. |
---|
216 | !! prd(t,s,p) = ( rho(t,s,p) - rau0 ) / rau0 |
---|
217 | !! rhop(t,s) = rho(t,s,0) |
---|
218 | !! with pressure p decibars |
---|
219 | !! potential temperature t deg celsius |
---|
220 | !! salinity s psu |
---|
221 | !! reference volumic mass rau0 kg/m**3 |
---|
222 | !! in situ volumic mass rho kg/m**3 |
---|
223 | !! in situ density anomalie prd no units |
---|
224 | !! |
---|
225 | !! Check value: rho = 1060.93298 kg/m**3 for p=10000 dbar, |
---|
226 | !! t = 40 deg celcius, s=40 psu |
---|
227 | !! |
---|
228 | !! nn_eos = 1 : linear equation of state function of temperature only |
---|
229 | !! prd(t) = ( rho(t) - rau0 ) / rau0 = 0.028 - rn_alpha * t |
---|
230 | !! rhop(t,s) = rho(t,s) |
---|
231 | !! |
---|
232 | !! nn_eos = 2 : linear equation of state function of temperature and |
---|
233 | !! salinity |
---|
234 | !! prd(t,s) = ( rho(t,s) - rau0 ) / rau0 |
---|
235 | !! = rn_beta * s - rn_alpha * tn - 1. |
---|
236 | !! rhop(t,s) = rho(t,s) |
---|
237 | !! Note that no boundary condition problem occurs in this routine |
---|
238 | !! as (tn,sn) or (ta,sa) are defined over the whole domain. |
---|
239 | !! |
---|
240 | !! ** Action : - prd , the in situ density (no units) |
---|
241 | !! - prhop, the potential volumic mass (Kg/m3) |
---|
242 | !! |
---|
243 | !! References : Jackett and McDougall, J. Atmos. Ocean. Tech., 1994 |
---|
244 | !! Brown and Campana, Mon. Weather Rev., 1978 |
---|
245 | !!---------------------------------------------------------------------- |
---|
246 | !! |
---|
247 | REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pts ! 1 : potential temperature [Celcius] |
---|
248 | ! ! 2 : salinity [psu] |
---|
249 | REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT( out) :: prd ! in situ density [-] |
---|
250 | REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT( out) :: prhop ! potential density (surface referenced) |
---|
251 | ! |
---|
252 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
253 | REAL(wp) :: zt, zs, zh, zsr, zr1, zr2, zr3, zr4, zrhop, ze, zbw ! local scalars |
---|
254 | REAL(wp) :: zb, zd, zc, zaw, za, zb1, za1, zkw, zk0 ! - - |
---|
255 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zws |
---|
256 | !!---------------------------------------------------------------------- |
---|
257 | ! |
---|
258 | IF( nn_timing == 1 ) CALL timing_start('eos-p') |
---|
259 | ! |
---|
260 | CALL wrk_alloc( jpi, jpj, jpk, zws ) |
---|
261 | ! |
---|
262 | SELECT CASE ( nn_eos ) |
---|
263 | ! |
---|
264 | CASE( 0 ) !== Jackett and McDougall (1994) formulation ==! |
---|
265 | !CDIR NOVERRCHK |
---|
266 | zws(:,:,:) = SQRT( ABS( pts(:,:,:,jp_sal) ) ) |
---|
267 | ! |
---|
268 | DO jk = 1, jpkm1 |
---|
269 | DO jj = 1, jpj |
---|
270 | DO ji = 1, jpi |
---|
271 | zt = pts (ji,jj,jk,jp_tem) |
---|
272 | zs = pts (ji,jj,jk,jp_sal) |
---|
273 | zh = fsdept(ji,jj,jk) ! depth |
---|
274 | zsr= zws (ji,jj,jk) ! square root salinity |
---|
275 | ! |
---|
276 | ! compute volumic mass pure water at atm pressure |
---|
277 | zr1= ( ( ( ( 6.536332e-9_wp*zt-1.120083e-6_wp )*zt+1.001685e-4_wp )*zt & |
---|
278 | & -9.095290e-3_wp )*zt+6.793952e-2_wp )*zt+999.842594_wp |
---|
279 | ! seawater volumic mass atm pressure |
---|
280 | zr2= ( ( ( 5.3875e-9_wp*zt-8.2467e-7_wp ) *zt+7.6438e-5_wp ) *zt & |
---|
281 | & -4.0899e-3_wp ) *zt+0.824493_wp |
---|
282 | zr3= ( -1.6546e-6_wp*zt+1.0227e-4_wp ) *zt-5.72466e-3_wp |
---|
283 | zr4= 4.8314e-4_wp |
---|
284 | ! |
---|
285 | ! potential volumic mass (reference to the surface) |
---|
286 | zrhop= ( zr4*zs + zr3*zsr + zr2 ) *zs + zr1 |
---|
287 | ! |
---|
288 | ! save potential volumic mass |
---|
289 | prhop(ji,jj,jk) = zrhop * tmask(ji,jj,jk) |
---|
290 | ! |
---|
291 | ! add the compression terms |
---|
292 | ze = ( -3.508914e-8_wp*zt-1.248266e-8_wp ) *zt-2.595994e-6_wp |
---|
293 | zbw= ( 1.296821e-6_wp*zt-5.782165e-9_wp ) *zt+1.045941e-4_wp |
---|
294 | zb = zbw + ze * zs |
---|
295 | ! |
---|
296 | zd = -2.042967e-2_wp |
---|
297 | zc = (-7.267926e-5_wp*zt+2.598241e-3_wp ) *zt+0.1571896_wp |
---|
298 | zaw= ( ( 5.939910e-6_wp*zt+2.512549e-3_wp ) *zt-0.1028859_wp ) *zt - 4.721788_wp |
---|
299 | za = ( zd*zsr + zc ) *zs + zaw |
---|
300 | ! |
---|
301 | zb1= ( -0.1909078_wp *zt+7.390729_wp ) *zt-55.87545_wp |
---|
302 | za1= ( ( 2.326469e-3_wp*zt+1.553190_wp ) *zt-65.00517_wp ) *zt + 1044.077_wp |
---|
303 | zkw= ( ( (-1.361629e-4_wp*zt-1.852732e-2_wp ) *zt-30.41638_wp ) *zt + 2098.925_wp ) *zt+190925.6_wp |
---|
304 | zk0= ( zb1*zsr + za1 )*zs + zkw |
---|
305 | ! |
---|
306 | ! masked in situ density anomaly |
---|
307 | prd(ji,jj,jk) = ( zrhop / ( 1.0_wp - zh / ( zk0 - zh * ( za - zh * zb ) ) ) & |
---|
308 | & - rau0 ) * r1_rau0 * tmask(ji,jj,jk) |
---|
309 | END DO |
---|
310 | END DO |
---|
311 | END DO |
---|
312 | ! |
---|
313 | CASE( 1 ) !== Linear formulation = F( temperature ) ==! |
---|
314 | DO jk = 1, jpkm1 |
---|
315 | prd (:,:,jk) = ( 0.0285_wp - rn_alpha * pts(:,:,jk,jp_tem) ) * tmask(:,:,jk) |
---|
316 | prhop(:,:,jk) = ( 1.e0_wp + prd (:,:,jk) ) * rau0 * tmask(:,:,jk) |
---|
317 | END DO |
---|
318 | ! |
---|
319 | CASE( 2 ) !== Linear formulation = F( temperature , salinity ) ==! |
---|
320 | DO jk = 1, jpkm1 |
---|
321 | prd (:,:,jk) = ( rn_beta * pts(:,:,jk,jp_sal) - rn_alpha * pts(:,:,jk,jp_tem) ) * tmask(:,:,jk) |
---|
322 | prhop(:,:,jk) = ( 1.e0_wp + prd (:,:,jk) ) * rau0 * tmask(:,:,jk) |
---|
323 | END DO |
---|
324 | ! |
---|
325 | END SELECT |
---|
326 | ! |
---|
327 | IF(ln_ctl) CALL prt_ctl( tab3d_1=prd, clinfo1=' eos-p: ', tab3d_2=prhop, clinfo2=' pot : ', ovlap=1, kdim=jpk ) |
---|
328 | ! |
---|
329 | CALL wrk_dealloc( jpi, jpj, jpk, zws ) |
---|
330 | ! |
---|
331 | IF( nn_timing == 1 ) CALL timing_stop('eos-p') |
---|
332 | ! |
---|
333 | END SUBROUTINE eos_insitu_pot |
---|
334 | |
---|
335 | |
---|
336 | SUBROUTINE eos_insitu_2d( pts, pdep, prd ) |
---|
337 | !!---------------------------------------------------------------------- |
---|
338 | !! *** ROUTINE eos_insitu_2d *** |
---|
339 | !! |
---|
340 | !! ** Purpose : Compute the in situ density (ratio rho/rau0) from |
---|
341 | !! potential temperature and salinity using an equation of state |
---|
342 | !! defined through the namelist parameter nn_eos. * 2D field case |
---|
343 | !! |
---|
344 | !! ** Method : |
---|
345 | !! nn_eos = 0 : Jackett and McDougall (1994) equation of state. |
---|
346 | !! the in situ density is computed directly as a function of |
---|
347 | !! potential temperature relative to the surface (the opa t |
---|
348 | !! variable), salt and pressure (assuming no pressure variation |
---|
349 | !! along geopotential surfaces, i.e. the pressure p in decibars |
---|
350 | !! is approximated by the depth in meters. |
---|
351 | !! prd(t,s,p) = ( rho(t,s,p) - rau0 ) / rau0 |
---|
352 | !! with pressure p decibars |
---|
353 | !! potential temperature t deg celsius |
---|
354 | !! salinity s psu |
---|
355 | !! reference volumic mass rau0 kg/m**3 |
---|
356 | !! in situ volumic mass rho kg/m**3 |
---|
357 | !! in situ density anomalie prd no units |
---|
358 | !! Check value: rho = 1060.93298 kg/m**3 for p=10000 dbar, |
---|
359 | !! t = 40 deg celcius, s=40 psu |
---|
360 | !! nn_eos = 1 : linear equation of state function of temperature only |
---|
361 | !! prd(t) = 0.0285 - rn_alpha * t |
---|
362 | !! nn_eos = 2 : linear equation of state function of temperature and |
---|
363 | !! salinity |
---|
364 | !! prd(t,s) = rn_beta * s - rn_alpha * tn - 1. |
---|
365 | !! Note that no boundary condition problem occurs in this routine |
---|
366 | !! as pts are defined over the whole domain. |
---|
367 | !! |
---|
368 | !! ** Action : - prd , the in situ density (no units) |
---|
369 | !! |
---|
370 | !! References : Jackett and McDougall, J. Atmos. Ocean. Tech., 1994 |
---|
371 | !!---------------------------------------------------------------------- |
---|
372 | !! |
---|
373 | REAL(wp), DIMENSION(jpi,jpj,jpts), INTENT(in ) :: pts ! 1 : potential temperature [Celcius] |
---|
374 | ! ! 2 : salinity [psu] |
---|
375 | REAL(wp), DIMENSION(jpi,jpj) , INTENT(in ) :: pdep ! depth [m] |
---|
376 | REAL(wp), DIMENSION(jpi,jpj) , INTENT( out) :: prd ! in situ density |
---|
377 | !! |
---|
378 | INTEGER :: ji, jj ! dummy loop indices |
---|
379 | REAL(wp) :: zt, zs, zh, zsr, zr1, zr2, zr3, zr4, zrhop, ze, zbw ! temporary scalars |
---|
380 | REAL(wp) :: zb, zd, zc, zaw, za, zb1, za1, zkw, zk0, zmask ! - - |
---|
381 | REAL(wp), POINTER, DIMENSION(:,:) :: zws |
---|
382 | !!---------------------------------------------------------------------- |
---|
383 | ! |
---|
384 | IF( nn_timing == 1 ) CALL timing_start('eos2d') |
---|
385 | ! |
---|
386 | CALL wrk_alloc( jpi, jpj, zws ) |
---|
387 | ! |
---|
388 | |
---|
389 | prd(:,:) = 0._wp |
---|
390 | |
---|
391 | SELECT CASE( nn_eos ) |
---|
392 | ! |
---|
393 | CASE( 0 ) !== Jackett and McDougall (1994) formulation ==! |
---|
394 | ! |
---|
395 | !CDIR NOVERRCHK |
---|
396 | DO jj = 1, jpjm1 |
---|
397 | !CDIR NOVERRCHK |
---|
398 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
399 | zws(ji,jj) = SQRT( ABS( pts(ji,jj,jp_sal) ) ) |
---|
400 | END DO |
---|
401 | END DO |
---|
402 | DO jj = 1, jpjm1 |
---|
403 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
404 | zmask = tmask(ji,jj,1) ! land/sea bottom mask = surf. mask |
---|
405 | zt = pts (ji,jj,jp_tem) ! interpolated T |
---|
406 | zs = pts (ji,jj,jp_sal) ! interpolated S |
---|
407 | zsr = zws (ji,jj) ! square root of interpolated S |
---|
408 | zh = pdep (ji,jj) ! depth at the partial step level |
---|
409 | ! |
---|
410 | ! compute volumic mass pure water at atm pressure |
---|
411 | zr1 = ( ( ( ( 6.536332e-9_wp*zt-1.120083e-6_wp )*zt+1.001685e-4_wp )*zt & |
---|
412 | & -9.095290e-3_wp )*zt+6.793952e-2_wp )*zt+999.842594_wp |
---|
413 | ! seawater volumic mass atm pressure |
---|
414 | zr2 = ( ( ( 5.3875e-9_wp*zt-8.2467e-7_wp )*zt+7.6438e-5_wp ) *zt & |
---|
415 | & -4.0899e-3_wp ) *zt+0.824493_wp |
---|
416 | zr3 = ( -1.6546e-6_wp*zt+1.0227e-4_wp ) *zt-5.72466e-3_wp |
---|
417 | zr4 = 4.8314e-4_wp |
---|
418 | ! |
---|
419 | ! potential volumic mass (reference to the surface) |
---|
420 | zrhop= ( zr4*zs + zr3*zsr + zr2 ) *zs + zr1 |
---|
421 | ! |
---|
422 | ! add the compression terms |
---|
423 | ze = ( -3.508914e-8_wp*zt-1.248266e-8_wp ) *zt-2.595994e-6_wp |
---|
424 | zbw= ( 1.296821e-6_wp*zt-5.782165e-9_wp ) *zt+1.045941e-4_wp |
---|
425 | zb = zbw + ze * zs |
---|
426 | ! |
---|
427 | zd = -2.042967e-2_wp |
---|
428 | zc = (-7.267926e-5_wp*zt+2.598241e-3_wp ) *zt+0.1571896_wp |
---|
429 | zaw= ( ( 5.939910e-6_wp*zt+2.512549e-3_wp ) *zt-0.1028859_wp ) *zt -4.721788_wp |
---|
430 | za = ( zd*zsr + zc ) *zs + zaw |
---|
431 | ! |
---|
432 | zb1= (-0.1909078_wp *zt+7.390729_wp ) *zt-55.87545_wp |
---|
433 | za1= ( ( 2.326469e-3_wp*zt+1.553190_wp ) *zt-65.00517_wp ) *zt+1044.077_wp |
---|
434 | zkw= ( ( (-1.361629e-4_wp*zt-1.852732e-2_wp ) *zt-30.41638_wp ) *zt & |
---|
435 | & +2098.925_wp ) *zt+190925.6_wp |
---|
436 | zk0= ( zb1*zsr + za1 )*zs + zkw |
---|
437 | ! |
---|
438 | ! masked in situ density anomaly |
---|
439 | prd(ji,jj) = ( zrhop / ( 1.0_wp - zh / ( zk0 - zh * ( za - zh * zb ) ) ) - rau0 ) / rau0 * zmask |
---|
440 | END DO |
---|
441 | END DO |
---|
442 | ! |
---|
443 | CASE( 1 ) !== Linear formulation = F( temperature ) ==! |
---|
444 | DO jj = 1, jpjm1 |
---|
445 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
446 | prd(ji,jj) = ( 0.0285_wp - rn_alpha * pts(ji,jj,jp_tem) ) * tmask(ji,jj,1) |
---|
447 | END DO |
---|
448 | END DO |
---|
449 | ! |
---|
450 | CASE( 2 ) !== Linear formulation = F( temperature , salinity ) ==! |
---|
451 | DO jj = 1, jpjm1 |
---|
452 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
453 | prd(ji,jj) = ( rn_beta * pts(ji,jj,jp_sal) - rn_alpha * pts(ji,jj,jp_tem) ) * tmask(ji,jj,1) |
---|
454 | END DO |
---|
455 | END DO |
---|
456 | ! |
---|
457 | END SELECT |
---|
458 | |
---|
459 | IF(ln_ctl) CALL prt_ctl( tab2d_1=prd, clinfo1=' eos2d: ' ) |
---|
460 | ! |
---|
461 | CALL wrk_dealloc( jpi, jpj, zws ) |
---|
462 | ! |
---|
463 | IF( nn_timing == 1 ) CALL timing_stop('eos2d') |
---|
464 | ! |
---|
465 | END SUBROUTINE eos_insitu_2d |
---|
466 | |
---|
467 | |
---|
468 | SUBROUTINE eos_bn2( pts, pn2 ) |
---|
469 | !!---------------------------------------------------------------------- |
---|
470 | !! *** ROUTINE eos_bn2 *** |
---|
471 | !! |
---|
472 | !! ** Purpose : Compute the local Brunt-Vaisala frequency at the time- |
---|
473 | !! step of the input arguments |
---|
474 | !! |
---|
475 | !! ** Method : |
---|
476 | !! * nn_eos = 0 : UNESCO sea water properties |
---|
477 | !! The brunt-vaisala frequency is computed using the polynomial |
---|
478 | !! polynomial expression of McDougall (1987): |
---|
479 | !! N^2 = grav * beta * ( alpha/beta*dk[ t ] - dk[ s ] )/e3w |
---|
480 | !! If lk_zdfddm=T, the heat/salt buoyancy flux ratio Rrau is |
---|
481 | !! computed and used in zdfddm module : |
---|
482 | !! Rrau = alpha/beta * ( dk[ t ] / dk[ s ] ) |
---|
483 | !! * nn_eos = 1 : linear equation of state (temperature only) |
---|
484 | !! N^2 = grav * rn_alpha * dk[ t ]/e3w |
---|
485 | !! * nn_eos = 2 : linear equation of state (temperature & salinity) |
---|
486 | !! N^2 = grav * (rn_alpha * dk[ t ] - rn_beta * dk[ s ] ) / e3w |
---|
487 | !! The use of potential density to compute N^2 introduces e r r o r |
---|
488 | !! in the sign of N^2 at great depths. We recommand the use of |
---|
489 | !! nn_eos = 0, except for academical studies. |
---|
490 | !! Macro-tasked on horizontal slab (jk-loop) |
---|
491 | !! N.B. N^2 is set to zero at the first level (JK=1) in inidtr |
---|
492 | !! and is never used at this level. |
---|
493 | !! |
---|
494 | !! ** Action : - pn2 : the brunt-vaisala frequency |
---|
495 | !! |
---|
496 | !! References : McDougall, J. Phys. Oceanogr., 17, 1950-1964, 1987. |
---|
497 | !!---------------------------------------------------------------------- |
---|
498 | REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pts ! 1 : potential temperature [Celcius] |
---|
499 | ! ! 2 : salinity [psu] |
---|
500 | REAL(wp), DIMENSION(jpi,jpj,jpk) , INTENT( out) :: pn2 ! Brunt-Vaisala frequency [s-1] |
---|
501 | !! |
---|
502 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
503 | REAL(wp) :: zgde3w, zt, zs, zh, zalbet, zbeta ! local scalars |
---|
504 | #if defined key_zdfddm |
---|
505 | REAL(wp) :: zds ! local scalars |
---|
506 | #endif |
---|
507 | !!---------------------------------------------------------------------- |
---|
508 | |
---|
509 | ! |
---|
510 | IF( nn_timing == 1 ) CALL timing_start('bn2') |
---|
511 | ! |
---|
512 | ! pn2 : interior points only (2=< jk =< jpkm1 ) |
---|
513 | ! -------------------------- |
---|
514 | ! |
---|
515 | SELECT CASE( nn_eos ) |
---|
516 | ! |
---|
517 | CASE( 0 ) !== Jackett and McDougall (1994) formulation ==! |
---|
518 | DO jk = 2, jpkm1 |
---|
519 | DO jj = 1, jpj |
---|
520 | DO ji = 1, jpi |
---|
521 | zgde3w = grav / fse3w(ji,jj,jk) |
---|
522 | zt = 0.5 * ( pts(ji,jj,jk,jp_tem) + pts(ji,jj,jk-1,jp_tem) ) ! potential temperature at w-pt |
---|
523 | zs = 0.5 * ( pts(ji,jj,jk,jp_sal) + pts(ji,jj,jk-1,jp_sal) ) - 35.0 ! salinity anomaly (s-35) at w-pt |
---|
524 | zh = fsdepw(ji,jj,jk) ! depth in meters at w-point |
---|
525 | ! |
---|
526 | zalbet = ( ( ( - 0.255019e-07_wp * zt + 0.298357e-05_wp ) * zt & ! ratio alpha/beta |
---|
527 | & - 0.203814e-03_wp ) * zt & |
---|
528 | & + 0.170907e-01_wp ) * zt & |
---|
529 | & + 0.665157e-01_wp & |
---|
530 | & + ( - 0.678662e-05_wp * zs & |
---|
531 | & - 0.846960e-04_wp * zt + 0.378110e-02_wp ) * zs & |
---|
532 | & + ( ( - 0.302285e-13_wp * zh & |
---|
533 | & - 0.251520e-11_wp * zs & |
---|
534 | & + 0.512857e-12_wp * zt * zt ) * zh & |
---|
535 | & - 0.164759e-06_wp * zs & |
---|
536 | & +( 0.791325e-08_wp * zt - 0.933746e-06_wp ) * zt & |
---|
537 | & + 0.380374e-04_wp ) * zh |
---|
538 | ! |
---|
539 | zbeta = ( ( -0.415613e-09_wp * zt + 0.555579e-07_wp ) * zt & ! beta |
---|
540 | & - 0.301985e-05_wp ) * zt & |
---|
541 | & + 0.785567e-03_wp & |
---|
542 | & + ( 0.515032e-08_wp * zs & |
---|
543 | & + 0.788212e-08_wp * zt - 0.356603e-06_wp ) * zs & |
---|
544 | & + ( ( 0.121551e-17_wp * zh & |
---|
545 | & - 0.602281e-15_wp * zs & |
---|
546 | & - 0.175379e-14_wp * zt + 0.176621e-12_wp ) * zh & |
---|
547 | & + 0.408195e-10_wp * zs & |
---|
548 | & + ( - 0.213127e-11_wp * zt + 0.192867e-09_wp ) * zt & |
---|
549 | & - 0.121555e-07_wp ) * zh |
---|
550 | ! |
---|
551 | pn2(ji,jj,jk) = zgde3w * zbeta * tmask(ji,jj,jk) & ! N^2 |
---|
552 | & * ( zalbet * ( pts(ji,jj,jk-1,jp_tem) - pts(ji,jj,jk,jp_tem) ) & |
---|
553 | & - ( pts(ji,jj,jk-1,jp_sal) - pts(ji,jj,jk,jp_sal) ) ) |
---|
554 | #if defined key_zdfddm |
---|
555 | ! !!bug **** caution a traiter zds=dk[S]= 0 !!!! |
---|
556 | zds = ( pts(ji,jj,jk-1,jp_sal) - pts(ji,jj,jk,jp_sal) ) ! Rrau = (alpha / beta) (dk[t] / dk[s]) |
---|
557 | IF ( ABS( zds) <= 1.e-20_wp ) zds = 1.e-20_wp |
---|
558 | rrau(ji,jj,jk) = zalbet * ( pts(ji,jj,jk-1,jp_tem) - pts(ji,jj,jk,jp_tem) ) / zds |
---|
559 | #endif |
---|
560 | END DO |
---|
561 | END DO |
---|
562 | END DO |
---|
563 | ! |
---|
564 | CASE( 1 ) !== Linear formulation = F( temperature ) ==! |
---|
565 | DO jk = 2, jpkm1 |
---|
566 | pn2(:,:,jk) = grav * rn_alpha * ( pts(:,:,jk-1,jp_tem) - pts(:,:,jk,jp_tem) ) / fse3w(:,:,jk) * tmask(:,:,jk) |
---|
567 | END DO |
---|
568 | ! |
---|
569 | CASE( 2 ) !== Linear formulation = F( temperature , salinity ) ==! |
---|
570 | DO jk = 2, jpkm1 |
---|
571 | pn2(:,:,jk) = grav * ( rn_alpha * ( pts(:,:,jk-1,jp_tem) - pts(:,:,jk,jp_tem) ) & |
---|
572 | & - rn_beta * ( pts(:,:,jk-1,jp_sal) - pts(:,:,jk,jp_sal) ) ) & |
---|
573 | & / fse3w(:,:,jk) * tmask(:,:,jk) |
---|
574 | END DO |
---|
575 | #if defined key_zdfddm |
---|
576 | DO jk = 2, jpkm1 ! Rrau = (alpha / beta) (dk[t] / dk[s]) |
---|
577 | DO jj = 1, jpj |
---|
578 | DO ji = 1, jpi |
---|
579 | zds = ( pts(ji,jj,jk-1,jp_sal) - pts(ji,jj,jk,jp_sal) ) |
---|
580 | IF ( ABS( zds ) <= 1.e-20_wp ) zds = 1.e-20_wp |
---|
581 | rrau(ji,jj,jk) = ralpbet * ( pts(ji,jj,jk-1,jp_tem) - pts(ji,jj,jk,jp_tem) ) / zds |
---|
582 | END DO |
---|
583 | END DO |
---|
584 | END DO |
---|
585 | #endif |
---|
586 | END SELECT |
---|
587 | |
---|
588 | IF(ln_ctl) CALL prt_ctl( tab3d_1=pn2, clinfo1=' bn2 : ', ovlap=1, kdim=jpk ) |
---|
589 | #if defined key_zdfddm |
---|
590 | IF(ln_ctl) CALL prt_ctl( tab3d_1=rrau, clinfo1=' rrau : ', ovlap=1, kdim=jpk ) |
---|
591 | #endif |
---|
592 | ! |
---|
593 | IF( nn_timing == 1 ) CALL timing_stop('bn2') |
---|
594 | ! |
---|
595 | END SUBROUTINE eos_bn2 |
---|
596 | |
---|
597 | |
---|
598 | SUBROUTINE eos_alpbet( pts, palpbet, beta0 ) |
---|
599 | !!---------------------------------------------------------------------- |
---|
600 | !! *** ROUTINE eos_alpbet *** |
---|
601 | !! |
---|
602 | !! ** Purpose : Calculates the in situ thermal/haline expansion ratio at T-points |
---|
603 | !! |
---|
604 | !! ** Method : calculates alpha / beta ratio at T-points |
---|
605 | !! * nn_eos = 0 : UNESCO sea water properties |
---|
606 | !! The alpha/beta ratio is returned as 3-D array palpbet using the polynomial |
---|
607 | !! polynomial expression of McDougall (1987). |
---|
608 | !! Scalar beta0 is returned = 1. |
---|
609 | !! * nn_eos = 1 : linear equation of state (temperature only) |
---|
610 | !! The ratio is undefined, so we return alpha as palpbet |
---|
611 | !! Scalar beta0 is returned = 0. |
---|
612 | !! * nn_eos = 2 : linear equation of state (temperature & salinity) |
---|
613 | !! The alpha/beta ratio is returned as ralpbet |
---|
614 | !! Scalar beta0 is returned = 1. |
---|
615 | !! |
---|
616 | !! ** Action : - palpbet : thermal/haline expansion ratio at T-points |
---|
617 | !! : beta0 : 1. or 0. |
---|
618 | !!---------------------------------------------------------------------- |
---|
619 | REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pts ! pot. temperature & salinity |
---|
620 | REAL(wp), DIMENSION(jpi,jpj,jpk) , INTENT( out) :: palpbet ! thermal/haline expansion ratio |
---|
621 | REAL(wp), INTENT( out) :: beta0 ! set = 1 except with case 1 eos, rho=rho(T) |
---|
622 | !! |
---|
623 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
624 | REAL(wp) :: zt, zs, zh ! local scalars |
---|
625 | !!---------------------------------------------------------------------- |
---|
626 | ! |
---|
627 | IF( nn_timing == 1 ) CALL timing_start('eos_alpbet') |
---|
628 | ! |
---|
629 | SELECT CASE ( nn_eos ) |
---|
630 | ! |
---|
631 | CASE ( 0 ) ! Jackett and McDougall (1994) formulation |
---|
632 | DO jk = 1, jpk |
---|
633 | DO jj = 1, jpj |
---|
634 | DO ji = 1, jpi |
---|
635 | zt = pts(ji,jj,jk,jp_tem) ! potential temperature |
---|
636 | zs = pts(ji,jj,jk,jp_sal) - 35._wp ! salinity anomaly (s-35) |
---|
637 | zh = fsdept(ji,jj,jk) ! depth in meters |
---|
638 | ! |
---|
639 | palpbet(ji,jj,jk) = & |
---|
640 | & ( ( ( - 0.255019e-07_wp * zt + 0.298357e-05_wp ) * zt & |
---|
641 | & - 0.203814e-03_wp ) * zt & |
---|
642 | & + 0.170907e-01_wp ) * zt & |
---|
643 | & + 0.665157e-01_wp & |
---|
644 | & + ( - 0.678662e-05_wp * zs & |
---|
645 | & - 0.846960e-04_wp * zt + 0.378110e-02_wp ) * zs & |
---|
646 | & + ( ( - 0.302285e-13_wp * zh & |
---|
647 | & - 0.251520e-11_wp * zs & |
---|
648 | & + 0.512857e-12_wp * zt * zt ) * zh & |
---|
649 | & - 0.164759e-06_wp * zs & |
---|
650 | & +( 0.791325e-08_wp * zt - 0.933746e-06_wp ) * zt & |
---|
651 | & + 0.380374e-04_wp ) * zh |
---|
652 | END DO |
---|
653 | END DO |
---|
654 | END DO |
---|
655 | beta0 = 1._wp |
---|
656 | ! |
---|
657 | CASE ( 1 ) !== Linear formulation = F( temperature ) ==! |
---|
658 | palpbet(:,:,:) = rn_alpha |
---|
659 | beta0 = 0._wp |
---|
660 | ! |
---|
661 | CASE ( 2 ) !== Linear formulation = F( temperature , salinity ) ==! |
---|
662 | palpbet(:,:,:) = ralpbet |
---|
663 | beta0 = 1._wp |
---|
664 | ! |
---|
665 | CASE DEFAULT |
---|
666 | IF(lwp) WRITE(numout,cform_err) |
---|
667 | IF(lwp) WRITE(numout,*) ' bad flag value for nn_eos = ', nn_eos |
---|
668 | nstop = nstop + 1 |
---|
669 | ! |
---|
670 | END SELECT |
---|
671 | ! |
---|
672 | IF( nn_timing == 1 ) CALL timing_stop('eos_alpbet') |
---|
673 | ! |
---|
674 | END SUBROUTINE eos_alpbet |
---|
675 | |
---|
676 | |
---|
677 | FUNCTION tfreez( psal, pdep ) RESULT( ptf ) |
---|
678 | !!---------------------------------------------------------------------- |
---|
679 | !! *** ROUTINE eos_init *** |
---|
680 | !! |
---|
681 | !! ** Purpose : Compute the sea surface freezing temperature [Celcius] |
---|
682 | !! |
---|
683 | !! ** Method : UNESCO freezing point at the surface (pressure = 0???) |
---|
684 | !! freezing point [Celcius]=(-.0575+1.710523e-3*sqrt(abs(s))-2.154996e-4*s)*s-7.53e-4*p |
---|
685 | !! checkvalue: tf= -2.588567 Celsius for s=40.0psu, p=500. decibars |
---|
686 | !! |
---|
687 | !! Reference : UNESCO tech. papers in the marine science no. 28. 1978 |
---|
688 | !!---------------------------------------------------------------------- |
---|
689 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: psal ! salinity [psu] |
---|
690 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ), OPTIONAL :: pdep ! depth [decibars] |
---|
691 | ! Leave result array automatic rather than making explicitly allocated |
---|
692 | REAL(wp), DIMENSION(jpi,jpj) :: ptf ! freezing temperature [Celcius] |
---|
693 | !!---------------------------------------------------------------------- |
---|
694 | ! |
---|
695 | ptf(:,:) = ( - 0.0575_wp + 1.710523e-3_wp * SQRT( psal(:,:) ) & |
---|
696 | & - 2.154996e-4_wp * psal(:,:) ) * psal(:,:) |
---|
697 | IF ( PRESENT( pdep ) ) THEN |
---|
698 | ptf(:,:) = ptf(:,:) - 7.53e-4_wp * pdep(:,:) |
---|
699 | ENDIF |
---|
700 | ! |
---|
701 | END FUNCTION tfreez |
---|
702 | |
---|
703 | |
---|
704 | SUBROUTINE eos_init |
---|
705 | !!---------------------------------------------------------------------- |
---|
706 | !! *** ROUTINE eos_init *** |
---|
707 | !! |
---|
708 | !! ** Purpose : initializations for the equation of state |
---|
709 | !! |
---|
710 | !! ** Method : Read the namelist nameos and control the parameters |
---|
711 | !!---------------------------------------------------------------------- |
---|
712 | NAMELIST/nameos/ nn_eos, rn_alpha, rn_beta |
---|
713 | !!---------------------------------------------------------------------- |
---|
714 | ! |
---|
715 | REWIND( numnam ) ! Read Namelist nameos : equation of state |
---|
716 | READ ( numnam, nameos ) |
---|
717 | ! |
---|
718 | IF(lwp) THEN ! Control print |
---|
719 | WRITE(numout,*) |
---|
720 | WRITE(numout,*) 'eos_init : equation of state' |
---|
721 | WRITE(numout,*) '~~~~~~~~' |
---|
722 | WRITE(numout,*) ' Namelist nameos : set eos parameters' |
---|
723 | WRITE(numout,*) ' flag for eq. of state and N^2 nn_eos = ', nn_eos |
---|
724 | WRITE(numout,*) ' thermal exp. coef. (linear) rn_alpha = ', rn_alpha |
---|
725 | WRITE(numout,*) ' saline exp. coef. (linear) rn_beta = ', rn_beta |
---|
726 | ENDIF |
---|
727 | ! |
---|
728 | SELECT CASE( nn_eos ) ! check option |
---|
729 | ! |
---|
730 | CASE( 0 ) !== Jackett and McDougall (1994) formulation ==! |
---|
731 | IF(lwp) WRITE(numout,*) |
---|
732 | IF(lwp) WRITE(numout,*) ' use of Jackett & McDougall (1994) equation of state and' |
---|
733 | IF(lwp) WRITE(numout,*) ' McDougall (1987) Brunt-Vaisala frequency' |
---|
734 | ! |
---|
735 | CASE( 1 ) !== Linear formulation = F( temperature ) ==! |
---|
736 | IF(lwp) WRITE(numout,*) |
---|
737 | IF(lwp) WRITE(numout,*) ' use of linear eos rho(T) = rau0 * ( 1.0285 - rn_alpha * T )' |
---|
738 | IF( lk_zdfddm ) CALL ctl_stop( ' double diffusive mixing parameterization requires', & |
---|
739 | & ' that T and S are used as state variables' ) |
---|
740 | ! |
---|
741 | CASE( 2 ) !== Linear formulation = F( temperature , salinity ) ==! |
---|
742 | ralpbet = rn_alpha / rn_beta |
---|
743 | IF(lwp) WRITE(numout,*) |
---|
744 | IF(lwp) WRITE(numout,*) ' use of linear eos rho(T,S) = rau0 * ( rn_beta * S - rn_alpha * T )' |
---|
745 | ! |
---|
746 | CASE DEFAULT !== ERROR in nn_eos ==! |
---|
747 | WRITE(ctmp1,*) ' bad flag value for nn_eos = ', nn_eos |
---|
748 | CALL ctl_stop( ctmp1 ) |
---|
749 | ! |
---|
750 | END SELECT |
---|
751 | ! |
---|
752 | END SUBROUTINE eos_init |
---|
753 | |
---|
754 | !!====================================================================== |
---|
755 | END MODULE eosbn2 |
---|