1 | MODULE trdken |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE trdken *** |
---|
4 | !! Ocean diagnostics: compute and output 3D kinetic energy trends |
---|
5 | !!===================================================================== |
---|
6 | !! History : 3.5 ! 2012-02 (G. Madec) original code |
---|
7 | !!---------------------------------------------------------------------- |
---|
8 | |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | !! trd_ken : compute and output 3D Kinetic energy trends using IOM |
---|
11 | !! trd_ken_init : initialisation |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | USE oce ! ocean dynamics and tracers variables |
---|
14 | USE dom_oce ! ocean space and time domain variables |
---|
15 | USE zdf_oce ! ocean vertical physics variables |
---|
16 | USE trd_oce ! trends: ocean variables |
---|
17 | !!gm USE dynhpg ! hydrostatic pressure gradient |
---|
18 | USE zdfbfr ! bottom friction |
---|
19 | USE ldftra_oce ! ocean active tracers lateral physics |
---|
20 | USE sbc_oce ! surface boundary condition: ocean |
---|
21 | USE phycst ! physical constants |
---|
22 | USE trdvor ! ocean vorticity trends |
---|
23 | USE trdglo ! trends:global domain averaged |
---|
24 | USE trdmxl ! ocean active mixed layer tracers trends |
---|
25 | USE in_out_manager ! I/O manager |
---|
26 | USE iom ! I/O manager library |
---|
27 | USE lib_mpp ! MPP library |
---|
28 | USE wrk_nemo ! Memory allocation |
---|
29 | USE ldfslp ! Isopycnal slopes |
---|
30 | |
---|
31 | IMPLICIT NONE |
---|
32 | PRIVATE |
---|
33 | |
---|
34 | PUBLIC trd_ken ! called by trddyn module |
---|
35 | PUBLIC trd_ken_init ! called by trdini module |
---|
36 | |
---|
37 | INTEGER :: nkstp ! current time step |
---|
38 | |
---|
39 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: bu, bv ! volume of u- and v-boxes |
---|
40 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: r1_bt ! inverse of t-box volume |
---|
41 | |
---|
42 | !! * Substitutions |
---|
43 | # include "domzgr_substitute.h90" |
---|
44 | # include "vectopt_loop_substitute.h90" |
---|
45 | # include "ldfeiv_substitute.h90" |
---|
46 | |
---|
47 | !!---------------------------------------------------------------------- |
---|
48 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
49 | !! $Id$ |
---|
50 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
51 | !!---------------------------------------------------------------------- |
---|
52 | CONTAINS |
---|
53 | |
---|
54 | INTEGER FUNCTION trd_ken_alloc() |
---|
55 | !!--------------------------------------------------------------------- |
---|
56 | !! *** FUNCTION trd_ken_alloc *** |
---|
57 | !!--------------------------------------------------------------------- |
---|
58 | ALLOCATE( bu(jpi,jpj,jpk) , bv(jpi,jpj,jpk) , r1_bt(jpi,jpj,jpk) , STAT= trd_ken_alloc ) |
---|
59 | ! |
---|
60 | IF( lk_mpp ) CALL mpp_sum ( trd_ken_alloc ) |
---|
61 | IF( trd_ken_alloc /= 0 ) CALL ctl_warn('trd_ken_alloc: failed to allocate arrays') |
---|
62 | END FUNCTION trd_ken_alloc |
---|
63 | |
---|
64 | |
---|
65 | SUBROUTINE trd_ken( putrd, pvtrd, ktrd, kt ) |
---|
66 | !!--------------------------------------------------------------------- |
---|
67 | !! *** ROUTINE trd_ken *** |
---|
68 | !! |
---|
69 | !! ** Purpose : output 3D Kinetic Energy trends using IOM |
---|
70 | !! |
---|
71 | !! ** Method : - apply lbc to the input masked velocity trends |
---|
72 | !! - compute the associated KE trend: |
---|
73 | !! zke = 0.5 * ( mi-1[ un * putrd * bu ] + mj-1[ vn * pvtrd * bv] ) / bt |
---|
74 | !! where bu, bv, bt are the volume of u-, v- and t-boxes. |
---|
75 | !! - vertical diffusion case (jpdyn_zdf): |
---|
76 | !! diagnose separately the KE trend associated with wind stress |
---|
77 | !! - bottom friction case (jpdyn_bfr): |
---|
78 | !! explicit case (ln_bfrimp=F): bottom trend put in the 1st level |
---|
79 | !! of putrd, pvtrd |
---|
80 | ! |
---|
81 | ! |
---|
82 | !!---------------------------------------------------------------------- |
---|
83 | REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: putrd, pvtrd ! U and V masked trends |
---|
84 | INTEGER , INTENT(in ) :: ktrd ! trend index |
---|
85 | INTEGER , INTENT(in ) :: kt ! time step |
---|
86 | ! |
---|
87 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
88 | INTEGER :: ikbu , ikbv ! local integers |
---|
89 | INTEGER :: ikbum1, ikbvm1 ! - - |
---|
90 | REAL(wp), POINTER, DIMENSION(:,:) :: z2dx, z2dy, zke2d ! 2D workspace |
---|
91 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zke ! 3D workspace |
---|
92 | !!---------------------------------------------------------------------- |
---|
93 | ! |
---|
94 | CALL wrk_alloc( jpi, jpj, jpk, zke ) |
---|
95 | ! |
---|
96 | CALL lbc_lnk( putrd, 'U', -1. ) ; CALL lbc_lnk( pvtrd, 'V', -1. ) ! lateral boundary conditions |
---|
97 | ! |
---|
98 | IF ( lk_vvl .AND. kt /= nkstp ) THEN ! Variable volume: set box volume at the 1st call of kt time step |
---|
99 | nkstp = kt |
---|
100 | DO jk = 1, jpkm1 |
---|
101 | bu (:,:,jk) = e1u(:,:) * e2u(:,:) * fse3u_n(:,:,jk) |
---|
102 | bv (:,:,jk) = e1v(:,:) * e2v(:,:) * fse3v_n(:,:,jk) |
---|
103 | r1_bt(:,:,jk) = 1._wp / ( e1e2t(:,:) * fse3t_n(:,:,jk) ) * tmask(:,:,jk) |
---|
104 | END DO |
---|
105 | ENDIF |
---|
106 | ! |
---|
107 | zke(:,:,jpk) = 0._wp |
---|
108 | zke(1,:, : ) = 0._wp |
---|
109 | zke(:,1, : ) = 0._wp |
---|
110 | DO jk = 1, jpkm1 |
---|
111 | DO jj = 2, jpj |
---|
112 | DO ji = 2, jpi |
---|
113 | zke(ji,jj,jk) = 0.5_wp * rau0 *( un(ji ,jj,jk) * putrd(ji ,jj,jk) * bu(ji ,jj,jk) & |
---|
114 | & + un(ji-1,jj,jk) * putrd(ji-1,jj,jk) * bu(ji-1,jj,jk) & |
---|
115 | & + vn(ji,jj ,jk) * pvtrd(ji,jj ,jk) * bv(ji,jj ,jk) & |
---|
116 | & + vn(ji,jj-1,jk) * pvtrd(ji,jj-1,jk) * bv(ji,jj-1,jk) ) * r1_bt(ji,jj,jk) |
---|
117 | END DO |
---|
118 | END DO |
---|
119 | END DO |
---|
120 | ! |
---|
121 | SELECT CASE( ktrd ) |
---|
122 | CASE( jpdyn_hpg ) ; CALL iom_put( "ketrd_hpg", zke ) ! hydrostatic pressure gradient |
---|
123 | CASE( jpdyn_spg ) ; CALL iom_put( "ketrd_spg", zke ) ! surface pressure gradient |
---|
124 | CASE( jpdyn_spgexp ); CALL iom_put( "ketrd_spgexp", zke ) ! surface pressure gradient (explicit) |
---|
125 | CASE( jpdyn_spgflt ); CALL iom_put( "ketrd_spgflt", zke ) ! surface pressure gradient (filter) |
---|
126 | CASE( jpdyn_pvo ) ; CALL iom_put( "ketrd_pvo", zke ) ! planetary vorticity |
---|
127 | CASE( jpdyn_rvo ) ; CALL iom_put( "ketrd_rvo", zke ) ! relative vorticity (or metric term) |
---|
128 | CASE( jpdyn_keg ) ; CALL iom_put( "ketrd_keg", zke ) ! Kinetic Energy gradient (or had) |
---|
129 | CASE( jpdyn_zad ) ; CALL iom_put( "ketrd_zad", zke ) ! vertical advection |
---|
130 | CASE( jpdyn_ldf ) ; CALL iom_put( "ketrd_ldf", zke ) ! lateral diffusion |
---|
131 | CASE( jpdyn_zdf ) ; CALL iom_put( "ketrd_zdf", zke ) ! vertical diffusion |
---|
132 | ! ! wind stress trends |
---|
133 | CALL wrk_alloc( jpi, jpj, z2dx, z2dy, zke2d ) |
---|
134 | z2dx(:,:) = un(:,:,1) * ( utau_b(:,:) + utau(:,:) ) * e1u(:,:) * e2u(:,:) * umask(:,:,1) |
---|
135 | z2dy(:,:) = vn(:,:,1) * ( vtau_b(:,:) + vtau(:,:) ) * e1v(:,:) * e2v(:,:) * vmask(:,:,1) |
---|
136 | zke2d(1,:) = 0._wp ; zke2d(:,1) = 0._wp |
---|
137 | DO jj = 2, jpj |
---|
138 | DO ji = 2, jpi |
---|
139 | zke2d(ji,jj) = 0.5_wp * ( z2dx(ji,jj) + z2dx(ji-1,jj) & |
---|
140 | & + z2dy(ji,jj) + z2dy(ji,jj-1) ) * r1_bt(ji,jj,1) |
---|
141 | END DO |
---|
142 | END DO |
---|
143 | CALL iom_put( "ketrd_tau", zke2d ) |
---|
144 | CALL wrk_dealloc( jpi, jpj , z2dx, z2dy, zke2d ) |
---|
145 | CASE( jpdyn_bfr ) ; CALL iom_put( "ketrd_bfr", zke ) ! bottom friction (explicit case) |
---|
146 | !!gm TO BE DONE properly |
---|
147 | !!gm only valid if ln_bfrimp=F otherwise the bottom stress as to be recomputed at the end of the computation.... |
---|
148 | ! IF(.NOT. ln_bfrimp) THEN |
---|
149 | ! DO jj = 1, jpj ! |
---|
150 | ! DO ji = 1, jpi |
---|
151 | ! ikbu = mbku(ji,jj) ! deepest ocean u- & v-levels |
---|
152 | ! ikbv = mbkv(ji,jj) |
---|
153 | ! z2dx(ji,jj) = un(ji,jj,ikbu) * bfrua(ji,jj) * un(ji,jj,ikbu) |
---|
154 | ! z2dy(ji,jj) = vn(ji,jj,ikbu) * bfrva(ji,jj) * vn(ji,jj,ikbv) |
---|
155 | ! END DO |
---|
156 | ! END DO |
---|
157 | ! zke2d(1,:) = 0._wp ; zke2d(:,1) = 0._wp |
---|
158 | ! DO jj = 2, jpj |
---|
159 | ! DO ji = 2, jpi |
---|
160 | ! zke2d(ji,jj) = 0.5_wp * ( z2dx(ji,jj) + z2dx(ji-1,jj) & |
---|
161 | ! & + z2dy(ji,jj) + z2dy(ji,jj-1) ) * r1_bt(ji,jj, BEURK!!! |
---|
162 | ! END DO |
---|
163 | ! END DO |
---|
164 | ! CALL iom_put( "ketrd_bfr", zke2d ) ! bottom friction (explicit case) |
---|
165 | ! ENDIF |
---|
166 | !!gm end |
---|
167 | CASE( jpdyn_atf ) ; CALL iom_put( "ketrd_atf", zke ) ! asselin filter trends |
---|
168 | !! a faire !!!! idee changer dynnxt pour avoir un appel a jpdyn_bfr avant le swap !!! |
---|
169 | !! reflechir a une possible sauvegarde du "vrai" un,vn pour le calcul de atf.... |
---|
170 | ! |
---|
171 | ! IF( ln_bfrimp ) THEN ! bottom friction (implicit case) |
---|
172 | ! DO jj = 1, jpj ! after velocity known (now filed at this stage) |
---|
173 | ! DO ji = 1, jpi |
---|
174 | ! ikbu = mbku(ji,jj) ! deepest ocean u- & v-levels |
---|
175 | ! ikbv = mbkv(ji,jj) |
---|
176 | ! z2dx(ji,jj) = un(ji,jj,ikbu) * bfrua(ji,jj) * un(ji,jj,ikbu) / fse3u(ji,jj,ikbu) |
---|
177 | ! z2dy(ji,jj) = un(ji,jj,ikbu) * bfrva(ji,jj) * vn(ji,jj,ikbv) / fse3v(ji,jj,ikbv) |
---|
178 | ! END DO |
---|
179 | ! END DO |
---|
180 | ! zke2d(1,:) = 0._wp ; zke2d(:,1) = 0._wp |
---|
181 | ! DO jj = 2, jpj |
---|
182 | ! DO ji = 2, jpi |
---|
183 | ! zke2d(ji,jj) = 0.5_wp * ( z2dx(ji,jj) + z2dx(ji-1,jj) & |
---|
184 | ! & + z2dy(ji,jj) + z2dy(ji,jj-1) ) |
---|
185 | ! END DO |
---|
186 | ! END DO |
---|
187 | ! CALL iom_put( "ketrd_bfri", zke2d ) |
---|
188 | ! ENDIF |
---|
189 | CASE( jpdyn_ken ) ; ! kinetic energy |
---|
190 | ! called in dynnxt.F90 before asselin time filter |
---|
191 | ! with putrd=ua and pvtrd=va |
---|
192 | zke(:,:,:) = 0.5_wp * zke(:,:,:) |
---|
193 | CALL iom_put( "KE", zke ) |
---|
194 | ! |
---|
195 | CALL ken_p2k( kt , zke ) |
---|
196 | CALL iom_put( "ketrd_convP2K", zke ) ! conversion -rau*g*w |
---|
197 | CASE( jpdyn_eivke ) |
---|
198 | ! CMIP6 diagnostic tknebto = tendency of KE from |
---|
199 | ! parameterized mesoscale eddy advection |
---|
200 | ! = vertical_integral( k (N S)^2 ) rho dz |
---|
201 | ! rho = reference density |
---|
202 | ! S = isoneutral slope. |
---|
203 | ! Most terms are on W grid so work on this grid |
---|
204 | #ifdef key_traldf_eiv |
---|
205 | CALL wrk_alloc( jpi, jpj, zke2d ) |
---|
206 | zke2d(:,:) = 0._wp |
---|
207 | DO jk = 1,jpk |
---|
208 | DO ji = 1,jpi |
---|
209 | DO jj = 1,jpj |
---|
210 | zke2d(ji,jj) = zke2d(ji,jj) + rau0 * fsaeiw(ji, jj, jk) & |
---|
211 | & * ( wslpi(ji, jj, jk) * wslpi(ji,jj,jk) & |
---|
212 | & + wslpj(ji, jj, jk) * wslpj(ji,jj,jk) ) & |
---|
213 | & * rn2(ji,jj,jk) * fse3w(ji, jj, jk) |
---|
214 | ENDDO |
---|
215 | ENDDO |
---|
216 | ENDDO |
---|
217 | CALL iom_put("ketrd_eiv", zke2d) |
---|
218 | CALL wrk_dealloc( jpi, jpj, zke2d ) |
---|
219 | #endif |
---|
220 | ! |
---|
221 | END SELECT |
---|
222 | ! |
---|
223 | CALL wrk_dealloc( jpi, jpj, jpk, zke ) |
---|
224 | ! |
---|
225 | END SUBROUTINE trd_ken |
---|
226 | |
---|
227 | |
---|
228 | SUBROUTINE ken_p2k( kt , pconv ) |
---|
229 | !!--------------------------------------------------------------------- |
---|
230 | !! *** ROUTINE ken_p2k *** |
---|
231 | !! |
---|
232 | !! ** Purpose : compute rate of conversion from potential to kinetic energy |
---|
233 | !! |
---|
234 | !! ** Method : - compute conv defined as -rau*g*w on T-grid points |
---|
235 | !! |
---|
236 | !! ** Work only for full steps and partial steps (ln_hpg_zco or ln_hpg_zps) |
---|
237 | !!---------------------------------------------------------------------- |
---|
238 | INTEGER, INTENT(in) :: kt ! ocean time-step index |
---|
239 | !! |
---|
240 | REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT( out) :: pconv |
---|
241 | ! |
---|
242 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
243 | INTEGER :: iku, ikv ! temporary integers |
---|
244 | REAL(wp) :: zcoef ! temporary scalars |
---|
245 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zconv ! temporary conv on W-grid |
---|
246 | !!---------------------------------------------------------------------- |
---|
247 | ! |
---|
248 | CALL wrk_alloc( jpi,jpj,jpk, zconv ) |
---|
249 | ! |
---|
250 | ! Local constant initialization |
---|
251 | zcoef = - rau0 * grav * 0.5_wp |
---|
252 | |
---|
253 | ! Surface value (also valid in partial step case) |
---|
254 | zconv(:,:,1) = zcoef * ( 2._wp * rhd(:,:,1) ) * wn(:,:,1) * fse3w(:,:,1) |
---|
255 | |
---|
256 | ! interior value (2=<jk=<jpkm1) |
---|
257 | DO jk = 2, jpk |
---|
258 | zconv(:,:,jk) = zcoef * ( rhd(:,:,jk) + rhd(:,:,jk-1) ) * wn(:,:,jk) * fse3w(:,:,jk) |
---|
259 | END DO |
---|
260 | |
---|
261 | ! conv value on T-point |
---|
262 | DO jk = 1, jpkm1 |
---|
263 | DO jj = 1, jpj |
---|
264 | DO ji = 1, jpi |
---|
265 | zcoef = 0.5_wp / fse3t(ji,jj,jk) |
---|
266 | pconv(ji,jj,jk) = zcoef * ( zconv(ji,jj,jk) + zconv(ji,jj,jk+1) ) * tmask(ji,jj,jk) |
---|
267 | END DO |
---|
268 | END DO |
---|
269 | END DO |
---|
270 | ! |
---|
271 | CALL wrk_dealloc( jpi,jpj,jpk, zconv ) |
---|
272 | ! |
---|
273 | END SUBROUTINE ken_p2k |
---|
274 | |
---|
275 | |
---|
276 | SUBROUTINE trd_ken_init |
---|
277 | !!--------------------------------------------------------------------- |
---|
278 | !! *** ROUTINE trd_ken_init *** |
---|
279 | !! |
---|
280 | !! ** Purpose : initialisation of 3D Kinetic Energy trend diagnostic |
---|
281 | !!---------------------------------------------------------------------- |
---|
282 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
283 | !!---------------------------------------------------------------------- |
---|
284 | ! |
---|
285 | IF(lwp) THEN |
---|
286 | WRITE(numout,*) |
---|
287 | WRITE(numout,*) 'trd_ken_init : 3D Kinetic Energy trends' |
---|
288 | WRITE(numout,*) '~~~~~~~~~~~~~' |
---|
289 | ENDIF |
---|
290 | ! ! allocate box volume arrays |
---|
291 | IF ( trd_ken_alloc() /= 0 ) CALL ctl_stop('trd_ken_alloc: failed to allocate arrays') |
---|
292 | ! |
---|
293 | !!gm IF( .NOT. (ln_hpg_zco.OR.ln_hpg_zps) ) & |
---|
294 | !!gm & CALL ctl_stop('trd_ken_init : only full and partial cells are coded for conversion rate') |
---|
295 | ! |
---|
296 | IF ( .NOT.lk_vvl ) THEN ! constant volume: bu, bv, 1/bt computed one for all |
---|
297 | DO jk = 1, jpkm1 |
---|
298 | bu (:,:,jk) = e1u(:,:) * e2u(:,:) * fse3u_n(:,:,jk) |
---|
299 | bv (:,:,jk) = e1v(:,:) * e2v(:,:) * fse3v_n(:,:,jk) |
---|
300 | r1_bt(:,:,jk) = 1._wp / ( e1e2t(:,:) * fse3t_n(:,:,jk) ) |
---|
301 | END DO |
---|
302 | ENDIF |
---|
303 | ! |
---|
304 | END SUBROUTINE trd_ken_init |
---|
305 | |
---|
306 | !!====================================================================== |
---|
307 | END MODULE trdken |
---|