1 | MODULE p4zche |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p4zche *** |
---|
4 | !! TOP : PISCES Sea water chemistry computed following OCMIP protocol |
---|
5 | !!====================================================================== |
---|
6 | !! History : OPA ! 1988 (E. Maier-Reimer) Original code |
---|
7 | !! - ! 1998 (O. Aumont) addition |
---|
8 | !! - ! 1999 (C. Le Quere) modification |
---|
9 | !! NEMO 1.0 ! 2004 (O. Aumont) modification |
---|
10 | !! - ! 2006 (R. Gangsto) modification |
---|
11 | !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 |
---|
12 | !! ! 2011-02 (J. Simeon, J.Orr ) update O2 solubility constants |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | #if defined key_pisces |
---|
15 | !!---------------------------------------------------------------------- |
---|
16 | !! 'key_pisces' PISCES bio-model |
---|
17 | !!---------------------------------------------------------------------- |
---|
18 | !! p4z_che : Sea water chemistry computed following OCMIP protocol |
---|
19 | !!---------------------------------------------------------------------- |
---|
20 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
21 | USE trc ! passive tracers common variables |
---|
22 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
23 | USE lib_mpp ! MPP library |
---|
24 | |
---|
25 | IMPLICIT NONE |
---|
26 | PRIVATE |
---|
27 | |
---|
28 | PUBLIC p4z_che ! |
---|
29 | PUBLIC p4z_che_alloc ! |
---|
30 | |
---|
31 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sio3eq ! chemistry of Si |
---|
32 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: fekeq ! chemistry of Fe |
---|
33 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: chemc ! Solubilities of O2 and CO2 |
---|
34 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: chemo2 ! Solubilities of O2 and CO2 |
---|
35 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: tempis ! In situ temperature |
---|
36 | |
---|
37 | REAL(wp), PUBLIC :: atcox = 0.20946 ! units atm |
---|
38 | |
---|
39 | REAL(wp) :: salchl = 1. / 1.80655 ! conversion factor for salinity --> chlorinity (Wooster et al. 1969) |
---|
40 | REAL(wp) :: o2atm = 1. / ( 1000. * 0.20946 ) |
---|
41 | |
---|
42 | REAL(wp) :: rgas = 83.14472 ! universal gas constants |
---|
43 | REAL(wp) :: oxyco = 1. / 22.4144 ! converts from liters of an ideal gas to moles |
---|
44 | |
---|
45 | REAL(wp) :: bor1 = 0.00023 ! borat constants |
---|
46 | REAL(wp) :: bor2 = 1. / 10.82 |
---|
47 | |
---|
48 | REAL(wp) :: st1 = 0.14 ! constants for calculate concentrations for sulfate |
---|
49 | REAL(wp) :: st2 = 1./96.062 ! (Morris & Riley 1966) |
---|
50 | |
---|
51 | REAL(wp) :: ft1 = 0.000067 ! constants for calculate concentrations for fluorides |
---|
52 | REAL(wp) :: ft2 = 1./18.9984 ! (Dickson & Riley 1979 ) |
---|
53 | |
---|
54 | ! ! volumetric solubility constants for o2 in ml/L |
---|
55 | REAL(wp) :: ox0 = 2.00856 ! from Table 1 for Eq 8 of Garcia and Gordon, 1992. |
---|
56 | REAL(wp) :: ox1 = 3.22400 ! corrects for moisture and fugacity, but not total atmospheric pressure |
---|
57 | REAL(wp) :: ox2 = 3.99063 ! Original PISCES code noted this was a solubility, but |
---|
58 | REAL(wp) :: ox3 = 4.80299 ! was in fact a bunsen coefficient with units L-O2/(Lsw atm-O2) |
---|
59 | REAL(wp) :: ox4 = 9.78188e-1 ! Hence, need to divide EXP( zoxy ) by 1000, ml-O2 => L-O2 |
---|
60 | REAL(wp) :: ox5 = 1.71069 ! and atcox = 0.20946 to add the 1/atm dimension. |
---|
61 | REAL(wp) :: ox6 = -6.24097e-3 |
---|
62 | REAL(wp) :: ox7 = -6.93498e-3 |
---|
63 | REAL(wp) :: ox8 = -6.90358e-3 |
---|
64 | REAL(wp) :: ox9 = -4.29155e-3 |
---|
65 | REAL(wp) :: ox10 = -3.11680e-7 |
---|
66 | |
---|
67 | ! ! coeff. for seawater pressure correction : millero 95 |
---|
68 | ! ! AGRIF doesn't like the DATA instruction |
---|
69 | REAL(wp) :: devk11 = -25.5 |
---|
70 | REAL(wp) :: devk12 = -15.82 |
---|
71 | REAL(wp) :: devk13 = -29.48 |
---|
72 | REAL(wp) :: devk14 = -25.60 |
---|
73 | REAL(wp) :: devk15 = -48.76 |
---|
74 | ! |
---|
75 | REAL(wp) :: devk21 = 0.1271 |
---|
76 | REAL(wp) :: devk22 = -0.0219 |
---|
77 | REAL(wp) :: devk23 = 0.1622 |
---|
78 | REAL(wp) :: devk24 = 0.2324 |
---|
79 | REAL(wp) :: devk25 = 0.5304 |
---|
80 | ! |
---|
81 | REAL(wp) :: devk31 = 0. |
---|
82 | REAL(wp) :: devk32 = 0. |
---|
83 | REAL(wp) :: devk33 = 2.608E-3 |
---|
84 | REAL(wp) :: devk34 = -3.6246E-3 |
---|
85 | REAL(wp) :: devk35 = 0. |
---|
86 | ! |
---|
87 | REAL(wp) :: devk41 = -3.08E-3 |
---|
88 | REAL(wp) :: devk42 = 1.13E-3 |
---|
89 | REAL(wp) :: devk43 = -2.84E-3 |
---|
90 | REAL(wp) :: devk44 = -5.13E-3 |
---|
91 | REAL(wp) :: devk45 = -11.76E-3 |
---|
92 | ! |
---|
93 | REAL(wp) :: devk51 = 0.0877E-3 |
---|
94 | REAL(wp) :: devk52 = -0.1475E-3 |
---|
95 | REAL(wp) :: devk53 = 0. |
---|
96 | REAL(wp) :: devk54 = 0.0794E-3 |
---|
97 | REAL(wp) :: devk55 = 0.3692E-3 |
---|
98 | |
---|
99 | !!* Substitution |
---|
100 | #include "top_substitute.h90" |
---|
101 | !!---------------------------------------------------------------------- |
---|
102 | !! NEMO/TOP 3.3 , NEMO Consortium (2010) |
---|
103 | !! $Id$ |
---|
104 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
105 | !!---------------------------------------------------------------------- |
---|
106 | CONTAINS |
---|
107 | |
---|
108 | SUBROUTINE p4z_che |
---|
109 | !!--------------------------------------------------------------------- |
---|
110 | !! *** ROUTINE p4z_che *** |
---|
111 | !! |
---|
112 | !! ** Purpose : Sea water chemistry computed following OCMIP protocol |
---|
113 | !! |
---|
114 | !! ** Method : - ... |
---|
115 | !!--------------------------------------------------------------------- |
---|
116 | INTEGER :: ji, jj, jk |
---|
117 | REAL(wp) :: ztkel, zt , zt2 , zsal , zsal2 , zbuf1 , zbuf2 |
---|
118 | REAL(wp) :: ztgg , ztgg2, ztgg3 , ztgg4 , ztgg5 |
---|
119 | REAL(wp) :: zpres, ztc , zcl , zcpexp, zoxy , zcpexp2 |
---|
120 | REAL(wp) :: zsqrt, ztr , zlogt , zcek1, zc1, zplat |
---|
121 | REAL(wp) :: zis , zis2 , zsal15, zisqrt, za1 , za2 |
---|
122 | REAL(wp) :: zckb , zck1 , zck2 , zckw , zak1 , zak2 , zakb , zaksp0, zakw |
---|
123 | REAL(wp) :: zst , zft , zcks , zckf , zaksp1 |
---|
124 | !!--------------------------------------------------------------------- |
---|
125 | ! |
---|
126 | IF( nn_timing == 1 ) CALL timing_start('p4z_che') |
---|
127 | ! |
---|
128 | ! Computations of chemical constants require in situ temperature |
---|
129 | ! Here a quite simple formulation is used to convert |
---|
130 | ! potential temperature to in situ temperature. The errors is less than |
---|
131 | ! 0.04°C relative to an exact computation |
---|
132 | ! --------------------------------------------------------------------- |
---|
133 | DO jk = 1, jpk |
---|
134 | DO jj = 1, jpj |
---|
135 | DO ji = 1, jpi |
---|
136 | zpres = fsdept(ji,jj,jk) / 1000. |
---|
137 | za1 = 0.04 * ( 1.0 + 0.185 * tsn(ji,jj,jk,jp_tem) + 0.035 * (tsn(ji,jj,jk,jp_sal) - 35.0) ) |
---|
138 | za2 = 0.0075 * ( 1.0 - tsn(ji,jj,jk,jp_tem) / 30.0 ) |
---|
139 | tempis(ji,jj,jk) = tsn(ji,jj,jk,jp_tem) - za1 * zpres + za2 * zpres**2 |
---|
140 | END DO |
---|
141 | END DO |
---|
142 | END DO |
---|
143 | ! |
---|
144 | ! CHEMICAL CONSTANTS - SURFACE LAYER |
---|
145 | ! ---------------------------------- |
---|
146 | !CDIR NOVERRCHK |
---|
147 | DO jj = 1, jpj |
---|
148 | !CDIR NOVERRCHK |
---|
149 | DO ji = 1, jpi |
---|
150 | ! ! SET ABSOLUTE TEMPERATURE |
---|
151 | ztkel = tempis(ji,jj,1) + 273.15 |
---|
152 | zt = ztkel * 0.01 |
---|
153 | zt2 = zt * zt |
---|
154 | zsal = tsn(ji,jj,1,jp_sal) + ( 1.- tmask(ji,jj,1) ) * 35. |
---|
155 | zsal2 = zsal * zsal |
---|
156 | zlogt = LOG( zt ) |
---|
157 | ! ! LN(K0) OF SOLUBILITY OF CO2 (EQ. 12, WEISS, 1980) |
---|
158 | ! ! AND FOR THE ATMOSPHERE FOR NON IDEAL GAS |
---|
159 | zcek1 = 9345.17/ztkel - 60.2409 + 23.3585 * LOG(zt) + zsal*(0.023517 - 0.00023656*ztkel & |
---|
160 | & + 0.0047036e-4*ztkel**2) |
---|
161 | ! ! SET SOLUBILITIES OF O2 AND CO2 |
---|
162 | chemc(ji,jj,1) = EXP( zcek1 ) * 1.e-6 * rhop(ji,jj,1) / 1000. ! mol/(kg uatm) |
---|
163 | chemc(ji,jj,2) = -1636.75 + 12.0408*ztkel - 0.0327957*ztkel**2 + 0.0000316528*ztkel**3 |
---|
164 | chemc(ji,jj,3) = 57.7 - 0.118*ztkel |
---|
165 | ! |
---|
166 | END DO |
---|
167 | END DO |
---|
168 | |
---|
169 | ! OXYGEN SOLUBILITY - DEEP OCEAN |
---|
170 | ! ------------------------------- |
---|
171 | !CDIR NOVERRCHK |
---|
172 | DO jk = 1, jpk |
---|
173 | !CDIR NOVERRCHK |
---|
174 | DO jj = 1, jpj |
---|
175 | !CDIR NOVERRCHK |
---|
176 | DO ji = 1, jpi |
---|
177 | ztkel = tempis(ji,jj,jk) + 273.15 |
---|
178 | zsal = tsn(ji,jj,jk,jp_sal) + ( 1.- tmask(ji,jj,jk) ) * 35. |
---|
179 | zsal2 = zsal * zsal |
---|
180 | ztgg = LOG( ( 298.15 - tempis(ji,jj,jk) ) / ztkel ) ! Set the GORDON & GARCIA scaled temperature |
---|
181 | ztgg2 = ztgg * ztgg |
---|
182 | ztgg3 = ztgg2 * ztgg |
---|
183 | ztgg4 = ztgg3 * ztgg |
---|
184 | ztgg5 = ztgg4 * ztgg |
---|
185 | zoxy = ox0 + ox1 * ztgg + ox2 * ztgg2 + ox3 * ztgg3 + ox4 * ztgg4 + ox5 * ztgg5 & |
---|
186 | + zsal * ( ox6 + ox7 * ztgg + ox8 * ztgg2 + ox9 * ztgg3 ) + ox10 * zsal2 |
---|
187 | chemo2(ji,jj,jk) = ( EXP( zoxy ) * o2atm ) * oxyco * atcox ! mol/(L atm) |
---|
188 | END DO |
---|
189 | END DO |
---|
190 | END DO |
---|
191 | |
---|
192 | |
---|
193 | |
---|
194 | ! CHEMICAL CONSTANTS - DEEP OCEAN |
---|
195 | ! ------------------------------- |
---|
196 | !CDIR NOVERRCHK |
---|
197 | DO jk = 1, jpk |
---|
198 | !CDIR NOVERRCHK |
---|
199 | DO jj = 1, jpj |
---|
200 | !CDIR NOVERRCHK |
---|
201 | DO ji = 1, jpi |
---|
202 | |
---|
203 | ! SET PRESSION ACCORDING TO SAUNDER (1980) |
---|
204 | zplat = SIN ( ABS(gphit(ji,jj)*3.141592654/180.) ) |
---|
205 | zc1 = 5.92E-3 + zplat**2 * 5.25E-3 |
---|
206 | zpres = ((1-zc1)-SQRT(((1-zc1)**2)-(8.84E-6*fsdept(ji,jj,jk)))) / 4.42E-6 |
---|
207 | zpres = zpres / 10.0 |
---|
208 | |
---|
209 | ! SET ABSOLUTE TEMPERATURE |
---|
210 | ztkel = tempis(ji,jj,jk) + 273.15 |
---|
211 | zsal = tsn(ji,jj,jk,jp_sal) + ( 1.-tmask(ji,jj,jk) ) * 35. |
---|
212 | zsqrt = SQRT( zsal ) |
---|
213 | zsal15 = zsqrt * zsal |
---|
214 | zlogt = LOG( ztkel ) |
---|
215 | ztr = 1. / ztkel |
---|
216 | zis = 19.924 * zsal / ( 1000.- 1.005 * zsal ) |
---|
217 | zis2 = zis * zis |
---|
218 | zisqrt = SQRT( zis ) |
---|
219 | ztc = tempis(ji,jj,jk) + ( 1.- tmask(ji,jj,jk) ) * 20. |
---|
220 | |
---|
221 | ! CHLORINITY (WOOSTER ET AL., 1969) |
---|
222 | zcl = zsal * salchl |
---|
223 | |
---|
224 | ! TOTAL SULFATE CONCENTR. [MOLES/kg soln] |
---|
225 | zst = st1 * zcl * st2 |
---|
226 | |
---|
227 | ! TOTAL FLUORIDE CONCENTR. [MOLES/kg soln] |
---|
228 | zft = ft1 * zcl * ft2 |
---|
229 | |
---|
230 | ! DISSOCIATION CONSTANT FOR SULFATES on free H scale (Dickson 1990) |
---|
231 | zcks = EXP(-4276.1 * ztr + 141.328 - 23.093 * zlogt & |
---|
232 | & + (-13856. * ztr + 324.57 - 47.986 * zlogt) * zisqrt & |
---|
233 | & + (35474. * ztr - 771.54 + 114.723 * zlogt) * zis & |
---|
234 | & - 2698. * ztr * zis**1.5 + 1776.* ztr * zis2 & |
---|
235 | & + LOG(1.0 - 0.001005 * zsal)) |
---|
236 | ! |
---|
237 | aphscale(ji,jj,jk) = ( 1. + zst / zcks ) |
---|
238 | |
---|
239 | ! DISSOCIATION CONSTANT FOR FLUORIDES on free H scale (Dickson and Riley 79) |
---|
240 | zckf = EXP( 1590.2*ztr - 12.641 + 1.525*zisqrt & |
---|
241 | & + LOG(1.0d0 - 0.001005d0*zsal) & |
---|
242 | & + LOG(1.0d0 + zst/zcks)) |
---|
243 | |
---|
244 | ! DISSOCIATION CONSTANT FOR CARBONATE AND BORATE |
---|
245 | zckb= (-8966.90 - 2890.53*zsqrt - 77.942*zsal & |
---|
246 | & + 1.728*zsal15 - 0.0996*zsal*zsal)*ztr & |
---|
247 | & + (148.0248 + 137.1942*zsqrt + 1.62142*zsal) & |
---|
248 | & + (-24.4344 - 25.085*zsqrt - 0.2474*zsal) & |
---|
249 | & * zlogt + 0.053105*zsqrt*ztkel |
---|
250 | |
---|
251 | |
---|
252 | ! DISSOCIATION COEFFICIENT FOR CARBONATE ACCORDING TO |
---|
253 | ! MEHRBACH (1973) REFIT BY MILLERO (1995), seawater scale |
---|
254 | zck1 = -1.0*(3633.86*ztr - 61.2172 + 9.6777*zlogt & |
---|
255 | - 0.011555*zsal + 0.0001152*zsal*zsal) |
---|
256 | zck2 = -1.0*(471.78*ztr + 25.9290 - 3.16967*zlogt & |
---|
257 | - 0.01781*zsal + 0.0001122*zsal*zsal) |
---|
258 | |
---|
259 | ! PKW (H2O) (DICKSON AND RILEY, 1979) |
---|
260 | zckw = -13847.26*ztr + 148.9652 - 23.6521 * zlogt & |
---|
261 | & + (118.67*ztr - 5.977 + 1.0495 * zlogt) & |
---|
262 | & * zsqrt - 0.01615 * zsal |
---|
263 | |
---|
264 | ! APPARENT SOLUBILITY PRODUCT K'SP OF CALCITE IN SEAWATER |
---|
265 | ! (S=27-43, T=2-25 DEG C) at pres =0 (atmos. pressure) (MUCCI 1983) |
---|
266 | zaksp0 = -171.9065 -0.077993*ztkel + 2839.319*ztr + 71.595*LOG10( ztkel ) & |
---|
267 | & + (-0.77712 + 0.00284263*ztkel + 178.34*ztr) * zsqrt & |
---|
268 | & - 0.07711*zsal + 0.0041249*zsal15 |
---|
269 | |
---|
270 | ! K1, K2 OF CARBONIC ACID, KB OF BORIC ACID, KW (H2O) (LIT.?) |
---|
271 | zak1 = 10**(zck1) |
---|
272 | zak2 = 10**(zck2) |
---|
273 | zakb = EXP( zckb ) |
---|
274 | zakw = EXP( zckw ) |
---|
275 | zaksp1 = 10**(zaksp0) |
---|
276 | |
---|
277 | ! FORMULA FOR CPEXP AFTER EDMOND & GIESKES (1970) |
---|
278 | ! (REFERENCE TO CULBERSON & PYTKOQICZ (1968) AS MADE |
---|
279 | ! IN BROECKER ET AL. (1982) IS INCORRECT; HERE RGAS IS |
---|
280 | ! TAKEN TENFOLD TO CORRECT FOR THE NOTATION OF pres IN |
---|
281 | ! DBAR INSTEAD OF BAR AND THE EXPRESSION FOR CPEXP IS |
---|
282 | ! MULTIPLIED BY LN(10.) TO ALLOW USE OF EXP-FUNCTION |
---|
283 | ! WITH BASIS E IN THE FORMULA FOR AKSPP (CF. EDMOND |
---|
284 | ! & GIESKES (1970), P. 1285-1286 (THE SMALL |
---|
285 | ! FORMULA ON P. 1286 IS RIGHT AND CONSISTENT WITH THE |
---|
286 | ! SIGN IN PARTIAL MOLAR VOLUME CHANGE AS SHOWN ON P. 1285)) |
---|
287 | zcpexp = zpres /(rgas*ztkel) |
---|
288 | zcpexp2 = zpres * zpres/(rgas*ztkel) |
---|
289 | |
---|
290 | ! KB OF BORIC ACID, K1,K2 OF CARBONIC ACID PRESSURE |
---|
291 | ! CORRECTION AFTER CULBERSON AND PYTKOWICZ (1968) |
---|
292 | ! (CF. BROECKER ET AL., 1982) |
---|
293 | |
---|
294 | zbuf1 = - ( devk11 + devk21 * ztc + devk31 * ztc * ztc ) |
---|
295 | zbuf2 = 0.5 * ( devk41 + devk51 * ztc ) |
---|
296 | ak13(ji,jj,jk) = zak1 * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 ) |
---|
297 | |
---|
298 | zbuf1 = - ( devk12 + devk22 * ztc + devk32 * ztc * ztc ) |
---|
299 | zbuf2 = 0.5 * ( devk42 + devk52 * ztc ) |
---|
300 | ak23(ji,jj,jk) = zak2 * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 ) |
---|
301 | |
---|
302 | zbuf1 = - ( devk13 + devk23 * ztc + devk33 * ztc * ztc ) |
---|
303 | zbuf2 = 0.5 * ( devk43 + devk53 * ztc ) |
---|
304 | akb3(ji,jj,jk) = zakb * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 ) |
---|
305 | |
---|
306 | zbuf1 = - ( devk14 + devk24 * ztc + devk34 * ztc * ztc ) |
---|
307 | zbuf2 = 0.5 * ( devk44 + devk54 * ztc ) |
---|
308 | akw3(ji,jj,jk) = zakw * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 ) |
---|
309 | |
---|
310 | |
---|
311 | ! APPARENT SOLUBILITY PRODUCT K'SP OF CALCITE |
---|
312 | ! AS FUNCTION OF PRESSURE FOLLOWING MILLERO |
---|
313 | ! (P. 1285) AND BERNER (1976) |
---|
314 | zbuf1 = - ( devk15 + devk25 * ztc + devk35 * ztc * ztc ) |
---|
315 | zbuf2 = 0.5 * ( devk45 + devk55 * ztc ) |
---|
316 | aksp(ji,jj,jk) = zaksp1 * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 ) |
---|
317 | |
---|
318 | ! TOTAL BORATE CONCENTR. [MOLES/L] |
---|
319 | borat(ji,jj,jk) = bor1 * zcl * bor2 |
---|
320 | |
---|
321 | ! Iron and SIO3 saturation concentration from ... |
---|
322 | sio3eq(ji,jj,jk) = EXP( LOG( 10.) * ( 6.44 - 968. / ztkel ) ) * 1.e-6 |
---|
323 | fekeq (ji,jj,jk) = 10**( 17.27 - 1565.7 / ( 273.15 + ztc ) ) |
---|
324 | |
---|
325 | END DO |
---|
326 | END DO |
---|
327 | END DO |
---|
328 | ! |
---|
329 | IF( nn_timing == 1 ) CALL timing_stop('p4z_che') |
---|
330 | ! |
---|
331 | END SUBROUTINE p4z_che |
---|
332 | |
---|
333 | |
---|
334 | INTEGER FUNCTION p4z_che_alloc() |
---|
335 | !!---------------------------------------------------------------------- |
---|
336 | !! *** ROUTINE p4z_che_alloc *** |
---|
337 | !!---------------------------------------------------------------------- |
---|
338 | ALLOCATE( sio3eq(jpi,jpj,jpk), fekeq(jpi,jpj,jpk), chemc(jpi,jpj,3), chemo2(jpi,jpj,jpk), & |
---|
339 | & tempis(jpi,jpj,jpk), STAT=p4z_che_alloc ) |
---|
340 | ! |
---|
341 | IF( p4z_che_alloc /= 0 ) CALL ctl_warn('p4z_che_alloc : failed to allocate arrays.') |
---|
342 | ! |
---|
343 | END FUNCTION p4z_che_alloc |
---|
344 | |
---|
345 | #else |
---|
346 | !!====================================================================== |
---|
347 | !! Dummy module : No PISCES bio-model |
---|
348 | !!====================================================================== |
---|
349 | CONTAINS |
---|
350 | SUBROUTINE p4z_che( kt ) ! Empty routine |
---|
351 | INTEGER, INTENT(in) :: kt |
---|
352 | WRITE(*,*) 'p4z_che: You should not have seen this print! error?', kt |
---|
353 | END SUBROUTINE p4z_che |
---|
354 | #endif |
---|
355 | |
---|
356 | !!====================================================================== |
---|
357 | END MODULE p4zche |
---|