1 | MODULE dynvor |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE dynvor *** |
---|
4 | !! Ocean dynamics: Update the momentum trend with the relative and |
---|
5 | !! planetary vorticity trends |
---|
6 | !!====================================================================== |
---|
7 | !! History : OPA ! 1989-12 (P. Andrich) vor_ens: Original code |
---|
8 | !! 5.0 ! 1991-11 (G. Madec) vor_ene, vor_mix: Original code |
---|
9 | !! 6.0 ! 1996-01 (G. Madec) s-coord, suppress work arrays |
---|
10 | !! NEMO 0.5 ! 2002-08 (G. Madec) F90: Free form and module |
---|
11 | !! 1.0 ! 2004-02 (G. Madec) vor_een: Original code |
---|
12 | !! - ! 2003-08 (G. Madec) add vor_ctl |
---|
13 | !! - ! 2005-11 (G. Madec) add dyn_vor (new step architecture) |
---|
14 | !! 2.0 ! 2006-11 (G. Madec) flux form advection: add metric term |
---|
15 | !! 3.2 ! 2009-04 (R. Benshila) vvl: correction of een scheme |
---|
16 | !! 3.3 ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase |
---|
17 | !! 3.7 ! 2014-04 (G. Madec) trend simplification: suppress jpdyn_trd_dat vorticity |
---|
18 | !! - ! 2014-06 (G. Madec) suppression of velocity curl from in-core memory |
---|
19 | !!---------------------------------------------------------------------- |
---|
20 | |
---|
21 | !!---------------------------------------------------------------------- |
---|
22 | !! dyn_vor : Update the momentum trend with the vorticity trend |
---|
23 | !! vor_ens : enstrophy conserving scheme (ln_dynvor_ens=T) |
---|
24 | !! vor_ene : energy conserving scheme (ln_dynvor_ene=T) |
---|
25 | !! vor_een : energy and enstrophy conserving (ln_dynvor_een=T) |
---|
26 | !! dyn_vor_init : set and control of the different vorticity option |
---|
27 | !!---------------------------------------------------------------------- |
---|
28 | USE oce ! ocean dynamics and tracers |
---|
29 | USE dom_oce ! ocean space and time domain |
---|
30 | USE dommsk ! ocean mask |
---|
31 | USE dynadv ! momentum advection (use ln_dynadv_vec value) |
---|
32 | USE trd_oce ! trends: ocean variables |
---|
33 | USE trddyn ! trend manager: dynamics |
---|
34 | ! |
---|
35 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
36 | USE prtctl ! Print control |
---|
37 | USE in_out_manager ! I/O manager |
---|
38 | USE lib_mpp ! MPP library |
---|
39 | USE wrk_nemo ! Memory Allocation |
---|
40 | USE timing ! Timing |
---|
41 | |
---|
42 | |
---|
43 | IMPLICIT NONE |
---|
44 | PRIVATE |
---|
45 | |
---|
46 | PUBLIC dyn_vor ! routine called by step.F90 |
---|
47 | PUBLIC dyn_vor_init ! routine called by nemogcm.F90 |
---|
48 | |
---|
49 | ! !!* Namelist namdyn_vor: vorticity term |
---|
50 | LOGICAL, PUBLIC :: ln_dynvor_ene !: energy conserving scheme (ENE) |
---|
51 | LOGICAL, PUBLIC :: ln_dynvor_ens !: enstrophy conserving scheme (ENS) |
---|
52 | LOGICAL, PUBLIC :: ln_dynvor_mix !: mixed scheme (MIX) |
---|
53 | LOGICAL, PUBLIC :: ln_dynvor_een !: energy and enstrophy conserving scheme (EEN) |
---|
54 | INTEGER, PUBLIC :: nn_een_e3f !: e3f=masked averaging of e3t divided by 4 (=0) or by the sum of mask (=1) |
---|
55 | LOGICAL, PUBLIC :: ln_dynvor_msk !: vorticity multiplied by fmask (=T) or not (=F) (all vorticity schemes) |
---|
56 | |
---|
57 | INTEGER :: nvor_scheme ! choice of the type of advection scheme |
---|
58 | ! ! associated indices: |
---|
59 | INTEGER, PUBLIC, PARAMETER :: np_ENE = 1 ! ENE scheme |
---|
60 | INTEGER, PUBLIC, PARAMETER :: np_ENS = 2 ! ENS scheme |
---|
61 | INTEGER, PUBLIC, PARAMETER :: np_MIX = 3 ! MIX scheme |
---|
62 | INTEGER, PUBLIC, PARAMETER :: np_EEN = 4 ! EEN scheme |
---|
63 | |
---|
64 | INTEGER :: ncor, nrvm, ntot ! choice of calculated vorticity |
---|
65 | ! ! associated indices: |
---|
66 | INTEGER, PARAMETER :: np_COR = 1 ! Coriolis (planetary) |
---|
67 | INTEGER, PARAMETER :: np_RVO = 2 ! relative vorticity |
---|
68 | INTEGER, PARAMETER :: np_MET = 3 ! metric term |
---|
69 | INTEGER, PARAMETER :: np_CRV = 4 ! relative + planetary (total vorticity) |
---|
70 | INTEGER, PARAMETER :: np_CME = 5 ! Coriolis + metric term |
---|
71 | |
---|
72 | REAL(wp) :: r1_4 = 0.250_wp ! =1/4 |
---|
73 | REAL(wp) :: r1_8 = 0.125_wp ! =1/8 |
---|
74 | REAL(wp) :: r1_12 = 1._wp / 12._wp ! 1/12 |
---|
75 | |
---|
76 | !! * Substitutions |
---|
77 | # include "domzgr_substitute.h90" |
---|
78 | # include "vectopt_loop_substitute.h90" |
---|
79 | !!---------------------------------------------------------------------- |
---|
80 | !! NEMO/OPA 3.7 , NEMO Consortium (2014) |
---|
81 | !! $Id$ |
---|
82 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
83 | !!---------------------------------------------------------------------- |
---|
84 | CONTAINS |
---|
85 | |
---|
86 | SUBROUTINE dyn_vor( kt ) |
---|
87 | !!---------------------------------------------------------------------- |
---|
88 | !! |
---|
89 | !! ** Purpose : compute the lateral ocean tracer physics. |
---|
90 | !! |
---|
91 | !! ** Action : - Update (ua,va) with the now vorticity term trend |
---|
92 | !! - save the trends in (ztrdu,ztrdv) in 2 parts (relative |
---|
93 | !! and planetary vorticity trends) and send them to trd_dyn |
---|
94 | !! for futher diagnostics (l_trddyn=T) |
---|
95 | !!---------------------------------------------------------------------- |
---|
96 | INTEGER, INTENT( in ) :: kt ! ocean time-step index |
---|
97 | ! |
---|
98 | REAL(wp), POINTER, DIMENSION(:,:,:) :: ztrdu, ztrdv |
---|
99 | !!---------------------------------------------------------------------- |
---|
100 | ! |
---|
101 | IF( nn_timing == 1 ) CALL timing_start('dyn_vor') |
---|
102 | ! |
---|
103 | IF( l_trddyn ) CALL wrk_alloc( jpi,jpj,jpk, ztrdu, ztrdv ) |
---|
104 | ! |
---|
105 | SELECT CASE ( nvor_scheme ) !== vorticity trend added to the general trend ==! |
---|
106 | ! |
---|
107 | CASE ( np_ENE ) !* energy conserving scheme |
---|
108 | IF( l_trddyn ) THEN ! trend diagnostics: split the trend in two |
---|
109 | ztrdu(:,:,:) = ua(:,:,:) |
---|
110 | ztrdv(:,:,:) = va(:,:,:) |
---|
111 | CALL vor_ene( kt, nrvm, ua, va ) ! relative vorticity or metric trend |
---|
112 | ztrdu(:,:,:) = ua(:,:,:) - ztrdu(:,:,:) |
---|
113 | ztrdv(:,:,:) = va(:,:,:) - ztrdv(:,:,:) |
---|
114 | CALL trd_dyn( ztrdu, ztrdv, jpdyn_rvo, kt ) |
---|
115 | ztrdu(:,:,:) = ua(:,:,:) |
---|
116 | ztrdv(:,:,:) = va(:,:,:) |
---|
117 | CALL vor_ene( kt, ncor, ua, va ) ! planetary vorticity trend |
---|
118 | ztrdu(:,:,:) = ua(:,:,:) - ztrdu(:,:,:) |
---|
119 | ztrdv(:,:,:) = va(:,:,:) - ztrdv(:,:,:) |
---|
120 | CALL trd_dyn( ztrdu, ztrdv, jpdyn_pvo, kt ) |
---|
121 | ELSE |
---|
122 | CALL vor_ene( kt, ntot, ua, va ) ! total vorticity trend |
---|
123 | ENDIF |
---|
124 | ! |
---|
125 | CASE ( np_ENS ) !* enstrophy conserving scheme |
---|
126 | IF( l_trddyn ) THEN ! trend diagnostics: splitthe trend in two |
---|
127 | ztrdu(:,:,:) = ua(:,:,:) |
---|
128 | ztrdv(:,:,:) = va(:,:,:) |
---|
129 | CALL vor_ens( kt, nrvm, ua, va ) ! relative vorticity or metric trend |
---|
130 | ztrdu(:,:,:) = ua(:,:,:) - ztrdu(:,:,:) |
---|
131 | ztrdv(:,:,:) = va(:,:,:) - ztrdv(:,:,:) |
---|
132 | CALL trd_dyn( ztrdu, ztrdv, jpdyn_rvo, kt ) |
---|
133 | ztrdu(:,:,:) = ua(:,:,:) |
---|
134 | ztrdv(:,:,:) = va(:,:,:) |
---|
135 | CALL vor_ens( kt, ncor, ua, va ) ! planetary vorticity trend |
---|
136 | ztrdu(:,:,:) = ua(:,:,:) - ztrdu(:,:,:) |
---|
137 | ztrdv(:,:,:) = va(:,:,:) - ztrdv(:,:,:) |
---|
138 | CALL trd_dyn( ztrdu, ztrdv, jpdyn_pvo, kt ) |
---|
139 | ELSE |
---|
140 | CALL vor_ens( kt, ntot, ua, va ) ! total vorticity trend |
---|
141 | ENDIF |
---|
142 | ! |
---|
143 | CASE ( np_MIX ) !* mixed ene-ens scheme |
---|
144 | IF( l_trddyn ) THEN ! trend diagnostics: split the trend in two |
---|
145 | ztrdu(:,:,:) = ua(:,:,:) |
---|
146 | ztrdv(:,:,:) = va(:,:,:) |
---|
147 | CALL vor_ens( kt, nrvm, ua, va ) ! relative vorticity or metric trend (ens) |
---|
148 | ztrdu(:,:,:) = ua(:,:,:) - ztrdu(:,:,:) |
---|
149 | ztrdv(:,:,:) = va(:,:,:) - ztrdv(:,:,:) |
---|
150 | CALL trd_dyn( ztrdu, ztrdv, jpdyn_rvo, kt ) |
---|
151 | ztrdu(:,:,:) = ua(:,:,:) |
---|
152 | ztrdv(:,:,:) = va(:,:,:) |
---|
153 | CALL vor_ene( kt, ncor, ua, va ) ! planetary vorticity trend (ene) |
---|
154 | ztrdu(:,:,:) = ua(:,:,:) - ztrdu(:,:,:) |
---|
155 | ztrdv(:,:,:) = va(:,:,:) - ztrdv(:,:,:) |
---|
156 | CALL trd_dyn( ztrdu, ztrdv, jpdyn_pvo, kt ) |
---|
157 | ELSE |
---|
158 | CALL vor_ens( kt, nrvm, ua, va ) ! relative vorticity or metric trend (ens) |
---|
159 | CALL vor_ene( kt, ncor, ua, va ) ! planetary vorticity trend (ene) |
---|
160 | ENDIF |
---|
161 | ! |
---|
162 | CASE ( np_EEN ) !* energy and enstrophy conserving scheme |
---|
163 | IF( l_trddyn ) THEN ! trend diagnostics: split the trend in two |
---|
164 | ztrdu(:,:,:) = ua(:,:,:) |
---|
165 | ztrdv(:,:,:) = va(:,:,:) |
---|
166 | CALL vor_een( kt, nrvm, ua, va ) ! relative vorticity or metric trend |
---|
167 | ztrdu(:,:,:) = ua(:,:,:) - ztrdu(:,:,:) |
---|
168 | ztrdv(:,:,:) = va(:,:,:) - ztrdv(:,:,:) |
---|
169 | CALL trd_dyn( ztrdu, ztrdv, jpdyn_rvo, kt ) |
---|
170 | ztrdu(:,:,:) = ua(:,:,:) |
---|
171 | ztrdv(:,:,:) = va(:,:,:) |
---|
172 | CALL vor_een( kt, ncor, ua, va ) ! planetary vorticity trend |
---|
173 | ztrdu(:,:,:) = ua(:,:,:) - ztrdu(:,:,:) |
---|
174 | ztrdv(:,:,:) = va(:,:,:) - ztrdv(:,:,:) |
---|
175 | CALL trd_dyn( ztrdu, ztrdv, jpdyn_pvo, kt ) |
---|
176 | ELSE |
---|
177 | CALL vor_een( kt, ntot, ua, va ) ! total vorticity trend |
---|
178 | ENDIF |
---|
179 | ! |
---|
180 | END SELECT |
---|
181 | ! |
---|
182 | ! ! print sum trends (used for debugging) |
---|
183 | IF(ln_ctl) CALL prt_ctl( tab3d_1=ua, clinfo1=' vor - Ua: ', mask1=umask, & |
---|
184 | & tab3d_2=va, clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' ) |
---|
185 | ! |
---|
186 | IF( l_trddyn ) CALL wrk_dealloc( jpi,jpj,jpk, ztrdu, ztrdv ) |
---|
187 | ! |
---|
188 | IF( nn_timing == 1 ) CALL timing_stop('dyn_vor') |
---|
189 | ! |
---|
190 | END SUBROUTINE dyn_vor |
---|
191 | |
---|
192 | |
---|
193 | SUBROUTINE vor_ene( kt, kvor, pua, pva ) |
---|
194 | !!---------------------------------------------------------------------- |
---|
195 | !! *** ROUTINE vor_ene *** |
---|
196 | !! |
---|
197 | !! ** Purpose : Compute the now total vorticity trend and add it to |
---|
198 | !! the general trend of the momentum equation. |
---|
199 | !! |
---|
200 | !! ** Method : Trend evaluated using now fields (centered in time) |
---|
201 | !! and the Sadourny (1975) flux form formulation : conserves the |
---|
202 | !! horizontal kinetic energy. |
---|
203 | !! The general trend of momentum is increased due to the vorticity |
---|
204 | !! term which is given by: |
---|
205 | !! voru = 1/e1u mj-1[ (rvor+f)/e3f mi(e1v*e3v vn) ] |
---|
206 | !! vorv = 1/e2v mi-1[ (rvor+f)/e3f mj(e2u*e3u un) ] |
---|
207 | !! where rvor is the relative vorticity |
---|
208 | !! |
---|
209 | !! ** Action : - Update (ua,va) with the now vorticity term trend |
---|
210 | !! |
---|
211 | !! References : Sadourny, r., 1975, j. atmos. sciences, 32, 680-689. |
---|
212 | !!---------------------------------------------------------------------- |
---|
213 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
214 | INTEGER , INTENT(in ) :: kvor ! =ncor (planetary) ; =ntot (total) ; |
---|
215 | ! ! =nrvm (relative vorticity or metric) |
---|
216 | REAL(wp), INTENT(inout), DIMENSION(jpi,jpj,jpk) :: pua ! total u-trend |
---|
217 | REAL(wp), INTENT(inout), DIMENSION(jpi,jpj,jpk) :: pva ! total v-trend |
---|
218 | ! |
---|
219 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
220 | REAL(wp) :: zx1, zy1, zx2, zy2 ! local scalars |
---|
221 | REAL(wp), POINTER, DIMENSION(:,:) :: zwx, zwy, zwz ! 2D workspace |
---|
222 | !!---------------------------------------------------------------------- |
---|
223 | ! |
---|
224 | IF( nn_timing == 1 ) CALL timing_start('vor_ene') |
---|
225 | ! |
---|
226 | CALL wrk_alloc( jpi, jpj, zwx, zwy, zwz ) |
---|
227 | ! |
---|
228 | IF( kt == nit000 ) THEN |
---|
229 | IF(lwp) WRITE(numout,*) |
---|
230 | IF(lwp) WRITE(numout,*) 'dyn:vor_ene : vorticity term: energy conserving scheme' |
---|
231 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' |
---|
232 | ENDIF |
---|
233 | ! |
---|
234 | ! ! =============== |
---|
235 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
236 | ! ! =============== |
---|
237 | ! |
---|
238 | SELECT CASE( kvor ) !== vorticity considered ==! |
---|
239 | CASE ( np_COR ) !* Coriolis (planetary vorticity) |
---|
240 | zwz(:,:) = ff(:,:) |
---|
241 | CASE ( np_RVO ) !* relative vorticity |
---|
242 | DO jj = 1, jpjm1 |
---|
243 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
244 | zwz(ji,jj) = ( e2v(ji+1,jj ) * vn(ji+1,jj ,jk) - e2v(ji,jj) * vn(ji,jj,jk) & |
---|
245 | & - e1u(ji ,jj+1) * un(ji ,jj+1,jk) + e1u(ji,jj) * un(ji,jj,jk) ) * r1_e1e2f(ji,jj) |
---|
246 | END DO |
---|
247 | END DO |
---|
248 | CASE ( np_MET ) !* metric term |
---|
249 | DO jj = 1, jpjm1 |
---|
250 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
251 | zwz(ji,jj) = ( ( vn(ji+1,jj ,jk) + vn (ji,jj,jk) ) * ( e2v(ji+1,jj ) - e2v(ji,jj) ) & |
---|
252 | & - ( un(ji ,jj+1,jk) + un (ji,jj,jk) ) * ( e1u(ji ,jj+1) - e1u(ji,jj) ) ) & |
---|
253 | & * 0.5 * r1_e1e2f(ji,jj) |
---|
254 | END DO |
---|
255 | END DO |
---|
256 | CASE ( np_CRV ) !* Coriolis + relative vorticity |
---|
257 | DO jj = 1, jpjm1 |
---|
258 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
259 | zwz(ji,jj) = ff(ji,jj) + ( e2v(ji+1,jj ) * vn(ji+1,jj ,jk) - e2v(ji,jj) * vn(ji,jj,jk) & |
---|
260 | & - e1u(ji ,jj+1) * un(ji ,jj+1,jk) + e1u(ji,jj) * un(ji,jj,jk) ) & |
---|
261 | & * r1_e1e2f(ji,jj) |
---|
262 | END DO |
---|
263 | END DO |
---|
264 | CASE ( np_CME ) !* Coriolis + metric |
---|
265 | DO jj = 1, jpjm1 |
---|
266 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
267 | zwz(ji,jj) = ff(ji,jj) & |
---|
268 | & + ( ( vn(ji+1,jj ,jk) + vn (ji,jj,jk) ) * ( e2v(ji+1,jj ) - e2v(ji,jj) ) & |
---|
269 | & - ( un(ji ,jj+1,jk) + un (ji,jj,jk) ) * ( e1u(ji ,jj+1) - e1u(ji,jj) ) ) & |
---|
270 | & * 0.5 * r1_e1e2f(ji,jj) |
---|
271 | END DO |
---|
272 | END DO |
---|
273 | CASE DEFAULT ! error |
---|
274 | CALL ctl_stop('STOP','dyn_vor: wrong value for kvor' ) |
---|
275 | END SELECT |
---|
276 | ! |
---|
277 | IF( ln_dynvor_msk ) THEN !== mask/unmask vorticity ==! |
---|
278 | DO jj = 1, jpjm1 |
---|
279 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
280 | zwz(ji,jj) = zwz(ji,jj) * fmask(ji,jj,jk) |
---|
281 | END DO |
---|
282 | END DO |
---|
283 | ENDIF |
---|
284 | |
---|
285 | IF( ln_sco ) THEN |
---|
286 | zwz(:,:) = zwz(:,:) / fse3f(:,:,jk) |
---|
287 | zwx(:,:) = e2u(:,:) * fse3u(:,:,jk) * un(:,:,jk) |
---|
288 | zwy(:,:) = e1v(:,:) * fse3v(:,:,jk) * vn(:,:,jk) |
---|
289 | ELSE |
---|
290 | zwx(:,:) = e2u(:,:) * un(:,:,jk) |
---|
291 | zwy(:,:) = e1v(:,:) * vn(:,:,jk) |
---|
292 | ENDIF |
---|
293 | ! !== compute and add the vorticity term trend =! |
---|
294 | DO jj = 2, jpjm1 |
---|
295 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
296 | zy1 = zwy(ji,jj-1) + zwy(ji+1,jj-1) |
---|
297 | zy2 = zwy(ji,jj ) + zwy(ji+1,jj ) |
---|
298 | zx1 = zwx(ji-1,jj) + zwx(ji-1,jj+1) |
---|
299 | zx2 = zwx(ji ,jj) + zwx(ji ,jj+1) |
---|
300 | pua(ji,jj,jk) = pua(ji,jj,jk) + r1_4 * r1_e1u(ji,jj) * ( zwz(ji ,jj-1) * zy1 + zwz(ji,jj) * zy2 ) |
---|
301 | pva(ji,jj,jk) = pva(ji,jj,jk) - r1_4 * r1_e2v(ji,jj) * ( zwz(ji-1,jj ) * zx1 + zwz(ji,jj) * zx2 ) |
---|
302 | END DO |
---|
303 | END DO |
---|
304 | ! ! =============== |
---|
305 | END DO ! End of slab |
---|
306 | ! ! =============== |
---|
307 | CALL wrk_dealloc( jpi, jpj, zwx, zwy, zwz ) |
---|
308 | ! |
---|
309 | IF( nn_timing == 1 ) CALL timing_stop('vor_ene') |
---|
310 | ! |
---|
311 | END SUBROUTINE vor_ene |
---|
312 | |
---|
313 | |
---|
314 | SUBROUTINE vor_ens( kt, kvor, pua, pva ) |
---|
315 | !!---------------------------------------------------------------------- |
---|
316 | !! *** ROUTINE vor_ens *** |
---|
317 | !! |
---|
318 | !! ** Purpose : Compute the now total vorticity trend and add it to |
---|
319 | !! the general trend of the momentum equation. |
---|
320 | !! |
---|
321 | !! ** Method : Trend evaluated using now fields (centered in time) |
---|
322 | !! and the Sadourny (1975) flux FORM formulation : conserves the |
---|
323 | !! potential enstrophy of a horizontally non-divergent flow. the |
---|
324 | !! trend of the vorticity term is given by: |
---|
325 | !! voru = 1/e1u mj-1[ (rvor+f)/e3f ] mj-1[ mi(e1v*e3v vn) ] |
---|
326 | !! vorv = 1/e2v mi-1[ (rvor+f)/e3f ] mi-1[ mj(e2u*e3u un) ] |
---|
327 | !! Add this trend to the general momentum trend (ua,va): |
---|
328 | !! (ua,va) = (ua,va) + ( voru , vorv ) |
---|
329 | !! |
---|
330 | !! ** Action : - Update (ua,va) arrays with the now vorticity term trend |
---|
331 | !! |
---|
332 | !! References : Sadourny, r., 1975, j. atmos. sciences, 32, 680-689. |
---|
333 | !!---------------------------------------------------------------------- |
---|
334 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
335 | INTEGER , INTENT(in ) :: kvor ! =ncor (planetary) ; =ntot (total) ; |
---|
336 | ! ! =nrvm (relative vorticity or metric) |
---|
337 | REAL(wp), INTENT(inout), DIMENSION(jpi,jpj,jpk) :: pua ! total u-trend |
---|
338 | REAL(wp), INTENT(inout), DIMENSION(jpi,jpj,jpk) :: pva ! total v-trend |
---|
339 | ! |
---|
340 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
341 | REAL(wp) :: zuav, zvau ! local scalars |
---|
342 | REAL(wp), POINTER, DIMENSION(:,:) :: zwx, zwy, zwz, zww ! 2D workspace |
---|
343 | !!---------------------------------------------------------------------- |
---|
344 | ! |
---|
345 | IF( nn_timing == 1 ) CALL timing_start('vor_ens') |
---|
346 | ! |
---|
347 | CALL wrk_alloc( jpi, jpj, zwx, zwy, zwz ) |
---|
348 | ! |
---|
349 | IF( kt == nit000 ) THEN |
---|
350 | IF(lwp) WRITE(numout,*) |
---|
351 | IF(lwp) WRITE(numout,*) 'dyn:vor_ens : vorticity term: enstrophy conserving scheme' |
---|
352 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' |
---|
353 | ENDIF |
---|
354 | ! ! =============== |
---|
355 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
356 | ! ! =============== |
---|
357 | ! |
---|
358 | SELECT CASE( kvor ) !== vorticity considered ==! |
---|
359 | CASE ( np_COR ) !* Coriolis (planetary vorticity) |
---|
360 | zwz(:,:) = ff(:,:) |
---|
361 | CASE ( np_RVO ) !* relative vorticity |
---|
362 | DO jj = 1, jpjm1 |
---|
363 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
364 | zwz(ji,jj) = ( e2v(ji+1,jj ) * vn(ji+1,jj ,jk) - e2v(ji,jj) * vn(ji,jj,jk) & |
---|
365 | & - e1u(ji ,jj+1) * un(ji ,jj+1,jk) + e1u(ji,jj) * un(ji,jj,jk) ) * r1_e1e2f(ji,jj) |
---|
366 | END DO |
---|
367 | END DO |
---|
368 | CASE ( np_MET ) !* metric term |
---|
369 | DO jj = 1, jpjm1 |
---|
370 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
371 | zwz(ji,jj) = ( ( vn(ji+1,jj ,jk) + vn (ji,jj,jk) ) * ( e2v(ji+1,jj ) - e2v(ji,jj) ) & |
---|
372 | & - ( un(ji ,jj+1,jk) + un (ji,jj,jk) ) * ( e1u(ji ,jj+1) - e1u(ji,jj) ) ) & |
---|
373 | & * 0.5 * r1_e1e2f(ji,jj) |
---|
374 | END DO |
---|
375 | END DO |
---|
376 | CASE ( np_CRV ) !* Coriolis + relative vorticity |
---|
377 | DO jj = 1, jpjm1 |
---|
378 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
379 | zwz(ji,jj) = ff(ji,jj) + ( e2v(ji+1,jj ) * vn(ji+1,jj ,jk) - e2v(ji,jj) * vn(ji,jj,jk) & |
---|
380 | & - e1u(ji ,jj+1) * un(ji ,jj+1,jk) + e1u(ji,jj) * un(ji,jj,jk) ) & |
---|
381 | & * r1_e1e2f(ji,jj) |
---|
382 | END DO |
---|
383 | END DO |
---|
384 | CASE ( np_CME ) !* Coriolis + metric |
---|
385 | DO jj = 1, jpjm1 |
---|
386 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
387 | zwz(ji,jj) = ff(ji,jj) & |
---|
388 | & + ( ( vn(ji+1,jj ,jk) + vn (ji,jj,jk) ) * ( e2v(ji+1,jj ) - e2v(ji,jj) ) & |
---|
389 | & - ( un(ji ,jj+1,jk) + un (ji,jj,jk) ) * ( e1u(ji ,jj+1) - e1u(ji,jj) ) ) & |
---|
390 | & * 0.5 * r1_e1e2f(ji,jj) |
---|
391 | END DO |
---|
392 | END DO |
---|
393 | CASE DEFAULT ! error |
---|
394 | CALL ctl_stop('STOP','dyn_vor: wrong value for kvor' ) |
---|
395 | END SELECT |
---|
396 | ! |
---|
397 | IF( ln_dynvor_msk ) THEN !== mask/unmask vorticity ==! |
---|
398 | DO jj = 1, jpjm1 |
---|
399 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
400 | zwz(ji,jj) = zwz(ji,jj) * fmask(ji,jj,jk) |
---|
401 | END DO |
---|
402 | END DO |
---|
403 | ENDIF |
---|
404 | ! |
---|
405 | IF( ln_sco ) THEN !== horizontal fluxes ==! |
---|
406 | zwz(:,:) = zwz(:,:) / fse3f(:,:,jk) |
---|
407 | zwx(:,:) = e2u(:,:) * fse3u(:,:,jk) * un(:,:,jk) |
---|
408 | zwy(:,:) = e1v(:,:) * fse3v(:,:,jk) * vn(:,:,jk) |
---|
409 | ELSE |
---|
410 | zwx(:,:) = e2u(:,:) * un(:,:,jk) |
---|
411 | zwy(:,:) = e1v(:,:) * vn(:,:,jk) |
---|
412 | ENDIF |
---|
413 | ! !== compute and add the vorticity term trend =! |
---|
414 | DO jj = 2, jpjm1 |
---|
415 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
416 | zuav = r1_8 * r1_e1u(ji,jj) * ( zwy(ji ,jj-1) + zwy(ji+1,jj-1) & |
---|
417 | & + zwy(ji ,jj ) + zwy(ji+1,jj ) ) |
---|
418 | zvau =-r1_8 * r1_e2v(ji,jj) * ( zwx(ji-1,jj ) + zwx(ji-1,jj+1) & |
---|
419 | & + zwx(ji ,jj ) + zwx(ji ,jj+1) ) |
---|
420 | pua(ji,jj,jk) = pua(ji,jj,jk) + zuav * ( zwz(ji ,jj-1) + zwz(ji,jj) ) |
---|
421 | pva(ji,jj,jk) = pva(ji,jj,jk) + zvau * ( zwz(ji-1,jj ) + zwz(ji,jj) ) |
---|
422 | END DO |
---|
423 | END DO |
---|
424 | ! ! =============== |
---|
425 | END DO ! End of slab |
---|
426 | ! ! =============== |
---|
427 | CALL wrk_dealloc( jpi, jpj, zwx, zwy, zwz ) |
---|
428 | ! |
---|
429 | IF( nn_timing == 1 ) CALL timing_stop('vor_ens') |
---|
430 | ! |
---|
431 | END SUBROUTINE vor_ens |
---|
432 | |
---|
433 | |
---|
434 | SUBROUTINE vor_een( kt, kvor, pua, pva ) |
---|
435 | !!---------------------------------------------------------------------- |
---|
436 | !! *** ROUTINE vor_een *** |
---|
437 | !! |
---|
438 | !! ** Purpose : Compute the now total vorticity trend and add it to |
---|
439 | !! the general trend of the momentum equation. |
---|
440 | !! |
---|
441 | !! ** Method : Trend evaluated using now fields (centered in time) |
---|
442 | !! and the Arakawa and Lamb (1980) flux form formulation : conserves |
---|
443 | !! both the horizontal kinetic energy and the potential enstrophy |
---|
444 | !! when horizontal divergence is zero (see the NEMO documentation) |
---|
445 | !! Add this trend to the general momentum trend (ua,va). |
---|
446 | !! |
---|
447 | !! ** Action : - Update (ua,va) with the now vorticity term trend |
---|
448 | !! |
---|
449 | !! References : Arakawa and Lamb 1980, Mon. Wea. Rev., 109, 18-36 |
---|
450 | !!---------------------------------------------------------------------- |
---|
451 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
452 | INTEGER , INTENT(in ) :: kvor ! =ncor (planetary) ; =ntot (total) ; =nrvm (relative or metric) |
---|
453 | REAL(wp), INTENT(inout), DIMENSION(jpi,jpj,jpk) :: pua ! total u-trend |
---|
454 | REAL(wp), INTENT(inout), DIMENSION(jpi,jpj,jpk) :: pva ! total v-trend |
---|
455 | ! |
---|
456 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
457 | INTEGER :: ierr ! local integer |
---|
458 | REAL(wp) :: zua, zva ! local scalars |
---|
459 | REAL(wp) :: zmsk, ze3 ! local scalars |
---|
460 | ! |
---|
461 | REAL(wp), POINTER, DIMENSION(:,:) :: zwx, zwy, zwz, z1_e3f |
---|
462 | REAL(wp), POINTER, DIMENSION(:,:) :: ztnw, ztne, ztsw, ztse |
---|
463 | !!---------------------------------------------------------------------- |
---|
464 | ! |
---|
465 | IF( nn_timing == 1 ) CALL timing_start('vor_een') |
---|
466 | ! |
---|
467 | CALL wrk_alloc( jpi,jpj, zwx , zwy , zwz , z1_e3f ) |
---|
468 | CALL wrk_alloc( jpi,jpj, ztnw, ztne, ztsw, ztse ) |
---|
469 | ! |
---|
470 | IF( kt == nit000 ) THEN |
---|
471 | IF(lwp) WRITE(numout,*) |
---|
472 | IF(lwp) WRITE(numout,*) 'dyn:vor_een : vorticity term: energy and enstrophy conserving scheme' |
---|
473 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' |
---|
474 | ENDIF |
---|
475 | ! |
---|
476 | ! ! =============== |
---|
477 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
478 | ! ! =============== |
---|
479 | ! |
---|
480 | SELECT CASE( nn_een_e3f ) ! == reciprocal of e3 at F-point |
---|
481 | CASE ( 0 ) ! original formulation (masked averaging of e3t divided by 4) |
---|
482 | DO jj = 1, jpjm1 |
---|
483 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
484 | ze3 = ( fse3t(ji,jj+1,jk)*tmask(ji,jj+1,jk) + fse3t(ji+1,jj+1,jk)*tmask(ji+1,jj+1,jk) & |
---|
485 | & + fse3t(ji,jj ,jk)*tmask(ji,jj ,jk) + fse3t(ji+1,jj ,jk)*tmask(ji+1,jj ,jk) ) |
---|
486 | IF( ze3 /= 0._wp ) THEN ; z1_e3f(ji,jj) = 4.0_wp / ze3 |
---|
487 | ELSE ; z1_e3f(ji,jj) = 0.0_wp |
---|
488 | ENDIF |
---|
489 | END DO |
---|
490 | END DO |
---|
491 | CASE ( 1 ) ! new formulation (masked averaging of e3t divided by the sum of mask) |
---|
492 | DO jj = 1, jpjm1 |
---|
493 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
494 | ze3 = ( fse3t(ji,jj+1,jk)*tmask(ji,jj+1,jk) + fse3t(ji+1,jj+1,jk)*tmask(ji+1,jj+1,jk) & |
---|
495 | & + fse3t(ji,jj ,jk)*tmask(ji,jj ,jk) + fse3t(ji+1,jj ,jk)*tmask(ji+1,jj ,jk) ) |
---|
496 | zmsk = ( tmask(ji,jj+1,jk) + tmask(ji+1,jj+1,jk) & |
---|
497 | & + tmask(ji,jj ,jk) + tmask(ji+1,jj ,jk) ) |
---|
498 | IF( ze3 /= 0._wp ) THEN ; z1_e3f(ji,jj) = zmsk / ze3 |
---|
499 | ELSE ; z1_e3f(ji,jj) = 0.0_wp |
---|
500 | ENDIF |
---|
501 | END DO |
---|
502 | END DO |
---|
503 | END SELECT |
---|
504 | ! |
---|
505 | SELECT CASE( kvor ) !== vorticity considered ==! |
---|
506 | CASE ( np_COR ) !* Coriolis (planetary vorticity) |
---|
507 | DO jj = 1, jpjm1 |
---|
508 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
509 | zwz(ji,jj) = ff(ji,jj) * z1_e3f(ji,jj) |
---|
510 | END DO |
---|
511 | END DO |
---|
512 | CASE ( np_RVO ) !* relative vorticity |
---|
513 | DO jj = 1, jpjm1 |
---|
514 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
515 | zwz(ji,jj) = ( e2v(ji+1,jj ) * vn(ji+1,jj ,jk) - e2v(ji,jj) * vn(ji,jj,jk) & |
---|
516 | & - e1u(ji ,jj+1) * un(ji ,jj+1,jk) + e1u(ji,jj) * un(ji,jj,jk) ) & |
---|
517 | & * r1_e1e2f(ji,jj) * z1_e3f(ji,jj) |
---|
518 | END DO |
---|
519 | END DO |
---|
520 | CASE ( np_MET ) !* metric term |
---|
521 | DO jj = 1, jpjm1 |
---|
522 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
523 | zwz(ji,jj) = ( ( vn(ji+1,jj ,jk) + vn (ji,jj,jk) ) * ( e2v(ji+1,jj ) - e2v(ji,jj) ) & |
---|
524 | & - ( un(ji ,jj+1,jk) + un (ji,jj,jk) ) * ( e1u(ji ,jj+1) - e1u(ji,jj) ) ) & |
---|
525 | & * 0.5 * r1_e1e2f(ji,jj) * z1_e3f(ji,jj) |
---|
526 | END DO |
---|
527 | END DO |
---|
528 | CASE ( np_CRV ) !* Coriolis + relative vorticity |
---|
529 | DO jj = 1, jpjm1 |
---|
530 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
531 | zwz(ji,jj) = ( ff(ji,jj) + ( e2v(ji+1,jj ) * vn(ji+1,jj ,jk) - e2v(ji,jj) * vn(ji,jj,jk) & |
---|
532 | & - e1u(ji ,jj+1) * un(ji ,jj+1,jk) + e1u(ji,jj) * un(ji,jj,jk) ) & |
---|
533 | & * r1_e1e2f(ji,jj) ) * z1_e3f(ji,jj) |
---|
534 | END DO |
---|
535 | END DO |
---|
536 | CASE ( np_CME ) !* Coriolis + metric |
---|
537 | DO jj = 1, jpjm1 |
---|
538 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
539 | zwz(ji,jj) = ( ff(ji,jj) & |
---|
540 | & + ( ( vn(ji+1,jj ,jk) + vn (ji,jj,jk) ) * ( e2v(ji+1,jj ) - e2v(ji,jj) ) & |
---|
541 | & - ( un(ji ,jj+1,jk) + un (ji,jj,jk) ) * ( e1u(ji ,jj+1) - e1u(ji,jj) ) ) & |
---|
542 | & * 0.5 * r1_e1e2f(ji,jj) ) * z1_e3f(ji,jj) |
---|
543 | END DO |
---|
544 | END DO |
---|
545 | CASE DEFAULT ! error |
---|
546 | CALL ctl_stop('STOP','dyn_vor: wrong value for kvor' ) |
---|
547 | END SELECT |
---|
548 | ! |
---|
549 | IF( ln_dynvor_msk ) THEN !== mask/unmask vorticity ==! |
---|
550 | DO jj = 1, jpjm1 |
---|
551 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
552 | zwz(ji,jj) = zwz(ji,jj) * fmask(ji,jj,jk) |
---|
553 | END DO |
---|
554 | END DO |
---|
555 | ENDIF |
---|
556 | ! |
---|
557 | CALL lbc_lnk( zwz, 'F', 1. ) |
---|
558 | ! |
---|
559 | ! !== horizontal fluxes ==! |
---|
560 | zwx(:,:) = e2u(:,:) * fse3u(:,:,jk) * un(:,:,jk) |
---|
561 | zwy(:,:) = e1v(:,:) * fse3v(:,:,jk) * vn(:,:,jk) |
---|
562 | |
---|
563 | ! !== compute and add the vorticity term trend =! |
---|
564 | jj = 2 |
---|
565 | ztne(1,:) = 0 ; ztnw(1,:) = 0 ; ztse(1,:) = 0 ; ztsw(1,:) = 0 |
---|
566 | DO ji = 2, jpi ! split in 2 parts due to vector opt. |
---|
567 | ztne(ji,jj) = zwz(ji-1,jj ) + zwz(ji ,jj ) + zwz(ji ,jj-1) |
---|
568 | ztnw(ji,jj) = zwz(ji-1,jj-1) + zwz(ji-1,jj ) + zwz(ji ,jj ) |
---|
569 | ztse(ji,jj) = zwz(ji ,jj ) + zwz(ji ,jj-1) + zwz(ji-1,jj-1) |
---|
570 | ztsw(ji,jj) = zwz(ji ,jj-1) + zwz(ji-1,jj-1) + zwz(ji-1,jj ) |
---|
571 | END DO |
---|
572 | DO jj = 3, jpj |
---|
573 | DO ji = fs_2, jpi ! vector opt. ok because we start at jj = 3 |
---|
574 | ztne(ji,jj) = zwz(ji-1,jj ) + zwz(ji ,jj ) + zwz(ji ,jj-1) |
---|
575 | ztnw(ji,jj) = zwz(ji-1,jj-1) + zwz(ji-1,jj ) + zwz(ji ,jj ) |
---|
576 | ztse(ji,jj) = zwz(ji ,jj ) + zwz(ji ,jj-1) + zwz(ji-1,jj-1) |
---|
577 | ztsw(ji,jj) = zwz(ji ,jj-1) + zwz(ji-1,jj-1) + zwz(ji-1,jj ) |
---|
578 | END DO |
---|
579 | END DO |
---|
580 | DO jj = 2, jpjm1 |
---|
581 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
582 | zua = + r1_12 * r1_e1u(ji,jj) * ( ztne(ji,jj ) * zwy(ji ,jj ) + ztnw(ji+1,jj) * zwy(ji+1,jj ) & |
---|
583 | & + ztse(ji,jj ) * zwy(ji ,jj-1) + ztsw(ji+1,jj) * zwy(ji+1,jj-1) ) |
---|
584 | zva = - r1_12 * r1_e2v(ji,jj) * ( ztsw(ji,jj+1) * zwx(ji-1,jj+1) + ztse(ji,jj+1) * zwx(ji ,jj+1) & |
---|
585 | & + ztnw(ji,jj ) * zwx(ji-1,jj ) + ztne(ji,jj ) * zwx(ji ,jj ) ) |
---|
586 | pua(ji,jj,jk) = pua(ji,jj,jk) + zua |
---|
587 | pva(ji,jj,jk) = pva(ji,jj,jk) + zva |
---|
588 | END DO |
---|
589 | END DO |
---|
590 | ! ! =============== |
---|
591 | END DO ! End of slab |
---|
592 | ! ! =============== |
---|
593 | ! |
---|
594 | CALL wrk_dealloc( jpi,jpj, zwx , zwy , zwz , z1_e3f ) |
---|
595 | CALL wrk_dealloc( jpi,jpj, ztnw, ztne, ztsw, ztse ) |
---|
596 | ! |
---|
597 | IF( nn_timing == 1 ) CALL timing_stop('vor_een') |
---|
598 | ! |
---|
599 | END SUBROUTINE vor_een |
---|
600 | |
---|
601 | |
---|
602 | SUBROUTINE dyn_vor_init |
---|
603 | !!--------------------------------------------------------------------- |
---|
604 | !! *** ROUTINE dyn_vor_init *** |
---|
605 | !! |
---|
606 | !! ** Purpose : Control the consistency between cpp options for |
---|
607 | !! tracer advection schemes |
---|
608 | !!---------------------------------------------------------------------- |
---|
609 | INTEGER :: ioptio ! local integer |
---|
610 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
611 | INTEGER :: ios ! Local integer output status for namelist read |
---|
612 | !! |
---|
613 | NAMELIST/namdyn_vor/ ln_dynvor_ens, ln_dynvor_ene, ln_dynvor_mix, ln_dynvor_een, nn_een_e3f, ln_dynvor_msk |
---|
614 | !!---------------------------------------------------------------------- |
---|
615 | |
---|
616 | REWIND( numnam_ref ) ! Namelist namdyn_vor in reference namelist : Vorticity scheme options |
---|
617 | READ ( numnam_ref, namdyn_vor, IOSTAT = ios, ERR = 901) |
---|
618 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namdyn_vor in reference namelist', lwp ) |
---|
619 | |
---|
620 | REWIND( numnam_cfg ) ! Namelist namdyn_vor in configuration namelist : Vorticity scheme options |
---|
621 | READ ( numnam_cfg, namdyn_vor, IOSTAT = ios, ERR = 902 ) |
---|
622 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namdyn_vor in configuration namelist', lwp ) |
---|
623 | IF(lwm) WRITE ( numond, namdyn_vor ) |
---|
624 | |
---|
625 | IF(lwp) THEN ! Namelist print |
---|
626 | WRITE(numout,*) |
---|
627 | WRITE(numout,*) 'dyn_vor_init : vorticity term : read namelist and control the consistency' |
---|
628 | WRITE(numout,*) '~~~~~~~~~~~~' |
---|
629 | WRITE(numout,*) ' Namelist namdyn_vor : choice of the vorticity term scheme' |
---|
630 | WRITE(numout,*) ' energy conserving scheme ln_dynvor_ene = ', ln_dynvor_ene |
---|
631 | WRITE(numout,*) ' enstrophy conserving scheme ln_dynvor_ens = ', ln_dynvor_ens |
---|
632 | WRITE(numout,*) ' mixed enstrophy/energy conserving scheme ln_dynvor_mix = ', ln_dynvor_mix |
---|
633 | WRITE(numout,*) ' enstrophy and energy conserving scheme ln_dynvor_een = ', ln_dynvor_een |
---|
634 | WRITE(numout,*) ' e3f = averaging /4 (=0) or /sum(tmask) (=1) nn_een_e3f = ', nn_een_e3f |
---|
635 | WRITE(numout,*) ' masked (=1) or unmasked(=0) vorticity ln_dynvor_msk = ', ln_dynvor_msk |
---|
636 | ENDIF |
---|
637 | |
---|
638 | !!gm this should be removed when choosing a unique strategy for fmask at the coast |
---|
639 | ! If energy, enstrophy or mixed advection of momentum in vector form change the value for masks |
---|
640 | ! at angles with three ocean points and one land point |
---|
641 | IF(lwp) WRITE(numout,*) |
---|
642 | IF(lwp) WRITE(numout,*) ' namlbc: change fmask value in the angles (T) ln_vorlat = ', ln_vorlat |
---|
643 | IF( ln_vorlat .AND. ( ln_dynvor_ene .OR. ln_dynvor_ens .OR. ln_dynvor_mix ) ) THEN |
---|
644 | DO jk = 1, jpk |
---|
645 | DO jj = 2, jpjm1 |
---|
646 | DO ji = 2, jpim1 |
---|
647 | IF( tmask(ji,jj,jk)+tmask(ji+1,jj,jk)+tmask(ji,jj+1,jk)+tmask(ji+1,jj+1,jk) == 3._wp ) & |
---|
648 | fmask(ji,jj,jk) = 1._wp |
---|
649 | END DO |
---|
650 | END DO |
---|
651 | END DO |
---|
652 | ! |
---|
653 | CALL lbc_lnk( fmask, 'F', 1._wp ) ! Lateral boundary conditions on fmask |
---|
654 | ! |
---|
655 | ENDIF |
---|
656 | !!gm end |
---|
657 | |
---|
658 | ioptio = 0 ! type of scheme for vorticity (set nvor_scheme) |
---|
659 | IF( ln_dynvor_ene ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_ENE ; ENDIF |
---|
660 | IF( ln_dynvor_ens ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_ENS ; ENDIF |
---|
661 | IF( ln_dynvor_mix ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_MIX ; ENDIF |
---|
662 | IF( ln_dynvor_een ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_EEN ; ENDIF |
---|
663 | ! |
---|
664 | IF( ioptio /= 1 ) CALL ctl_stop( ' use ONE and ONLY one vorticity scheme' ) |
---|
665 | ! |
---|
666 | IF(lwp) WRITE(numout,*) ! type of calculated vorticity (set ncor, nrvm, ntot) |
---|
667 | ncor = np_COR |
---|
668 | IF( ln_dynadv_vec ) THEN |
---|
669 | IF(lwp) WRITE(numout,*) ' Vector form advection : vorticity = Coriolis + relative vorticity' |
---|
670 | nrvm = np_RVO ! relative vorticity |
---|
671 | ntot = np_CRV ! relative + planetary vorticity |
---|
672 | ELSE |
---|
673 | IF(lwp) WRITE(numout,*) ' Flux form advection : vorticity = Coriolis + metric term' |
---|
674 | nrvm = np_MET ! metric term |
---|
675 | ntot = np_CME ! Coriolis + metric term |
---|
676 | ENDIF |
---|
677 | |
---|
678 | IF(lwp) THEN ! Print the choice |
---|
679 | WRITE(numout,*) |
---|
680 | IF( nvor_scheme == np_ENE ) WRITE(numout,*) ' vorticity scheme ==>> energy conserving scheme' |
---|
681 | IF( nvor_scheme == np_ENS ) WRITE(numout,*) ' vorticity scheme ==>> enstrophy conserving scheme' |
---|
682 | IF( nvor_scheme == np_MIX ) WRITE(numout,*) ' vorticity scheme ==>> mixed enstrophy/energy conserving scheme' |
---|
683 | IF( nvor_scheme == np_EEN ) WRITE(numout,*) ' vorticity scheme ==>> energy and enstrophy conserving scheme' |
---|
684 | ENDIF |
---|
685 | ! |
---|
686 | END SUBROUTINE dyn_vor_init |
---|
687 | |
---|
688 | !!============================================================================== |
---|
689 | END MODULE dynvor |
---|