1 | PROGRAM SCOORD_GEN |
---|
2 | !!---------------------------------------------------------------------- |
---|
3 | !! *** PROGRAM scoord_gen *** |
---|
4 | !! |
---|
5 | !! ** Purpose : define the s-coordinate system |
---|
6 | !! |
---|
7 | !! ** Method : s-coordinate |
---|
8 | !! The depth of model levels is defined as the product of an |
---|
9 | !! analytical function by the local bathymetry, while the vertical |
---|
10 | !! scale factors are defined as the product of the first derivative |
---|
11 | !! of the analytical function by the bathymetry. |
---|
12 | !! (this solution save memory as depth and scale factors are not |
---|
13 | !! 3d fields) |
---|
14 | !! - Read bathymetry (in meters) at t-point and compute the |
---|
15 | !! bathymetry at u-, v-, and f-points. |
---|
16 | !! hbatu = mi( hbatt ) |
---|
17 | !! hbatv = mj( hbatt ) |
---|
18 | !! hbatf = mi( mj( hbatt ) ) |
---|
19 | !! - Compute z_gsigt, z_gsigw, z_esigt, z_esigw from an analytical |
---|
20 | !! function and its derivative given as function. |
---|
21 | !! z_gsigt(k) = fssig (k ) |
---|
22 | !! z_gsigw(k) = fssig (k-0.5) |
---|
23 | !! z_esigt(k) = fsdsig(k ) |
---|
24 | !! z_esigw(k) = fsdsig(k-0.5) |
---|
25 | !! Three options for stretching are give, and they can be modified |
---|
26 | !! following the users requirements. Nevertheless, the output as |
---|
27 | !! well as the way to compute the model levels and scale factors |
---|
28 | !! must be respected in order to insure second order accuracy |
---|
29 | !! schemes. |
---|
30 | !! |
---|
31 | !! The three methods for stretching available are: |
---|
32 | !! |
---|
33 | !! s_sh94 (Song and Haidvogel 1994) |
---|
34 | !! a sinh/tanh function that allows sigma and stretched sigma |
---|
35 | !! |
---|
36 | !! s_sf12 (Siddorn and Furner 2012?) |
---|
37 | !! allows the maintenance of fixed surface and or |
---|
38 | !! bottom cell resolutions (cf. geopotential coordinates) |
---|
39 | !! within an analytically derived stretched S-coordinate framework. |
---|
40 | !! |
---|
41 | !! s_tanh (Madec et al 1996) |
---|
42 | !! a cosh/tanh function that gives stretched coordinates |
---|
43 | !! |
---|
44 | !! ** History: 2015: Tim Graham - Code created based on online zdf_sco routine |
---|
45 | !! |
---|
46 | !! |
---|
47 | !!---------------------------------------------------------------------- |
---|
48 | ! |
---|
49 | USE utils |
---|
50 | IMPLICIT NONE |
---|
51 | |
---|
52 | |
---|
53 | !!---------------------------------------------------------------------- |
---|
54 | ! |
---|
55 | ! |
---|
56 | OPEN( UNIT=numnam, FILE='namelist', FORM='FORMATTED', STATUS='OLD' ) |
---|
57 | READ( numnam, namzgr_sco ) |
---|
58 | CLOSE( numnam ) |
---|
59 | jpk = INT(rn_jpk) |
---|
60 | |
---|
61 | WRITE(*,*) |
---|
62 | WRITE(*,*) 'scoord_gen : s-coordinate or hybrid z-s-coordinate' |
---|
63 | WRITE(*,*) '~~~~~~~~~~~' |
---|
64 | WRITE(*,*) ' Namelist namzgr_sco' |
---|
65 | WRITE(*,*) ' stretching coeffs ' |
---|
66 | WRITE(*,*) ' Number of levels rn_jpk = ',rn_jpk |
---|
67 | WRITE(*,*) ' maximum depth of s-bottom surface (>0) rn_sbot_max = ',rn_sbot_max |
---|
68 | WRITE(*,*) ' minimum depth of s-bottom surface (>0) rn_sbot_min = ',rn_sbot_min |
---|
69 | WRITE(*,*) ' Critical depth rn_hc = ',rn_hc |
---|
70 | WRITE(*,*) ' maximum cut-off r-value allowed rn_rmax = ',rn_rmax |
---|
71 | WRITE(*,*) ' Tapering in vicinity of equator ln_eq_taper = ',ln_eq_taper |
---|
72 | WRITE(*,*) ' Horizontal Coordinate File cn_coord_hgr = ',cn_coord_hgr |
---|
73 | WRITE(*,*) ' Song and Haidvogel 1994 stretching ln_s_sh94 = ',ln_s_sh94 |
---|
74 | WRITE(*,*) ' Song and Haidvogel 1994 stretching coefficients' |
---|
75 | WRITE(*,*) ' surface control parameter (0<=rn_theta<=20) rn_theta = ',rn_theta |
---|
76 | WRITE(*,*) ' bottom control parameter (0<=rn_thetb<= 1) rn_thetb = ',rn_thetb |
---|
77 | WRITE(*,*) ' stretching parameter (song and haidvogel) rn_bb = ',rn_bb |
---|
78 | WRITE(*,*) ' Siddorn and Furner 2012 stretching ln_s_sf12 = ',ln_s_sf12 |
---|
79 | WRITE(*,*) ' switching to sigma (T) or Z (F) at H<Hc ln_sigcrit = ',ln_sigcrit |
---|
80 | WRITE(*,*) ' Siddorn and Furner 2012 stretching coefficients' |
---|
81 | WRITE(*,*) ' stretchin parameter ( >1 surface; <1 bottom) rn_alpha = ',rn_alpha |
---|
82 | WRITE(*,*) ' e-fold length scale for transition region rn_efold = ',rn_efold |
---|
83 | WRITE(*,*) ' Surface cell depth (Zs) (m) rn_zs = ',rn_zs |
---|
84 | WRITE(*,*) ' Bathymetry multiplier for Zb rn_zb_a = ',rn_zb_a |
---|
85 | WRITE(*,*) ' Offset for Zb rn_zb_b = ',rn_zb_b |
---|
86 | WRITE(*,*) ' Bottom cell (Zb) (m) = H*rn_zb_a + rn_zb_b' |
---|
87 | |
---|
88 | |
---|
89 | ! Read in bathy, jpi and jpj from bathy.nc |
---|
90 | CALL read_bathy() |
---|
91 | |
---|
92 | !Allocate all other allocatable variables |
---|
93 | ios = dom_oce_alloc() |
---|
94 | IF( ios .NE. 0) THEN |
---|
95 | WRITE(0,*) 'Unable to allocate all arrays' |
---|
96 | STOP 1 |
---|
97 | ENDIF |
---|
98 | |
---|
99 | hift(:,:) = rn_sbot_min ! set the minimum depth for the s-coordinate |
---|
100 | hifu(:,:) = rn_sbot_min |
---|
101 | hifv(:,:) = rn_sbot_min |
---|
102 | hiff(:,:) = rn_sbot_min |
---|
103 | |
---|
104 | ! ! set maximum ocean depth |
---|
105 | bathy(:,:) = MIN( rn_sbot_max, bathy(:,:) ) |
---|
106 | |
---|
107 | DO jj = 1, jpj |
---|
108 | DO ji = 1, jpi |
---|
109 | IF( bathy(ji,jj) > 0. ) bathy(ji,jj) = MAX( rn_sbot_min, bathy(ji,jj) ) |
---|
110 | END DO |
---|
111 | END DO |
---|
112 | ! ! ============================= |
---|
113 | ! ! Define the envelop bathymetry (hbatt) |
---|
114 | ! ! ============================= |
---|
115 | ! use r-value to create hybrid coordinates |
---|
116 | zenv(:,:) = bathy(:,:) |
---|
117 | ! |
---|
118 | ! set first land point adjacent to a wet cell to sbot_min as this needs to be included in smoothing |
---|
119 | DO jj = 1, jpj |
---|
120 | DO ji = 1, jpi |
---|
121 | IF( bathy(ji,jj) == 0. ) THEN |
---|
122 | iip1 = MIN( ji+1, jpi ) |
---|
123 | ijp1 = MIN( jj+1, jpj ) |
---|
124 | iim1 = MAX( ji-1, 1 ) |
---|
125 | ijm1 = MAX( jj-1, 1 ) |
---|
126 | IF( (bathy(iip1,jj) + bathy(iim1,jj) + bathy(ji,ijp1) + bathy(ji,ijm1) + & |
---|
127 | & bathy(iip1,ijp1) + bathy(iim1,ijm1) + bathy(iip1,ijp1) + bathy(iim1,ijm1)) > 0. ) THEN |
---|
128 | zenv(ji,jj) = rn_sbot_min |
---|
129 | ENDIF |
---|
130 | ENDIF |
---|
131 | END DO |
---|
132 | END DO |
---|
133 | ! |
---|
134 | ! smooth the bathymetry (if required) |
---|
135 | scosrf(:,:) = 0. ! ocean surface depth (here zero: no under ice-shelf sea) |
---|
136 | scobot(:,:) = bathy(:,:) ! ocean bottom depth |
---|
137 | ! |
---|
138 | jl = 0 |
---|
139 | zrmax = 1. |
---|
140 | ! |
---|
141 | ! |
---|
142 | ! set scaling factor used in reducing vertical gradients |
---|
143 | zrfact = ( 1. - rn_rmax ) / ( 1. + rn_rmax ) |
---|
144 | ! |
---|
145 | ! initialise temporary evelope depth arrays |
---|
146 | ztmpi1(:,:) = zenv(:,:) |
---|
147 | ztmpi2(:,:) = zenv(:,:) |
---|
148 | ztmpj1(:,:) = zenv(:,:) |
---|
149 | ztmpj2(:,:) = zenv(:,:) |
---|
150 | ! |
---|
151 | ! initialise temporary r-value arrays |
---|
152 | zri(:,:) = 1. |
---|
153 | zrj(:,:) = 1. |
---|
154 | |
---|
155 | ! ! ================ ! |
---|
156 | DO WHILE( jl <= 10000 .AND. ( zrmax - rn_rmax ) > 1.e-8 ) ! Iterative loop ! |
---|
157 | ! ! ================ ! |
---|
158 | jl = jl + 1 |
---|
159 | zrmax = 0. |
---|
160 | ! we set zrmax from previous r-values (zri and zrj) first |
---|
161 | ! if set after current r-value calculation (as previously) |
---|
162 | ! we could exit DO WHILE prematurely before checking r-value |
---|
163 | ! of current zenv |
---|
164 | DO jj = 1, jpj |
---|
165 | DO ji = 1, jpi |
---|
166 | zrmax = MAX( zrmax, ABS(zri(ji,jj)), ABS(zrj(ji,jj)) ) |
---|
167 | END DO |
---|
168 | END DO |
---|
169 | zri(:,:) = 0. |
---|
170 | zrj(:,:) = 0. |
---|
171 | DO jj = 1, jpj |
---|
172 | DO ji = 1, jpi |
---|
173 | iip1 = MIN(ji+1,jpi) |
---|
174 | ijp1 = MIN(jj+1,jpj) |
---|
175 | IF( (zenv(ji,jj) > 0.) .AND. (zenv(iip1,jj) > 0.)) THEN |
---|
176 | zri(ji,jj) = ( zenv(iip1,jj ) - zenv(ji,jj) ) / ( zenv(iip1,jj ) + zenv(ji,jj) ) |
---|
177 | END IF |
---|
178 | IF( (zenv(ji,jj) > 0.) .AND. (zenv(ji,ijp1) > 0.)) THEN |
---|
179 | zrj(ji,jj) = ( zenv(ji ,ijp1) - zenv(ji,jj) ) / ( zenv(ji ,ijp1) + zenv(ji,jj) ) |
---|
180 | END IF |
---|
181 | IF( zri(ji,jj) > rn_rmax ) ztmpi1(ji ,jj ) = zenv(iip1,jj ) * zrfact |
---|
182 | IF( zri(ji,jj) < -rn_rmax ) ztmpi2(iip1,jj ) = zenv(ji ,jj ) * zrfact |
---|
183 | IF( zrj(ji,jj) > rn_rmax ) ztmpj1(ji ,jj ) = zenv(ji ,ijp1) * zrfact |
---|
184 | IF( zrj(ji,jj) < -rn_rmax ) ztmpj2(ji ,ijp1) = zenv(ji ,jj ) * zrfact |
---|
185 | END DO |
---|
186 | END DO |
---|
187 | ! |
---|
188 | WRITE(*,*) 'zgr_sco : iter= ',jl, ' rmax= ', zrmax |
---|
189 | ! |
---|
190 | DO jj = 1, jpj |
---|
191 | DO ji = 1, jpi |
---|
192 | zenv(ji,jj) = MAX(zenv(ji,jj), ztmpi1(ji,jj), ztmpi2(ji,jj), ztmpj1(ji,jj), ztmpj2(ji,jj) ) |
---|
193 | END DO |
---|
194 | END DO |
---|
195 | ! ! ================ ! |
---|
196 | END DO ! End loop ! |
---|
197 | ! ! ================ ! |
---|
198 | DO jj = 1, jpj |
---|
199 | DO ji = 1, jpi |
---|
200 | zenv(ji,jj) = MAX( zenv(ji,jj), rn_sbot_min ) ! set all points to avoid undefined scale value warnings |
---|
201 | END DO |
---|
202 | END DO |
---|
203 | ! |
---|
204 | ! Envelope bathymetry saved in hbatt |
---|
205 | hbatt(:,:) = zenv(:,:) |
---|
206 | IF( ln_eq_taper) THEN |
---|
207 | CALL READ_GPHIT() |
---|
208 | IF( MINVAL( gphit(:,:) ) * MAXVAL( gphit(:,:) ) <= 0. ) THEN |
---|
209 | WRITE(*,*) 's-coordinates are tapered in vicinity of the Equator' |
---|
210 | DO jj = 1, jpj |
---|
211 | DO ji = 1, jpi |
---|
212 | ztaper = EXP( -(gphit(ji,jj)/8.)**2. ) |
---|
213 | hbatt(ji,jj) = rn_sbot_max * ztaper + hbatt(ji,jj) * ( 1. - ztaper ) |
---|
214 | END DO |
---|
215 | END DO |
---|
216 | ENDIF |
---|
217 | ENDIF |
---|
218 | ! |
---|
219 | ! ! ============================== |
---|
220 | ! ! hbatu, hbatv, hbatf fields |
---|
221 | ! ! ============================== |
---|
222 | WRITE(*,*) |
---|
223 | WRITE(*,*) ' zgr_sco: minimum depth of the envelop topography set to : ', rn_sbot_min |
---|
224 | hbatu(:,:) = rn_sbot_min |
---|
225 | hbatv(:,:) = rn_sbot_min |
---|
226 | hbatf(:,:) = rn_sbot_min |
---|
227 | DO jj = 1, jpj-1 |
---|
228 | DO ji = 1, jpi-1 ! NO vector opt. |
---|
229 | hbatu(ji,jj) = 0.50 * ( hbatt(ji ,jj) + hbatt(ji+1,jj ) ) |
---|
230 | hbatv(ji,jj) = 0.50 * ( hbatt(ji ,jj) + hbatt(ji ,jj+1) ) |
---|
231 | hbatf(ji,jj) = 0.25 * ( hbatt(ji ,jj) + hbatt(ji ,jj+1) & |
---|
232 | & + hbatt(ji+1,jj) + hbatt(ji+1,jj+1) ) |
---|
233 | END DO |
---|
234 | END DO |
---|
235 | ! |
---|
236 | zhbat(:,:) = hbatu(:,:) |
---|
237 | DO jj = 1, jpj |
---|
238 | DO ji = 1, jpi |
---|
239 | IF( hbatu(ji,jj) == 0. ) THEN |
---|
240 | IF( zhbat(ji,jj) == 0. ) hbatu(ji,jj) = rn_sbot_min |
---|
241 | IF( zhbat(ji,jj) /= 0. ) hbatu(ji,jj) = zhbat(ji,jj) |
---|
242 | ENDIF |
---|
243 | END DO |
---|
244 | END DO |
---|
245 | zhbat(:,:) = hbatv(:,:) |
---|
246 | DO jj = 1, jpj |
---|
247 | DO ji = 1, jpi |
---|
248 | IF( hbatv(ji,jj) == 0. ) THEN |
---|
249 | IF( zhbat(ji,jj) == 0. ) hbatv(ji,jj) = rn_sbot_min |
---|
250 | IF( zhbat(ji,jj) /= 0. ) hbatv(ji,jj) = zhbat(ji,jj) |
---|
251 | ENDIF |
---|
252 | END DO |
---|
253 | END DO |
---|
254 | zhbat(:,:) = hbatf(:,:) |
---|
255 | DO jj = 1, jpj |
---|
256 | DO ji = 1, jpi |
---|
257 | IF( hbatf(ji,jj) == 0. ) THEN |
---|
258 | IF( zhbat(ji,jj) == 0. ) hbatf(ji,jj) = rn_sbot_min |
---|
259 | IF( zhbat(ji,jj) /= 0. ) hbatf(ji,jj) = zhbat(ji,jj) |
---|
260 | ENDIF |
---|
261 | END DO |
---|
262 | END DO |
---|
263 | |
---|
264 | !!bug: key_helsinki a verifer |
---|
265 | hift(:,:) = MIN( hift(:,:), hbatt(:,:) ) |
---|
266 | hifu(:,:) = MIN( hifu(:,:), hbatu(:,:) ) |
---|
267 | hifv(:,:) = MIN( hifv(:,:), hbatv(:,:) ) |
---|
268 | hiff(:,:) = MIN( hiff(:,:), hbatf(:,:) ) |
---|
269 | |
---|
270 | WRITE(*,*) ' MAX val hif t ', MAXVAL( hift (:,:) ), ' f ', MAXVAL( hiff (:,:) ), & |
---|
271 | & ' u ', MAXVAL( hifu (:,:) ), ' v ', MAXVAL( hifv (:,:) ) |
---|
272 | WRITE(*,*) ' MIN val hif t ', MINVAL( hift (:,:) ), ' f ', MINVAL( hiff (:,:) ), & |
---|
273 | & ' u ', MINVAL( hifu (:,:) ), ' v ', MINVAL( hifv (:,:) ) |
---|
274 | WRITE(*,*) ' MAX val hbat t ', MAXVAL( hbatt(:,:) ), ' f ', MAXVAL( hbatf(:,:) ), & |
---|
275 | & ' u ', MAXVAL( hbatu(:,:) ), ' v ', MAXVAL( hbatv(:,:) ) |
---|
276 | WRITE(*,*) ' MIN val hbat t ', MINVAL( hbatt(:,:) ), ' f ', MINVAL( hbatf(:,:) ), & |
---|
277 | & ' u ', MINVAL( hbatu(:,:) ), ' v ', MINVAL( hbatv(:,:) ) |
---|
278 | |
---|
279 | ! Create the output file |
---|
280 | CALL make_coord_file() |
---|
281 | |
---|
282 | ! ! ======================= |
---|
283 | ! ! s-coordinate fields (gdep., e3.) |
---|
284 | ! ! ======================= |
---|
285 | ! |
---|
286 | ! non-dimensional "sigma" for model level depth at w- and t-levels |
---|
287 | |
---|
288 | |
---|
289 | !======================================================================== |
---|
290 | ! Song and Haidvogel 1994 (ln_s_sh94=T) |
---|
291 | ! Siddorn and Furner 2012 (ln_sf12=T) |
---|
292 | ! or tanh function (both false) |
---|
293 | ! To reduce memory loop over jpk and write each level to file |
---|
294 | !======================================================================== |
---|
295 | IF ( ln_s_sh94 ) THEN |
---|
296 | CALL s_sh94() |
---|
297 | ELSE IF ( ln_s_sf12 ) THEN |
---|
298 | CALL s_sf12() |
---|
299 | ELSE |
---|
300 | CALL s_tanh() |
---|
301 | ENDIF |
---|
302 | |
---|
303 | !Write all 2D variables to output file |
---|
304 | CALL write_netcdf_2d_vars() |
---|
305 | CALL check_nf90( nf90_close(ncout) ) |
---|
306 | |
---|
307 | |
---|
308 | ! |
---|
309 | END PROGRAM SCOORD_GEN |
---|
310 | |
---|
311 | !!====================================================================== |
---|
312 | SUBROUTINE s_sh94() |
---|
313 | |
---|
314 | !!---------------------------------------------------------------------- |
---|
315 | !! *** ROUTINE s_sh94 *** |
---|
316 | !! |
---|
317 | !! ** Purpose : stretch the s-coordinate system |
---|
318 | !! |
---|
319 | !! ** Method : s-coordinate stretch using the Song and Haidvogel 1994 |
---|
320 | !! mixed S/sigma coordinate |
---|
321 | !! |
---|
322 | !! Reference : Song and Haidvogel 1994. |
---|
323 | !!---------------------------------------------------------------------- |
---|
324 | ! |
---|
325 | USE utils |
---|
326 | REAL(wp) :: zcoeft, zcoefw ! temporary scalars |
---|
327 | ! |
---|
328 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_gsigw3, z_gsigt3, z_gsi3w3 |
---|
329 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_gsigw3p1, z_gsigt3m1, z_gsi3w3m1 |
---|
330 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_esigt3, z_esigw3, z_esigtu3 |
---|
331 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_esigtv3, z_esigtf3, z_esigwu3, z_esigwv3 |
---|
332 | |
---|
333 | ALLOCATE( z_gsigw3(jpi,jpj), z_gsigt3(jpi,jpj), z_gsi3w3(jpi,jpj) ) |
---|
334 | ALLOCATE( z_esigt3(jpi,jpj), z_esigw3(jpi,jpj), z_esigtu3(jpi,jpj)) |
---|
335 | ALLOCATE( z_esigtv3(jpi,jpj), z_esigtf3(jpi,jpj), z_esigwu3(jpi,jpj)) |
---|
336 | ALLOCATE( z_esigwv3(jpi,jpj), z_gsigw3p1(jpi,jpj), z_gsigt3m1(jpi,jpj) ) |
---|
337 | ALLOCATE( z_gsi3w3m1(jpi,jpj) ) |
---|
338 | |
---|
339 | z_gsigw3 = 0. ; z_gsigt3 = 0. ; z_gsi3w3 = 0. |
---|
340 | z_esigt3 = 0. ; z_esigw3 = 0. |
---|
341 | z_esigt3p1 = 0. ; z_esigw3p1 = 0. |
---|
342 | z_esigtu3 = 0. ; z_esigtv3 = 0. ; z_esigtf3 = 0. |
---|
343 | z_esigwu3 = 0. ; z_esigwv3 = 0. |
---|
344 | |
---|
345 | DO jk = 1,jpk |
---|
346 | DO ji = 1, jpi |
---|
347 | DO jj = 1, jpj |
---|
348 | |
---|
349 | IF( hbatt(ji,jj) > rn_hc ) THEN !deep water, stretched sigma |
---|
350 | z_gsigw3(ji,jj) = -fssig1( REAL(jk,wp)-0.5, rn_bb ) |
---|
351 | z_gsigw3p1(ji,jj) = -fssig1( REAL(jk+1,wp)-0.5, rn_bb ) |
---|
352 | z_gsigt3(ji,jj) = -fssig1( REAL(jk,wp) , rn_bb ) |
---|
353 | ELSE ! shallow water, uniform sigma |
---|
354 | z_gsigw3(ji,jj) = REAL(jk-1,wp) / REAL(jpk-1,wp) |
---|
355 | z_gsigw3p1(ji,jj) = REAL(jk,wp) / REAL(jpk-1,wp) |
---|
356 | z_gsigt3(ji,jj) = ( REAL(jk-1,wp) + 0.5 ) / REAL(jpk-1,wp) |
---|
357 | ENDIF |
---|
358 | ! |
---|
359 | !gsi3w3m1 & gsigt3m1 only used if jk /= 1 and is set at the end of the loop over jk |
---|
360 | IF( jk .EQ. 1) THEN |
---|
361 | z_esigw3(ji,jj ) = 2. * ( z_gsigt3(ji,jj ) - z_gsigw3(ji,jj ) ) |
---|
362 | z_gsi3w3(ji,jj) = 0.5 * z_esigw3(ji,jj) |
---|
363 | ELSE |
---|
364 | z_esigw3(ji,jj) = z_gsigt3(ji,jj) - z_gsigt3m1(ji,jj) |
---|
365 | z_gsi3w3(ji,jj) = z_gsi3w3m1(ji,jj) + z_esigw3(ji,jj) |
---|
366 | ENDIF |
---|
367 | IF( jk .EQ. jpk) THEN |
---|
368 | z_esigt3(ji,jj) = 2. * ( z_gsigt3(ji,jj) - z_gsigw3(ji,jj) ) |
---|
369 | ELSE |
---|
370 | z_esigt3(ji,jj ) = z_gsigw3p1(ji,jj) - z_gsigw3(ji,jj) |
---|
371 | ENDIF |
---|
372 | ! |
---|
373 | |
---|
374 | zcoeft = ( REAL(jk,wp) - 0.5 ) / REAL(jpk-1,wp) |
---|
375 | zcoefw = ( REAL(jk,wp) - 1.0 ) / REAL(jpk-1,wp) |
---|
376 | gdept_0(ji,jj) = ( scosrf(ji,jj) + (hbatt(ji,jj)-rn_hc)*z_gsigt3(ji,jj)+rn_hc*zcoeft ) |
---|
377 | gdepw_0(ji,jj) = ( scosrf(ji,jj) + (hbatt(ji,jj)-rn_hc)*z_gsigw3(ji,jj)+rn_hc*zcoefw ) |
---|
378 | gdep3w_0(ji,jj) = ( scosrf(ji,jj) + (hbatt(ji,jj)-rn_hc)*z_gsi3w3(ji,jj)+rn_hc*zcoeft ) |
---|
379 | ! |
---|
380 | END DO ! for all jj's |
---|
381 | END DO ! for all ji's |
---|
382 | |
---|
383 | DO ji = 1, jpi-1 |
---|
384 | DO jj = 1, jpj-1 |
---|
385 | z_esigtu3(ji,jj) = ( hbatt(ji,jj)*z_esigt3(ji,jj)+hbatt(ji+1,jj)*z_esigt3(ji+1,jj) ) & |
---|
386 | & / ( hbatt(ji,jj)+hbatt(ji+1,jj) ) |
---|
387 | z_esigtv3(ji,jj) = ( hbatt(ji,jj)*z_esigt3(ji,jj)+hbatt(ji,jj+1)*z_esigt3(ji,jj+1) ) & |
---|
388 | & / ( hbatt(ji,jj)+hbatt(ji,jj+1) ) |
---|
389 | z_esigtf3(ji,jj) = ( hbatt(ji,jj)*z_esigt3(ji,jj)+hbatt(ji+1,jj)*z_esigt3(ji+1,jj) & |
---|
390 | & + hbatt(ji,jj+1)*z_esigt3(ji,jj+1)+hbatt(ji+1,jj+1)*z_esigt3(ji+1,jj+1) ) & |
---|
391 | & / ( hbatt(ji,jj)+hbatt(ji+1,jj)+hbatt(ji,jj+1)+hbatt(ji+1,jj+1) ) |
---|
392 | z_esigwu3(ji,jj) = ( hbatt(ji,jj)*z_esigw3(ji,jj)+hbatt(ji+1,jj)*z_esigw3(ji+1,jj) ) & |
---|
393 | & / ( hbatt(ji,jj)+hbatt(ji+1,jj) ) |
---|
394 | z_esigwv3(ji,jj) = ( hbatt(ji,jj)*z_esigw3(ji,jj)+hbatt(ji,jj+1)*z_esigw3(ji,jj+1) ) & |
---|
395 | & / ( hbatt(ji,jj)+hbatt(ji,jj+1) ) |
---|
396 | ! |
---|
397 | e3t_0(ji,jj) = ( (hbatt(ji,jj)-rn_hc)*z_esigt3 (ji,jj) + rn_hc/REAL(jpk-1,wp) ) |
---|
398 | e3u_0(ji,jj) = ( (hbatu(ji,jj)-rn_hc)*z_esigtu3(ji,jj) + rn_hc/REAL(jpk-1,wp) ) |
---|
399 | e3v_0(ji,jj) = ( (hbatv(ji,jj)-rn_hc)*z_esigtv3(ji,jj) + rn_hc/REAL(jpk-1,wp) ) |
---|
400 | e3f_0(ji,jj) = ( (hbatf(ji,jj)-rn_hc)*z_esigtf3(ji,jj) + rn_hc/REAL(jpk-1,wp) ) |
---|
401 | ! |
---|
402 | e3w_0 (ji,jj) = ( (hbatt(ji,jj)-rn_hc)*z_esigw3 (ji,jj) + rn_hc/REAL(jpk-1,wp) ) |
---|
403 | e3uw_0(ji,jj) = ( (hbatu(ji,jj)-rn_hc)*z_esigwu3(ji,jj) + rn_hc/REAL(jpk-1,wp) ) |
---|
404 | e3vw_0(ji,jj) = ( (hbatv(ji,jj)-rn_hc)*z_esigwv3(ji,jj) + rn_hc/REAL(jpk-1,wp) ) |
---|
405 | END DO |
---|
406 | END DO |
---|
407 | |
---|
408 | z_gsigt3m1 = z_gsigt3 |
---|
409 | z_gsi3w3m1 = z_gsi3w3 |
---|
410 | |
---|
411 | where (e3t_0 (:,:).eq.0.0) e3t_0(:,:) = 1.0 |
---|
412 | where (e3u_0 (:,:).eq.0.0) e3u_0(:,:) = 1.0 |
---|
413 | where (e3v_0 (:,:).eq.0.0) e3v_0(:,:) = 1.0 |
---|
414 | where (e3f_0 (:,:).eq.0.0) e3f_0(:,:) = 1.0 |
---|
415 | where (e3w_0 (:,:).eq.0.0) e3w_0(:,:) = 1.0 |
---|
416 | where (e3uw_0 (:,:).eq.0.0) e3uw_0(:,:) = 1.0 |
---|
417 | where (e3vw_0 (:,:).eq.0.0) e3vw_0(:,:) = 1.0 |
---|
418 | |
---|
419 | CALL write_netcdf_3d_vars(jk) |
---|
420 | DO jj = 1, jpj |
---|
421 | DO ji = 1, jpi |
---|
422 | IF( scobot(ji,jj) >= gdept_0(ji,jj) ) mbathy(ji,jj) = MAX( 2, jk ) |
---|
423 | IF( scobot(ji,jj) == 0. ) mbathy(ji,jj) = 0 |
---|
424 | END DO |
---|
425 | END DO |
---|
426 | END DO !End of loop over jk |
---|
427 | |
---|
428 | DEALLOCATE( z_gsigw3, z_gsigt3, z_gsi3w3, z_gsigw3p1, z_gsigt3m1, z_gsi3w3m1) |
---|
429 | DEALLOCATE( z_esigt3, z_esigw3, z_esigtu3, z_esigtv3, z_esigtf3, z_esigwu3, z_esigwv3 ) |
---|
430 | |
---|
431 | END SUBROUTINE s_sh94 |
---|
432 | |
---|
433 | SUBROUTINE s_sf12 |
---|
434 | |
---|
435 | !!---------------------------------------------------------------------- |
---|
436 | !! *** ROUTINE s_sf12 *** |
---|
437 | !! |
---|
438 | !! ** Purpose : stretch the s-coordinate system |
---|
439 | !! |
---|
440 | !! ** Method : s-coordinate stretch using the Siddorn and Furner 2012? |
---|
441 | !! mixed S/sigma/Z coordinate |
---|
442 | !! |
---|
443 | !! This method allows the maintenance of fixed surface and or |
---|
444 | !! bottom cell resolutions (cf. geopotential coordinates) |
---|
445 | !! within an analytically derived stretched S-coordinate framework. |
---|
446 | !! |
---|
447 | !! |
---|
448 | !! Reference : Siddorn and Furner 2012 (submitted Ocean modelling). |
---|
449 | !!---------------------------------------------------------------------- |
---|
450 | ! |
---|
451 | USE utils |
---|
452 | REAL(wp) :: zsmth ! smoothing around critical depth |
---|
453 | REAL(wp) :: zzs, zzb ! Surface and bottom cell thickness in sigma space |
---|
454 | ! |
---|
455 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_gsigw3, z_gsigt3, z_gsi3w3 |
---|
456 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_gsigw3p1, z_gsigt3m1, z_gsi3w3m1 |
---|
457 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_esigt3, z_esigw3, z_esigtu3 |
---|
458 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_esigtv3, z_esigtf3, z_esigwu3, z_esigwv3 |
---|
459 | |
---|
460 | ALLOCATE( z_gsigw3(jpi,jpj), z_gsigt3(jpi,jpj), z_gsi3w3(jpi,jpj) ) |
---|
461 | ALLOCATE( z_esigt3(jpi,jpj), z_esigw3(jpi,jpj), z_esigtu3(jpi,jpj)) |
---|
462 | ALLOCATE( z_esigtv3(jpi,jpj), z_esigtf3(jpi,jpj), z_esigwu3(jpi,jpj)) |
---|
463 | ALLOCATE( z_esigwv3(jpi,jpj), z_gsigw3p1(jpi,jpj), z_gsigt3m1(jpi,jpj) ) |
---|
464 | ALLOCATE( z_gsi3w3m1(jpi,jpj) ) |
---|
465 | |
---|
466 | z_gsigw3 = 0. ; z_gsigt3 = 0. ; z_gsi3w3 = 0. |
---|
467 | z_esigt3 = 0. ; z_esigw3 = 0. |
---|
468 | z_esigtu3 = 0. ; z_esigtv3 = 0. ; z_esigtf3 = 0. |
---|
469 | z_esigwu3 = 0. ; z_esigwv3 = 0. |
---|
470 | |
---|
471 | |
---|
472 | DO jk = 1,jpk |
---|
473 | DO ji = 1, jpi |
---|
474 | DO jj = 1, jpj |
---|
475 | IF (hbatt(ji,jj)>rn_hc) THEN !deep water, stretched sigma |
---|
476 | |
---|
477 | zzb = hbatt(ji,jj)*rn_zb_a + rn_zb_b ! this forces a linear bottom cell depth relationship with H,. |
---|
478 | ! could be changed by users but care must be taken to do so carefully |
---|
479 | zzb = 1.0-(zzb/hbatt(ji,jj)) |
---|
480 | |
---|
481 | zzs = rn_zs / hbatt(ji,jj) |
---|
482 | |
---|
483 | IF (rn_efold /= 0.0) THEN |
---|
484 | zsmth = tanh( (hbatt(ji,jj)- rn_hc ) / rn_efold ) |
---|
485 | ELSE |
---|
486 | zsmth = 1.0 |
---|
487 | ENDIF |
---|
488 | |
---|
489 | z_gsigw3(ji,jj) = REAL(jk-1,wp) /REAL(jpk-1,wp) |
---|
490 | z_gsigw3p1(ji,jj) = REAL(jk,wp) /REAL(jpk-1,wp) |
---|
491 | z_gsigt3(ji,jj) = (REAL(jk-1,wp)+0.5)/REAL(jpk-1,wp) |
---|
492 | z_gsigw3(ji,jj) = fgamma( z_gsigw3(ji,jj), zzb, zzs, zsmth ) |
---|
493 | z_gsigw3p1(ji,jj) = fgamma( z_gsigw3p1(ji,jj), zzb, zzs, zsmth ) |
---|
494 | z_gsigt3(ji,jj) = fgamma( z_gsigt3(ji,jj), zzb, zzs, zsmth ) |
---|
495 | |
---|
496 | ELSE IF(ln_sigcrit) THEN ! shallow water, uniform sigma |
---|
497 | |
---|
498 | z_gsigw3(ji,jj) = REAL(jk-1,wp) /REAL(jpk-1,wp) |
---|
499 | z_gsigw3p1(ji,jj) = REAL(jk,wp) /REAL(jpk-1,wp) |
---|
500 | z_gsigt3(ji,jj) = (REAL(jk-1,wp)+0.5)/REAL(jpk-1,wp) |
---|
501 | |
---|
502 | ELSE ! shallow water, z coordinates |
---|
503 | |
---|
504 | z_gsigw3(ji,jj) = REAL(jk-1,wp) /REAL(jpk-1,wp)*(rn_hc/hbatt(ji,jj)) |
---|
505 | z_gsigw3p1(ji,jj) = REAL(jk,wp) /REAL(jpk-1,wp)*(rn_hc/hbatt(ji,jj)) |
---|
506 | z_gsigt3(ji,jj) = (REAL(jk-1,wp)+0.5)/REAL(jpk-1,wp)*(rn_hc/hbatt(ji,jj)) |
---|
507 | |
---|
508 | ENDIF |
---|
509 | |
---|
510 | !gsi3w3m1 & z_gsigt3m1 only used if jk /= 1 and is set at the end of the loop over jk |
---|
511 | IF( jk .EQ. 1) THEN |
---|
512 | z_esigw3(ji,jj ) = 2.0 * (z_gsigt3(ji,jj ) - z_gsigw3(ji,jj )) |
---|
513 | z_gsi3w3(ji,jj) = 0.5 * z_esigw3(ji,jj) |
---|
514 | ELSE |
---|
515 | z_esigw3(ji,jj) = z_gsigt3(ji,jj) - z_gsigt3m1(ji,jj) |
---|
516 | z_gsi3w3(ji,jj) = z_gsi3w3m1(ji,jj) + z_esigw3(ji,jj) |
---|
517 | ENDIF |
---|
518 | IF( jk .EQ. jpk) THEN |
---|
519 | z_esigt3(ji,jj) = 2.0 * (z_gsigt3(ji,jj) - z_gsigw3(ji,jj)) |
---|
520 | ELSE |
---|
521 | z_esigt3(ji,jj) = z_gsigw3p1(ji,jj) - z_gsigw3(ji,jj) |
---|
522 | ENDIF |
---|
523 | |
---|
524 | gdept_0(ji,jj) = (scosrf(ji,jj)+hbatt(ji,jj))*z_gsigt3(ji,jj) |
---|
525 | gdepw_0(ji,jj) = (scosrf(ji,jj)+hbatt(ji,jj))*z_gsigw3(ji,jj) |
---|
526 | gdep3w_0(ji,jj) = (scosrf(ji,jj)+hbatt(ji,jj))*z_gsi3w3(ji,jj) |
---|
527 | |
---|
528 | ENDDO ! for all jj's |
---|
529 | ENDDO ! for all ji's |
---|
530 | |
---|
531 | DO ji=1,jpi-1 |
---|
532 | DO jj=1,jpj-1 |
---|
533 | |
---|
534 | z_esigtu3(ji,jj) = ( hbatt(ji,jj)*z_esigt3(ji,jj)+hbatt(ji+1,jj)*z_esigt3(ji+1,jj) ) / & |
---|
535 | ( hbatt(ji,jj)+hbatt(ji+1,jj) ) |
---|
536 | z_esigtv3(ji,jj) = ( hbatt(ji,jj)*z_esigt3(ji,jj)+hbatt(ji,jj+1)*z_esigt3(ji,jj+1) ) / & |
---|
537 | ( hbatt(ji,jj)+hbatt(ji,jj+1) ) |
---|
538 | z_esigtf3(ji,jj) = ( hbatt(ji,jj)*z_esigt3(ji,jj)+hbatt(ji+1,jj)*z_esigt3(ji+1,jj) + & |
---|
539 | hbatt(ji,jj+1)*z_esigt3(ji,jj+1)+hbatt(ji+1,jj+1)*z_esigt3(ji+1,jj+1) ) / & |
---|
540 | ( hbatt(ji,jj)+hbatt(ji+1,jj)+hbatt(ji,jj+1)+hbatt(ji+1,jj+1) ) |
---|
541 | z_esigwu3(ji,jj) = ( hbatt(ji,jj)*z_esigw3(ji,jj)+hbatt(ji+1,jj)*z_esigw3(ji+1,jj) ) / & |
---|
542 | ( hbatt(ji,jj)+hbatt(ji+1,jj) ) |
---|
543 | z_esigwv3(ji,jj) = ( hbatt(ji,jj)*z_esigw3(ji,jj)+hbatt(ji,jj+1)*z_esigw3(ji,jj+1) ) / & |
---|
544 | ( hbatt(ji,jj)+hbatt(ji,jj+1) ) |
---|
545 | |
---|
546 | e3t_0(ji,jj)=(scosrf(ji,jj)+hbatt(ji,jj))*z_esigt3(ji,jj) |
---|
547 | e3u_0(ji,jj)=(scosrf(ji,jj)+hbatu(ji,jj))*z_esigtu3(ji,jj) |
---|
548 | e3v_0(ji,jj)=(scosrf(ji,jj)+hbatv(ji,jj))*z_esigtv3(ji,jj) |
---|
549 | e3f_0(ji,jj)=(scosrf(ji,jj)+hbatf(ji,jj))*z_esigtf3(ji,jj) |
---|
550 | ! |
---|
551 | e3w_0(ji,jj)=hbatt(ji,jj)*z_esigw3(ji,jj) |
---|
552 | e3uw_0(ji,jj)=hbatu(ji,jj)*z_esigwu3(ji,jj) |
---|
553 | e3vw_0(ji,jj)=hbatv(ji,jj)*z_esigwv3(ji,jj) |
---|
554 | ENDDO |
---|
555 | ENDDO |
---|
556 | ! Keep some arrays for next level |
---|
557 | z_gsigt3m1 = z_gsigt3 |
---|
558 | z_gsi3w3m1 = z_gsi3w3 |
---|
559 | |
---|
560 | where (e3t_0 (:,:).eq.0.0) e3t_0(:,:) = 1.0 |
---|
561 | where (e3u_0 (:,:).eq.0.0) e3u_0(:,:) = 1.0 |
---|
562 | where (e3v_0 (:,:).eq.0.0) e3v_0(:,:) = 1.0 |
---|
563 | where (e3f_0 (:,:).eq.0.0) e3f_0(:,:) = 1.0 |
---|
564 | where (e3w_0 (:,:).eq.0.0) e3w_0(:,:) = 1.0 |
---|
565 | where (e3uw_0 (:,:).eq.0.0) e3uw_0(:,:) = 1.0 |
---|
566 | where (e3vw_0 (:,:).eq.0.0) e3vw_0(:,:) = 1.0 |
---|
567 | |
---|
568 | CALL write_netcdf_3d_vars(jk) |
---|
569 | |
---|
570 | DO jj = 1, jpj |
---|
571 | DO ji = 1, jpi |
---|
572 | IF( scobot(ji,jj) >= gdept_0(ji,jj) ) mbathy(ji,jj) = MAX( 2, jk ) |
---|
573 | IF( scobot(ji,jj) == 0. ) mbathy(ji,jj) = 0 |
---|
574 | END DO |
---|
575 | END DO |
---|
576 | |
---|
577 | ENDDO ! End of loop over jk |
---|
578 | |
---|
579 | DEALLOCATE( z_gsigw3, z_gsigt3, z_gsi3w3, z_gsigw3p1, z_gsigt3m1, z_gsi3w3m1) |
---|
580 | DEALLOCATE( z_esigt3, z_esigw3, z_esigtu3, z_esigtv3, z_esigtf3, z_esigwu3, z_esigwv3 ) |
---|
581 | |
---|
582 | END SUBROUTINE s_sf12 |
---|
583 | |
---|
584 | SUBROUTINE s_tanh() |
---|
585 | |
---|
586 | !!---------------------------------------------------------------------- |
---|
587 | !! *** ROUTINE s_tanh*** |
---|
588 | !! |
---|
589 | !! ** Purpose : stretch the s-coordinate system |
---|
590 | !! |
---|
591 | !! ** Method : s-coordinate stretch |
---|
592 | !! |
---|
593 | !! Reference : Madec, Lott, Delecluse and Crepon, 1996. JPO, 26, 1393-1408. |
---|
594 | !!---------------------------------------------------------------------- |
---|
595 | |
---|
596 | USE utils |
---|
597 | REAL(wp) :: zcoeft, zcoefw ! temporary scalars |
---|
598 | |
---|
599 | REAL(wp), ALLOCATABLE, DIMENSION(:) :: z_gsigw, z_gsigt, z_gsi3w |
---|
600 | REAL(wp), ALLOCATABLE, DIMENSION(:) :: z_esigt, z_esigw |
---|
601 | |
---|
602 | ALLOCATE( z_gsigw(jpk), z_gsigt(jpk), z_gsi3w(jpk) ) |
---|
603 | ALLOCATE( z_esigt(jpk), z_esigw(jpk) ) |
---|
604 | |
---|
605 | z_gsigw = 0. ; z_gsigt = 0. ; z_gsi3w = 0. |
---|
606 | z_esigt = 0. ; z_esigw = 0. |
---|
607 | |
---|
608 | DO jk = 1, jpk |
---|
609 | z_gsigw(jk) = -fssig( REAL(jk,wp)-0.5 ) |
---|
610 | z_gsigt(jk) = -fssig( REAL(jk,wp) ) |
---|
611 | END DO |
---|
612 | WRITE(*,*) 'z_gsigw 1 jpk ', z_gsigw(1), z_gsigw(jpk) |
---|
613 | ! |
---|
614 | ! Coefficients for vertical scale factors at w-, t- levels |
---|
615 | !!gm bug : define it from analytical function, not like juste bellow.... |
---|
616 | !!gm or betteroffer the 2 possibilities.... |
---|
617 | DO jk = 1, jpk-1 |
---|
618 | z_esigt(jk ) = z_gsigw(jk+1) - z_gsigw(jk) |
---|
619 | z_esigw(jk+1) = z_gsigt(jk+1) - z_gsigt(jk) |
---|
620 | END DO |
---|
621 | z_esigw( 1 ) = 2. * ( z_gsigt(1 ) - z_gsigw(1 ) ) |
---|
622 | z_esigt(jpk) = 2. * ( z_gsigt(jpk) - z_gsigw(jpk) ) |
---|
623 | ! |
---|
624 | ! Coefficients for vertical depth as the sum of e3w scale factors |
---|
625 | z_gsi3w(1) = 0.5 * z_esigw(1) |
---|
626 | DO jk = 2, jpk |
---|
627 | z_gsi3w(jk) = z_gsi3w(jk-1) + z_esigw(jk) |
---|
628 | END DO |
---|
629 | !!gm: e3uw, e3vw can be suppressed (modif in dynzdf, dynzdf_iso, zdfbfr) (save 2 3D arrays) |
---|
630 | DO jk = 1, jpk |
---|
631 | DO jj = 1, jpj |
---|
632 | DO ji = 1, jpi |
---|
633 | zcoeft = ( REAL(jk,wp) - 0.5 ) / REAL(jpk-1,wp) |
---|
634 | zcoefw = ( REAL(jk,wp) - 1.0 ) / REAL(jpk-1,wp) |
---|
635 | gdept_0(ji,jj) = ( scosrf(ji,jj) + (hbatt(ji,jj)-hift(ji,jj))*z_gsigt(jk) + hift(ji,jj)*zcoeft ) |
---|
636 | gdepw_0(:,:) = ( scosrf(ji,jj) + (hbatt(ji,jj)-hift(ji,jj))*z_gsigw(jk) + hift(ji,jj)*zcoefw ) |
---|
637 | gdep3w_0(:,:) = ( scosrf(ji,jj) + (hbatt(ji,jj)-hift(ji,jj))*z_gsi3w(jk) + hift(ji,jj)*zcoeft ) |
---|
638 | e3t_0(ji,jj) = ( (hbatt(ji,jj)-hift(ji,jj))*z_esigt(jk) + hift(ji,jj)/REAL(jpk-1,wp) ) |
---|
639 | e3u_0(ji,jj) = ( (hbatu(ji,jj)-hifu(ji,jj))*z_esigt(jk) + hifu(ji,jj)/REAL(jpk-1,wp) ) |
---|
640 | e3v_0(ji,jj) = ( (hbatv(ji,jj)-hifv(ji,jj))*z_esigt(jk) + hifv(ji,jj)/REAL(jpk-1,wp) ) |
---|
641 | e3f_0(ji,jj) = ( (hbatf(ji,jj)-hiff(ji,jj))*z_esigt(jk) + hiff(ji,jj)/REAL(jpk-1,wp) ) |
---|
642 | ! |
---|
643 | e3w_0(ji,jj) = ( (hbatt(ji,jj)-hift(ji,jj))*z_esigw(jk) + hift(ji,jj)/REAL(jpk-1,wp) ) |
---|
644 | e3uw_0(ji,jj) = ( (hbatu(ji,jj)-hifu(ji,jj))*z_esigw(jk) + hifu(ji,jj)/REAL(jpk-1,wp) ) |
---|
645 | e3vw_0(ji,jj) = ( (hbatv(ji,jj)-hifv(ji,jj))*z_esigw(jk) + hifv(ji,jj)/REAL(jpk-1,wp) ) |
---|
646 | IF( scobot(ji,jj) >= gdept_0(ji,jj) ) mbathy(ji,jj) = MAX( 2, jk ) |
---|
647 | IF( scobot(ji,jj) == 0. ) mbathy(ji,jj) = 0 |
---|
648 | END DO |
---|
649 | END DO |
---|
650 | where (e3t_0 (:,:).eq.0.0) e3t_0(:,:) = 1.0 |
---|
651 | where (e3u_0 (:,:).eq.0.0) e3u_0(:,:) = 1.0 |
---|
652 | where (e3v_0 (:,:).eq.0.0) e3v_0(:,:) = 1.0 |
---|
653 | where (e3f_0 (:,:).eq.0.0) e3f_0(:,:) = 1.0 |
---|
654 | where (e3w_0 (:,:).eq.0.0) e3w_0(:,:) = 1.0 |
---|
655 | where (e3uw_0 (:,:).eq.0.0) e3uw_0(:,:) = 1.0 |
---|
656 | where (e3vw_0 (:,:).eq.0.0) e3vw_0(:,:) = 1.0 |
---|
657 | |
---|
658 | CALL write_netcdf_3d_vars(jk) |
---|
659 | ENDDO ! End of loop over jk |
---|
660 | |
---|
661 | |
---|
662 | DEALLOCATE( z_gsigw, z_gsigt, z_gsi3w ) |
---|
663 | DEALLOCATE( z_esigt, z_esigw ) |
---|
664 | |
---|
665 | END SUBROUTINE s_tanh |
---|
666 | |
---|
667 | FUNCTION fssig( pk ) RESULT( pf ) |
---|
668 | !!---------------------------------------------------------------------- |
---|
669 | !! *** ROUTINE fssig *** |
---|
670 | !! |
---|
671 | !! ** Purpose : provide the analytical function in s-coordinate |
---|
672 | !! |
---|
673 | !! ** Method : the function provide the non-dimensional position of |
---|
674 | !! T and W (i.e. between 0 and 1) |
---|
675 | !! T-points at integer values (between 1 and jpk) |
---|
676 | !! W-points at integer values - 1/2 (between 0.5 and jpk-0.5) |
---|
677 | !!---------------------------------------------------------------------- |
---|
678 | USE utils, ONLY : wp,rn_theta,rn_thetb,jpk |
---|
679 | IMPLICIT NONE |
---|
680 | REAL(wp), INTENT(in) :: pk ! continuous "k" coordinate |
---|
681 | REAL(wp) :: pf ! sigma value |
---|
682 | !!---------------------------------------------------------------------- |
---|
683 | ! |
---|
684 | pf = ( TANH( rn_theta * ( -(pk-0.5) / REAL(jpk-1) + rn_thetb ) ) & |
---|
685 | & - TANH( rn_thetb * rn_theta ) ) & |
---|
686 | & * ( COSH( rn_theta ) & |
---|
687 | & + COSH( rn_theta * ( 2. * rn_thetb - 1. ) ) ) & |
---|
688 | & / ( 2. * SINH( rn_theta ) ) |
---|
689 | ! |
---|
690 | END FUNCTION fssig |
---|
691 | |
---|
692 | |
---|
693 | FUNCTION fssig1( pk1, pbb ) RESULT( pf1 ) |
---|
694 | !!---------------------------------------------------------------------- |
---|
695 | !! *** ROUTINE fssig1 *** |
---|
696 | !! |
---|
697 | !! ** Purpose : provide the Song and Haidvogel version of the analytical function in s-coordinate |
---|
698 | !! |
---|
699 | !! ** Method : the function provides the non-dimensional position of |
---|
700 | !! T and W (i.e. between 0 and 1) |
---|
701 | !! T-points at integer values (between 1 and jpk) |
---|
702 | !! W-points at integer values - 1/2 (between 0.5 and jpk-0.5) |
---|
703 | !!---------------------------------------------------------------------- |
---|
704 | USE utils, ONLY : wp, jpk, rn_theta |
---|
705 | IMPLICIT NONE |
---|
706 | REAL(wp), INTENT(in) :: pk1 ! continuous "k" coordinate |
---|
707 | REAL(wp), INTENT(in) :: pbb ! Stretching coefficient |
---|
708 | REAL(wp) :: pf1 ! sigma value |
---|
709 | !!---------------------------------------------------------------------- |
---|
710 | ! |
---|
711 | IF ( rn_theta == 0 ) then ! uniform sigma |
---|
712 | pf1 = - ( pk1 - 0.5 ) / REAL( jpk-1 ) |
---|
713 | ELSE ! stretched sigma |
---|
714 | pf1 = ( 1. - pbb ) * ( SINH( rn_theta*(-(pk1-0.5)/REAL(jpk-1)) ) ) / SINH( rn_theta ) & |
---|
715 | & + pbb * ( (TANH( rn_theta*( (-(pk1-0.5)/REAL(jpk-1)) + 0.5) ) - TANH( 0.5 * rn_theta ) ) & |
---|
716 | & / ( 2. * TANH( 0.5 * rn_theta ) ) ) |
---|
717 | ENDIF |
---|
718 | ! |
---|
719 | END FUNCTION fssig1 |
---|
720 | |
---|
721 | |
---|
722 | FUNCTION fgamma( pk1, pzb, pzs, psmth) RESULT( p_gamma ) |
---|
723 | !!---------------------------------------------------------------------- |
---|
724 | !! *** ROUTINE fgamma *** |
---|
725 | !! |
---|
726 | !! ** Purpose : provide analytical function for the s-coordinate |
---|
727 | !! |
---|
728 | !! ** Method : the function provides the non-dimensional position of |
---|
729 | !! T and W (i.e. between 0 and 1) |
---|
730 | !! T-points at integer values (between 1 and jpk) |
---|
731 | !! W-points at integer values - 1/2 (between 0.5 and jpk-0.5) |
---|
732 | !! |
---|
733 | !! This method allows the maintenance of fixed surface and or |
---|
734 | !! bottom cell resolutions (cf. geopotential coordinates) |
---|
735 | !! within an analytically derived stretched S-coordinate framework. |
---|
736 | !! |
---|
737 | !! Reference : Siddorn and Furner, in prep |
---|
738 | !!---------------------------------------------------------------------- |
---|
739 | USE utils, ONLY : jpk,wp,rn_alpha |
---|
740 | IMPLICIT NONE |
---|
741 | REAL(wp), INTENT(in ) :: pk1 ! continuous "k" coordinate |
---|
742 | REAL(wp) :: p_gamma ! stretched coordinate |
---|
743 | REAL(wp), INTENT(in ) :: pzb ! Bottom box depth |
---|
744 | REAL(wp), INTENT(in ) :: pzs ! surface box depth |
---|
745 | REAL(wp), INTENT(in ) :: psmth ! Smoothing parameter |
---|
746 | REAL(wp) :: za1,za2,za3 ! local variables |
---|
747 | REAL(wp) :: zn1,zn2 ! local variables |
---|
748 | REAL(wp) :: za,zb,zx ! local variables |
---|
749 | !!---------------------------------------------------------------------- |
---|
750 | ! |
---|
751 | |
---|
752 | zn1 = 1./(jpk-1.) |
---|
753 | zn2 = 1. - zn1 |
---|
754 | |
---|
755 | za1 = (rn_alpha+2.0)*zn1**(rn_alpha+1.0)-(rn_alpha+1.0)*zn1**(rn_alpha+2.0) |
---|
756 | za2 = (rn_alpha+2.0)*zn2**(rn_alpha+1.0)-(rn_alpha+1.0)*zn2**(rn_alpha+2.0) |
---|
757 | za3 = (zn2**3.0 - za2)/( zn1**3.0 - za1) |
---|
758 | |
---|
759 | za = pzb - za3*(pzs-za1)-za2 |
---|
760 | za = za/( zn2-0.5*(za2+zn2**2.0) - za3*(zn1-0.5*(za1+zn1**2.0) ) ) |
---|
761 | zb = (pzs - za1 - za*( zn1-0.5*(za1+zn1**2.0 ) ) ) / (zn1**3.0 - za1) |
---|
762 | zx = 1.0-za/2.0-zb |
---|
763 | |
---|
764 | p_gamma = za*(pk1*(1.0-pk1/2.0))+zb*pk1**3.0 + & |
---|
765 | & zx*( (rn_alpha+2.0)*pk1**(rn_alpha+1.0)- & |
---|
766 | & (rn_alpha+1.0)*pk1**(rn_alpha+2.0) ) |
---|
767 | p_gamma = p_gamma*psmth+pk1*(1.0-psmth) |
---|
768 | |
---|
769 | ! |
---|
770 | END FUNCTION fgamma |
---|
771 | |
---|