1 | MODULE p4zfechem |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p4zfechem *** |
---|
4 | !! TOP : PISCES Compute iron chemistry and scavenging |
---|
5 | !!====================================================================== |
---|
6 | !! History : 3.5 ! 2012-07 (O. Aumont, A. Tagliabue, C. Ethe) Original code |
---|
7 | !!---------------------------------------------------------------------- |
---|
8 | !! p4z_fechem : Compute remineralization/scavenging of iron |
---|
9 | !! p4z_fechem_init : Initialisation of parameters for remineralisation |
---|
10 | !! p4z_fechem_alloc : Allocate remineralisation variables |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
13 | USE trc ! passive tracers common variables |
---|
14 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
15 | USE p4zopt ! optical model |
---|
16 | USE p4zche ! chemical model |
---|
17 | USE p4zsbc ! Boundary conditions from sediments |
---|
18 | USE prtctl_trc ! print control for debugging |
---|
19 | USE iom ! I/O manager |
---|
20 | |
---|
21 | IMPLICIT NONE |
---|
22 | PRIVATE |
---|
23 | |
---|
24 | PUBLIC p4z_fechem ! called in p4zbio.F90 |
---|
25 | PUBLIC p4z_fechem_init ! called in trcsms_pisces.F90 |
---|
26 | |
---|
27 | LOGICAL :: ln_fechem !: boolean for complex iron chemistry following Tagliabue and voelker |
---|
28 | LOGICAL :: ln_ligvar !: boolean for variable ligand concentration following Tagliabue and voelker |
---|
29 | REAL(wp), PUBLIC :: xlam1 !: scavenging rate of Iron |
---|
30 | REAL(wp), PUBLIC :: xlamdust !: scavenging rate of Iron by dust |
---|
31 | REAL(wp), PUBLIC :: ligand !: ligand concentration in the ocean |
---|
32 | |
---|
33 | !!gm Not DOCTOR norm !!! |
---|
34 | REAL(wp) :: kl1, kl2, kb1, kb2, ks, kpr, spd, con, kth |
---|
35 | |
---|
36 | !!---------------------------------------------------------------------- |
---|
37 | !! NEMO/TOP 3.3 , NEMO Consortium (2010) |
---|
38 | !! $Id: p4zrem.F90 3160 2011-11-20 14:27:18Z cetlod $ |
---|
39 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
40 | !!---------------------------------------------------------------------- |
---|
41 | CONTAINS |
---|
42 | |
---|
43 | SUBROUTINE p4z_fechem( kt, knt ) |
---|
44 | !!--------------------------------------------------------------------- |
---|
45 | !! *** ROUTINE p4z_fechem *** |
---|
46 | !! |
---|
47 | !! ** Purpose : Compute remineralization/scavenging of iron |
---|
48 | !! |
---|
49 | !! ** Method : 2 different chemistry models are available for iron |
---|
50 | !! (1) The simple chemistry model of Aumont and Bopp (2006) |
---|
51 | !! based on one ligand and one inorganic form |
---|
52 | !! (2) The complex chemistry model of Tagliabue and |
---|
53 | !! Voelker (2009) based on 2 ligands, 2 inorganic forms |
---|
54 | !! and one particulate form (ln_fechem) |
---|
55 | !!--------------------------------------------------------------------- |
---|
56 | INTEGER, INTENT(in) :: kt, knt ! ocean time step |
---|
57 | ! |
---|
58 | INTEGER :: ji, jj, jk, jic |
---|
59 | CHARACTER (len=25) :: charout |
---|
60 | REAL(wp) :: zdep, zlam1a, zlam1b, zlamfac |
---|
61 | REAL(wp) :: zkeq, zfeequi, zfesatur, zfecoll |
---|
62 | REAL(wp) :: zdenom1, zscave, zaggdfea, zaggdfeb, zcoag |
---|
63 | REAL(wp) :: ztrc, zdust |
---|
64 | REAL(wp) :: zdenom, zdenom2 |
---|
65 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zTL1, zFe3, ztotlig |
---|
66 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zFeL1, zFeL2, zTL2, zFe2, zFeP |
---|
67 | REAL(wp) :: zkox, zkph1, zkph2, zph, zionic, ztligand |
---|
68 | REAL(wp) :: za, zb, zc, zkappa1, zkappa2, za0, za1, za2 |
---|
69 | REAL(wp) :: zxs, zfunc, zp, zq, zd, zr, zphi, zfff, zp3, zq2 |
---|
70 | REAL(wp) :: ztfe, zoxy |
---|
71 | !!--------------------------------------------------------------------- |
---|
72 | ! |
---|
73 | IF( nn_timing == 1 ) CALL timing_start('p4z_fechem') |
---|
74 | ! |
---|
75 | CALL wrk_alloc( jpi,jpj,jpk, zFe3, zFeL1, zTL1, ztotlig ) |
---|
76 | zFe3 (:,:,:) = 0. |
---|
77 | zFeL1(:,:,:) = 0. |
---|
78 | zTL1 (:,:,:) = 0. |
---|
79 | IF( ln_fechem ) THEN |
---|
80 | CALL wrk_alloc( jpi,jpj,jpk, zFe2, zFeL2, zTL2, zFeP ) |
---|
81 | zFe2 (:,:,:) = 0. |
---|
82 | zFeL2(:,:,:) = 0. |
---|
83 | zTL2 (:,:,:) = 0. |
---|
84 | zFeP (:,:,:) = 0. |
---|
85 | ENDIF |
---|
86 | |
---|
87 | ! Total ligand concentration : Ligands can be chosen to be constant or variable |
---|
88 | ! Parameterization from Tagliabue and Voelker (2011) |
---|
89 | ! ------------------------------------------------- |
---|
90 | IF( ln_ligvar ) THEN |
---|
91 | ztotlig(:,:,:) = 0.09 * trb(:,:,:,jpdoc) * 1E6 + ligand * 1E9 |
---|
92 | ztotlig(:,:,:) = MIN( ztotlig(:,:,:), 10. ) |
---|
93 | ELSE |
---|
94 | ztotlig(:,:,:) = ligand * 1E9 |
---|
95 | ENDIF |
---|
96 | |
---|
97 | IF( ln_fechem ) THEN |
---|
98 | ! ------------------------------------------------------------ |
---|
99 | ! NEW FE CHEMISTRY ROUTINE from Tagliabue and Volker (2009) |
---|
100 | ! This model is based on two ligands, Fe2+, Fe3+ and Fep |
---|
101 | ! Chemistry is supposed to be fast enough to be at equilibrium |
---|
102 | ! ------------------------------------------------------------ |
---|
103 | DO jk = 1, jpkm1 |
---|
104 | DO jj = 1, jpj |
---|
105 | DO ji = 1, jpi |
---|
106 | ! Calculate ligand concentrations : assume 2/3rd of excess goes to |
---|
107 | ! strong ligands (L1) and 1/3rd to weak ligands (L2) |
---|
108 | ztligand = ztotlig(ji,jj,jk) - ligand * 1E9 |
---|
109 | zTL1(ji,jj,jk) = 0.000001 + 0.67 * ztligand |
---|
110 | zTL2(ji,jj,jk) = ligand * 1E9 - 0.000001 + 0.33 * ztligand |
---|
111 | ! ionic strength from Millero et al. 1987 |
---|
112 | zionic = 19.9201 * tsn(ji,jj,jk,jp_sal) / ( 1000. - 1.00488 * tsn(ji,jj,jk,jp_sal) + rtrn ) |
---|
113 | zph = -LOG10( MAX( hi(ji,jj,jk), rtrn) ) |
---|
114 | zoxy = trb(ji,jj,jk,jpoxy) * ( rhop(ji,jj,jk) / 1.e3 ) |
---|
115 | ! Fe2+ oxydation rate from Santana-Casiano et al. (2005) |
---|
116 | zkox = 35.407 - 6.7109 * zph + 0.5342 * zph * zph - 5362.6 / ( tsn(ji,jj,jk,jp_tem) + 273.15 ) & |
---|
117 | & - 0.04406 * SQRT( tsn(ji,jj,jk,jp_sal) ) - 0.002847 * tsn(ji,jj,jk,jp_sal) |
---|
118 | zkox = ( 10.** zkox ) * spd |
---|
119 | zkox = zkox * MAX( 1.e-6, zoxy) / ( chemo2(ji,jj,jk) + rtrn ) |
---|
120 | ! PHOTOREDUCTION of complexed iron : Tagliabue and Arrigo (2006) |
---|
121 | zkph2 = MAX( 0., 15. * etot(ji,jj,jk) / ( etot(ji,jj,jk) + 2. ) ) |
---|
122 | zkph1 = zkph2 / 5. |
---|
123 | ! pass the dfe concentration from PISCES |
---|
124 | ztfe = trb(ji,jj,jk,jpfer) * 1e9 |
---|
125 | ! ---------------------------------------------------------- |
---|
126 | ! ANALYTICAL SOLUTION OF ROOTS OF THE FE3+ EQUATION |
---|
127 | ! As shown in Tagliabue and Voelker (2009), Fe3+ is the root of a 3rd order polynom. |
---|
128 | ! ---------------------------------------------------------- |
---|
129 | ! calculate some parameters |
---|
130 | za = 1 + ks / kpr |
---|
131 | zb = 1 + ( zkph1 + kth ) / ( zkox + rtrn ) |
---|
132 | zc = 1 + zkph2 / ( zkox + rtrn ) |
---|
133 | zkappa1 = ( kb1 + zkph1 + kth ) / kl1 |
---|
134 | zkappa2 = ( kb2 + zkph2 ) / kl2 |
---|
135 | za2 = zTL1(ji,jj,jk) * zb / za + zTL2(ji,jj,jk) * zc / za + zkappa1 + zkappa2 - ztfe / za |
---|
136 | za1 = zkappa2 * zTL1(ji,jj,jk) * zb / za + zkappa1 * zTL2(ji,jj,jk) * zc / za & |
---|
137 | & + zkappa1 * zkappa2 - ( zkappa1 + zkappa2 ) * ztfe / za |
---|
138 | za0 = -zkappa1 * zkappa2 * ztfe / za |
---|
139 | zp = za1 - za2 * za2 / 3. |
---|
140 | zq = za2 * za2 * za2 * 2. / 27. - za2 * za1 / 3. + za0 |
---|
141 | zp3 = zp / 3. |
---|
142 | zq2 = zq / 2. |
---|
143 | zd = zp3 * zp3 * zp3 + zq2 * zq2 |
---|
144 | zr = zq / ABS( zq ) * SQRT( ABS( zp ) / 3. ) |
---|
145 | ! compute the roots |
---|
146 | IF( zp > 0.) THEN |
---|
147 | ! zphi = ASINH( zq / ( 2. * zr * zr * zr ) ) |
---|
148 | zphi = zq / ( 2. * zr * zr * zr ) |
---|
149 | zphi = LOG( zphi + SQRT( zphi * zphi + 1 ) ) ! asinh(x) = log(x + sqrt(x^2+1)) |
---|
150 | zxs = -2. * zr * SINH( zphi / 3. ) - za1 / 3. |
---|
151 | ELSE |
---|
152 | IF( zd > 0. ) THEN |
---|
153 | zfff = MAX( 1., zq / ( 2. * zr * zr * zr ) ) |
---|
154 | ! zphi = ACOSH( zfff ) |
---|
155 | zphi = LOG( zfff + SQRT( zfff * zfff - 1 ) ) ! acosh(x) = log(x + sqrt(x^2-1)) |
---|
156 | zxs = -2. * zr * COSH( zphi / 3. ) - za1 / 3. |
---|
157 | ELSE |
---|
158 | zfff = MIN( 1., zq / ( 2. * zr * zr * zr ) ) |
---|
159 | zphi = ACOS( zfff ) |
---|
160 | DO jic = 1, 3 |
---|
161 | zfunc = -2 * zr * COS( zphi / 3. + 2. * FLOAT( jic - 1 ) * rpi / 3. ) - za2 / 3. |
---|
162 | IF( zfunc > 0. .AND. zfunc <= ztfe) zxs = zfunc |
---|
163 | END DO |
---|
164 | ENDIF |
---|
165 | ENDIF |
---|
166 | ! solve for the other Fe species |
---|
167 | zFe3(ji,jj,jk) = MAX( 0., zxs ) |
---|
168 | zFep(ji,jj,jk) = MAX( 0., ( ks * zFe3(ji,jj,jk) / kpr ) ) |
---|
169 | zkappa2 = ( kb2 + zkph2 ) / kl2 |
---|
170 | zFeL2(ji,jj,jk) = MAX( 0., ( zFe3(ji,jj,jk) * zTL2(ji,jj,jk) ) / ( zkappa2 + zFe3(ji,jj,jk) ) ) |
---|
171 | zFeL1(ji,jj,jk) = MAX( 0., ( ztfe / zb - za / zb * zFe3(ji,jj,jk) - zc / zb * zFeL2(ji,jj,jk) ) ) |
---|
172 | zFe2 (ji,jj,jk) = MAX( 0., ( ( zkph1 * zFeL1(ji,jj,jk) + zkph2 * zFeL2(ji,jj,jk) ) / zkox ) ) |
---|
173 | END DO |
---|
174 | END DO |
---|
175 | END DO |
---|
176 | ELSE |
---|
177 | ! ------------------------------------------------------------ |
---|
178 | ! OLD FE CHEMISTRY ROUTINE from Aumont and Bopp (2006) |
---|
179 | ! This model is based on one ligand and Fe' |
---|
180 | ! Chemistry is supposed to be fast enough to be at equilibrium |
---|
181 | ! ------------------------------------------------------------ |
---|
182 | DO jk = 1, jpkm1 |
---|
183 | DO jj = 1, jpj |
---|
184 | DO ji = 1, jpi |
---|
185 | zTL1(ji,jj,jk) = ztotlig(ji,jj,jk) |
---|
186 | zkeq = fekeq(ji,jj,jk) |
---|
187 | zfesatur = zTL1(ji,jj,jk) * 1E-9 |
---|
188 | ztfe = trb(ji,jj,jk,jpfer) |
---|
189 | ! Fe' is the root of a 2nd order polynom |
---|
190 | zFe3 (ji,jj,jk) = ( -( 1. + zfesatur * zkeq - zkeq * ztfe ) & |
---|
191 | & + SQRT( ( 1. + zfesatur * zkeq - zkeq * ztfe )**2 & |
---|
192 | & + 4. * ztfe * zkeq) ) / ( 2. * zkeq ) |
---|
193 | zFe3 (ji,jj,jk) = zFe3(ji,jj,jk) * 1E9 |
---|
194 | zFeL1(ji,jj,jk) = MAX( 0., trb(ji,jj,jk,jpfer) * 1E9 - zFe3(ji,jj,jk) ) |
---|
195 | END DO |
---|
196 | END DO |
---|
197 | END DO |
---|
198 | ! |
---|
199 | ENDIF |
---|
200 | ! |
---|
201 | zdust = 0. ! if no dust available |
---|
202 | ! |
---|
203 | DO jk = 1, jpkm1 |
---|
204 | DO jj = 1, jpj |
---|
205 | DO ji = 1, jpi |
---|
206 | ! Scavenging rate of iron. This scavenging rate depends on the load of particles of sea water. |
---|
207 | ! This parameterization assumes a simple second order kinetics (k[Particles][Fe]). |
---|
208 | ! Scavenging onto dust is also included as evidenced from the DUNE experiments. |
---|
209 | ! -------------------------------------------------------------------------------------- |
---|
210 | IF( ln_fechem ) THEN |
---|
211 | zfeequi = ( zFe3(ji,jj,jk) + zFe2(ji,jj,jk) + zFeP(ji,jj,jk) ) * 1E-9 |
---|
212 | zfecoll = ( 0.3 * zFeL1(ji,jj,jk) + 0.5 * zFeL2(ji,jj,jk) ) * 1E-9 |
---|
213 | ELSE |
---|
214 | zfeequi = zFe3(ji,jj,jk) * 1E-9 |
---|
215 | zfecoll = 0.5 * zFeL1(ji,jj,jk) * 1E-9 |
---|
216 | ENDIF |
---|
217 | |
---|
218 | ztrc = ( trb(ji,jj,jk,jppoc) + trb(ji,jj,jk,jpgoc) + trb(ji,jj,jk,jpcal) + trb(ji,jj,jk,jpgsi) ) * 1.e6 |
---|
219 | IF( ln_dust ) zdust = dust(ji,jj) / ( wdust / rday ) * tmask(ji,jj,jk) ! dust in kg/m2/s |
---|
220 | zlam1b = 3.e-5 + xlamdust * zdust + xlam1 * ztrc |
---|
221 | zscave = zfeequi * zlam1b * xstep |
---|
222 | |
---|
223 | ! Compute the different ratios for scavenging of iron |
---|
224 | ! to later allocate scavenged iron to the different organic pools |
---|
225 | ! --------------------------------------------------------- |
---|
226 | zdenom1 = xlam1 * trb(ji,jj,jk,jppoc) / zlam1b |
---|
227 | zdenom2 = xlam1 * trb(ji,jj,jk,jpgoc) / zlam1b |
---|
228 | |
---|
229 | ! Increased scavenging for very high iron concentrations found near the coasts |
---|
230 | ! due to increased lithogenic particles and let say it is unknown processes (precipitation, ...) |
---|
231 | ! ----------------------------------------------------------- |
---|
232 | zlamfac = MAX( 0.e0, ( gphit(ji,jj) + 55.) / 30. ) |
---|
233 | zlamfac = MIN( 1. , zlamfac ) |
---|
234 | !!gm very small BUG : it is unlikely but possible that gdept_n = 0 ..... |
---|
235 | zdep = MIN( 1., 1000. / gdept_n(ji,jj,jk) ) |
---|
236 | zlam1b = xlam1 * MAX( 0.e0, ( trb(ji,jj,jk,jpfer) * 1.e9 - ztotlig(ji,jj,jk) ) ) |
---|
237 | zcoag = zfeequi * zlam1b * xstep + 1E-4 * ( 1. - zlamfac ) * zdep * xstep * trb(ji,jj,jk,jpfer) |
---|
238 | |
---|
239 | ! Compute the coagulation of colloidal iron. This parameterization |
---|
240 | ! could be thought as an equivalent of colloidal pumping. |
---|
241 | ! It requires certainly some more work as it is very poorly constrained. |
---|
242 | ! ---------------------------------------------------------------- |
---|
243 | zlam1a = ( 0.369 * 0.3 * trb(ji,jj,jk,jpdoc) + 102.4 * trb(ji,jj,jk,jppoc) ) * xdiss(ji,jj,jk) & |
---|
244 | & + ( 114. * 0.3 * trb(ji,jj,jk,jpdoc) + 5.09E3 * trb(ji,jj,jk,jppoc) ) |
---|
245 | zaggdfea = zlam1a * xstep * zfecoll |
---|
246 | zlam1b = 3.53E3 * trb(ji,jj,jk,jpgoc) * xdiss(ji,jj,jk) |
---|
247 | zaggdfeb = zlam1b * xstep * zfecoll |
---|
248 | ! |
---|
249 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - zscave - zaggdfea - zaggdfeb - zcoag |
---|
250 | tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + zscave * zdenom1 + zaggdfea |
---|
251 | tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) + zscave * zdenom2 + zaggdfeb |
---|
252 | END DO |
---|
253 | END DO |
---|
254 | END DO |
---|
255 | ! |
---|
256 | ! Define the bioavailable fraction of iron |
---|
257 | ! ---------------------------------------- |
---|
258 | IF( ln_fechem ) THEN |
---|
259 | biron(:,:,:) = MAX( 0., trb(:,:,:,jpfer) - zFeP(:,:,:) * 1E-9 ) |
---|
260 | ELSE |
---|
261 | biron(:,:,:) = trb(:,:,:,jpfer) |
---|
262 | ENDIF |
---|
263 | |
---|
264 | ! Output of some diagnostics variables |
---|
265 | ! --------------------------------- |
---|
266 | IF( lk_iomput .AND. knt == nrdttrc ) THEN |
---|
267 | IF( iom_use("Fe3") ) CALL iom_put("Fe3" , zFe3 (:,:,:) * tmask(:,:,:) ) ! Fe3+ |
---|
268 | IF( iom_use("FeL1") ) CALL iom_put("FeL1" , zFeL1 (:,:,:) * tmask(:,:,:) ) ! FeL1 |
---|
269 | IF( iom_use("TL1") ) CALL iom_put("TL1" , zTL1 (:,:,:) * tmask(:,:,:) ) ! TL1 |
---|
270 | IF( iom_use("Totlig") ) CALL iom_put("Totlig" , ztotlig(:,:,:) * tmask(:,:,:) ) ! TL |
---|
271 | IF( iom_use("Biron") ) CALL iom_put("Biron" , biron (:,:,:) * 1e9 * tmask(:,:,:) ) ! biron |
---|
272 | IF( ln_fechem ) THEN |
---|
273 | IF( iom_use("Fe2") ) CALL iom_put("Fe2" , zFe2 (:,:,:) * tmask(:,:,:) ) ! Fe2+ |
---|
274 | IF( iom_use("FeL2") ) CALL iom_put("FeL2" , zFeL2 (:,:,:) * tmask(:,:,:) ) ! FeL2 |
---|
275 | IF( iom_use("FeP") ) CALL iom_put("FeP" , zFeP (:,:,:) * tmask(:,:,:) ) ! FeP |
---|
276 | IF( iom_use("TL2") ) CALL iom_put("TL2" , zTL2 (:,:,:) * tmask(:,:,:) ) ! TL2 |
---|
277 | ENDIF |
---|
278 | ENDIF |
---|
279 | |
---|
280 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
281 | WRITE(charout, FMT="('fechem')") |
---|
282 | CALL prt_ctl_trc_info(charout) |
---|
283 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
284 | ENDIF |
---|
285 | ! |
---|
286 | CALL wrk_dealloc( jpi, jpj, jpk, zFe3, zFeL1, zTL1, ztotlig ) |
---|
287 | IF( ln_fechem ) CALL wrk_dealloc( jpi, jpj, jpk, zFe2, zFeL2, zTL2, zFeP ) |
---|
288 | ! |
---|
289 | IF( nn_timing == 1 ) CALL timing_stop('p4z_fechem') |
---|
290 | ! |
---|
291 | END SUBROUTINE p4z_fechem |
---|
292 | |
---|
293 | |
---|
294 | SUBROUTINE p4z_fechem_init |
---|
295 | !!---------------------------------------------------------------------- |
---|
296 | !! *** ROUTINE p4z_fechem_init *** |
---|
297 | !! |
---|
298 | !! ** Purpose : Initialization of iron chemistry parameters |
---|
299 | !! |
---|
300 | !! ** Method : Read the nampisfer namelist and check the parameters |
---|
301 | !! called at the first timestep |
---|
302 | !! |
---|
303 | !! ** input : Namelist nampisfer |
---|
304 | !! |
---|
305 | !!---------------------------------------------------------------------- |
---|
306 | NAMELIST/nampisfer/ ln_fechem, ln_ligvar, xlam1, xlamdust, ligand |
---|
307 | INTEGER :: ios ! Local integer output status for namelist read |
---|
308 | |
---|
309 | REWIND( numnatp_ref ) ! Namelist nampisfer in reference namelist : Pisces iron chemistry |
---|
310 | READ ( numnatp_ref, nampisfer, IOSTAT = ios, ERR = 901) |
---|
311 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisfer in reference namelist', lwp ) |
---|
312 | |
---|
313 | REWIND( numnatp_cfg ) ! Namelist nampisfer in configuration namelist : Pisces iron chemistry |
---|
314 | READ ( numnatp_cfg, nampisfer, IOSTAT = ios, ERR = 902 ) |
---|
315 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisfer in configuration namelist', lwp ) |
---|
316 | IF(lwm) WRITE ( numonp, nampisfer ) |
---|
317 | |
---|
318 | IF(lwp) THEN ! control print |
---|
319 | WRITE(numout,*) ' ' |
---|
320 | WRITE(numout,*) ' Namelist parameters for Iron chemistry, nampisfer' |
---|
321 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
322 | WRITE(numout,*) ' enable complex iron chemistry scheme ln_fechem =', ln_fechem |
---|
323 | WRITE(numout,*) ' variable concentration of ligand ln_ligvar =', ln_ligvar |
---|
324 | WRITE(numout,*) ' scavenging rate of Iron xlam1 =', xlam1 |
---|
325 | WRITE(numout,*) ' scavenging rate of Iron by dust xlamdust =', xlamdust |
---|
326 | WRITE(numout,*) ' ligand concentration in the ocean ligand =', ligand |
---|
327 | ENDIF |
---|
328 | ! |
---|
329 | IF( ln_fechem ) THEN |
---|
330 | ! initialization of some constants used by the complexe chemistry scheme |
---|
331 | ! ---------------------------------------------------------------------- |
---|
332 | spd = 3600. * 24. |
---|
333 | con = 1.E9 |
---|
334 | ! LIGAND KINETICS (values from Witter et al. 2000) |
---|
335 | ! Weak (L2) ligands |
---|
336 | ! Phaeophytin |
---|
337 | kl2 = 12.2E5 * spd / con |
---|
338 | kb2 = 12.3E-6 * spd |
---|
339 | ! Strong (L1) ligands |
---|
340 | ! Saccharides |
---|
341 | ! kl1 = 12.2E5 * spd / con |
---|
342 | ! kb1 = 12.3E-6 * spd |
---|
343 | ! DFOB- |
---|
344 | kl1 = 19.6e5 * spd / con |
---|
345 | kb1 = 1.5e-6 * spd |
---|
346 | ! pcp and remin of Fe3p |
---|
347 | ks = 0.075 |
---|
348 | kpr = 0.05 |
---|
349 | ! thermal reduction of Fe3 |
---|
350 | kth = 0.0048 * 24. |
---|
351 | ! |
---|
352 | ENDIF |
---|
353 | ! |
---|
354 | END SUBROUTINE p4z_fechem_init |
---|
355 | |
---|
356 | !!====================================================================== |
---|
357 | END MODULE p4zfechem |
---|