1 | MODULE p4zpoc |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p4zpoc *** |
---|
4 | !! TOP : PISCES Compute remineralization of organic particles |
---|
5 | !!========================================================================= |
---|
6 | !! History : 1.0 ! 2004 (O. Aumont) Original code |
---|
7 | !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 |
---|
8 | !! 3.4 ! 2011-06 (O. Aumont, C. Ethe) Quota model for iron |
---|
9 | !! 3.6 ! 2016-03 (O. Aumont) Quota model and diverse |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | !! p4z_poc : Compute remineralization/dissolution of organic compounds |
---|
12 | !! p4z_poc_init : Initialisation of parameters for remineralisation |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
15 | USE trc ! passive tracers common variables |
---|
16 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
17 | USE prtctl_trc ! print control for debugging |
---|
18 | USE iom ! I/O manager |
---|
19 | |
---|
20 | |
---|
21 | IMPLICIT NONE |
---|
22 | PRIVATE |
---|
23 | |
---|
24 | PUBLIC p4z_poc ! called in p4zbio.F90 |
---|
25 | PUBLIC p4z_poc_init ! called in trcsms_pisces.F90 |
---|
26 | PUBLIC alngam |
---|
27 | PUBLIC gamain |
---|
28 | |
---|
29 | !! * Shared module variables |
---|
30 | REAL(wp), PUBLIC :: xremip !: remineralisation rate of DOC |
---|
31 | REAL(wp), PUBLIC :: xremipc !: remineralisation rate of DOC |
---|
32 | REAL(wp), PUBLIC :: xremipn !: remineralisation rate of DON |
---|
33 | REAL(wp), PUBLIC :: xremipp !: remineralisation rate of DOP |
---|
34 | INTEGER , PUBLIC :: jcpoc !: number of lability classes |
---|
35 | REAL(wp), PUBLIC :: rshape !: shape factor of the gamma distribution |
---|
36 | |
---|
37 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: alphan, reminp |
---|
38 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: alphap |
---|
39 | |
---|
40 | |
---|
41 | !!---------------------------------------------------------------------- |
---|
42 | !! NEMO/TOP 3.3 , NEMO Consortium (2010) |
---|
43 | !! $Id: p4zrem.F90 3160 2011-11-20 14:27:18Z cetlod $ |
---|
44 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
45 | !!---------------------------------------------------------------------- |
---|
46 | CONTAINS |
---|
47 | |
---|
48 | SUBROUTINE p4z_poc( kt, knt ) |
---|
49 | !!--------------------------------------------------------------------- |
---|
50 | !! *** ROUTINE p4z_poc *** |
---|
51 | !! |
---|
52 | !! ** Purpose : Compute remineralization of organic particles |
---|
53 | !! |
---|
54 | !! ** Method : - ??? |
---|
55 | !!--------------------------------------------------------------------- |
---|
56 | ! |
---|
57 | INTEGER, INTENT(in) :: kt, knt ! ocean time step |
---|
58 | ! |
---|
59 | INTEGER :: ji, jj, jk, jn |
---|
60 | REAL(wp) :: zremip, zremig, zdep, zorem, zorem2, zofer |
---|
61 | REAL(wp) :: zopon, zopop, zopoc, zopoc2, zopon2, zopop2 |
---|
62 | REAL(wp) :: zsizek, zsizek1, alphat, remint, solgoc, zpoc |
---|
63 | REAL(wp) :: zofer2, zofer3 |
---|
64 | REAL(wp) :: zrfact2 |
---|
65 | CHARACTER (len=25) :: charout |
---|
66 | REAL(wp), POINTER, DIMENSION(:,: ) :: totprod, totthick, totcons |
---|
67 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zremipoc, zremigoc, zorem3, ztremint |
---|
68 | REAL(wp), POINTER, DIMENSION(:,:,:,:) :: alphag |
---|
69 | !!--------------------------------------------------------------------- |
---|
70 | ! |
---|
71 | IF( nn_timing == 1 ) CALL timing_start('p4z_poc') |
---|
72 | ! |
---|
73 | ! Allocate temporary workspace |
---|
74 | CALL wrk_alloc( jpi, jpj, totprod, totthick, totcons ) |
---|
75 | CALL wrk_alloc( jpi, jpj, jpk, zremipoc, zremigoc, zorem3, ztremint ) |
---|
76 | ALLOCATE( alphag(jpi,jpj,jpk,jcpoc) ) |
---|
77 | |
---|
78 | ! Initialization of local variables |
---|
79 | ! --------------------------------- |
---|
80 | |
---|
81 | ! Here we compute the GOC -> POC rate due to the shrinking |
---|
82 | ! of the fecal pellets/aggregates as a result of bacterial |
---|
83 | ! solubilization |
---|
84 | ! This is based on a fractal dimension of 2.56 and a spectral |
---|
85 | ! slope of -3.6 (identical to what is used in p4zsink to compute |
---|
86 | ! aggregation |
---|
87 | solgoc = 0.04/ 2.56 * 1./ ( 1.-50**(-0.04) ) |
---|
88 | |
---|
89 | ! Initialisation of temprary arrys |
---|
90 | IF( ln_p4z ) THEN |
---|
91 | zremipoc(:,:,:) = xremip |
---|
92 | zremigoc(:,:,:) = xremip |
---|
93 | ELSE ! ln_p5z |
---|
94 | zremipoc(:,:,:) = xremipc |
---|
95 | zremigoc(:,:,:) = xremipc |
---|
96 | ENDIF |
---|
97 | zorem3(:,:,:) = 0. |
---|
98 | orem (:,:,:) = 0. |
---|
99 | ztremint(:,:,:) = 0. |
---|
100 | |
---|
101 | DO jn = 1, jcpoc |
---|
102 | alphag(:,:,:,jn) = alphan(jn) |
---|
103 | alphap(:,:,:,jn) = alphan(jn) |
---|
104 | END DO |
---|
105 | |
---|
106 | ! ----------------------------------------------------------------------- |
---|
107 | ! Lability parameterization. This is the big particles part (GOC) |
---|
108 | ! This lability parameterization can be activated only with the standard |
---|
109 | ! particle scheme. Does not work with Kriest parameterization. |
---|
110 | ! ----------------------------------------------------------------------- |
---|
111 | DO jk = 2, jpkm1 |
---|
112 | DO jj = 1, jpj |
---|
113 | DO ji = 1, jpi |
---|
114 | IF (tmask(ji,jj,jk) == 1.) THEN |
---|
115 | zdep = hmld(ji,jj) |
---|
116 | ! |
---|
117 | ! In the case of GOC, lability is constant in the mixed layer |
---|
118 | ! It is computed only below the mixed layer depth |
---|
119 | ! ------------------------------------------------------------ |
---|
120 | ! |
---|
121 | IF( gdept_n(ji,jj,jk) > zdep ) THEN |
---|
122 | alphat = 0. |
---|
123 | remint = 0. |
---|
124 | ! |
---|
125 | zsizek1 = e3t_n(ji,jj,jk-1) / 2. / (wsbio4(ji,jj,jk-1) + rtrn) * tgfunc(ji,jj,jk-1) |
---|
126 | zsizek = e3t_n(ji,jj,jk) / 2. / (wsbio4(ji,jj,jk) + rtrn) * tgfunc(ji,jj,jk) |
---|
127 | ! |
---|
128 | IF ( gdept_n(ji,jj,jk-1) <= zdep ) THEN |
---|
129 | ! |
---|
130 | ! The first level just below the mixed layer needs a |
---|
131 | ! specific treatment because lability is supposed constant |
---|
132 | ! everywhere within the mixed layer. This means that |
---|
133 | ! change in lability in the bottom part of the previous cell |
---|
134 | ! should not be computed |
---|
135 | ! ---------------------------------------------------------- |
---|
136 | ! |
---|
137 | ! POC concentration is computed using the lagrangian |
---|
138 | ! framework. It is only used for the lability param |
---|
139 | zpoc = trb(ji,jj,jk-1,jpgoc) + consgoc(ji,jj,jk) * rday / rfact2 & |
---|
140 | & * e3t_n(ji,jj,jk) / 2. / (wsbio4(ji,jj,jk) + rtrn) |
---|
141 | zpoc = MAX(0., zpoc) |
---|
142 | ! |
---|
143 | DO jn = 1, jcpoc |
---|
144 | ! |
---|
145 | ! Lagrangian based algorithm. The fraction of each |
---|
146 | ! lability class is computed starting from the previous |
---|
147 | ! level |
---|
148 | ! ----------------------------------------------------- |
---|
149 | ! |
---|
150 | ! the concentration of each lability class is calculated |
---|
151 | ! as the sum of the different sources and sinks |
---|
152 | ! Please note that production of new GOC experiences |
---|
153 | ! degradation |
---|
154 | alphag(ji,jj,jk,jn) = alphag(ji,jj,jk-1,jn) * exp( -reminp(jn) * zsizek ) * zpoc & |
---|
155 | & + prodgoc(ji,jj,jk) * alphan(jn) / tgfunc(ji,jj,jk) / reminp(jn) & |
---|
156 | & * ( 1. - exp( -reminp(jn) * zsizek ) ) * rday / rfact2 |
---|
157 | alphat = alphat + alphag(ji,jj,jk,jn) |
---|
158 | remint = remint + alphag(ji,jj,jk,jn) * reminp(jn) |
---|
159 | END DO |
---|
160 | ELSE |
---|
161 | ! |
---|
162 | ! standard algorithm in the rest of the water column |
---|
163 | ! See the comments in the previous block. |
---|
164 | ! --------------------------------------------------- |
---|
165 | ! |
---|
166 | zpoc = trb(ji,jj,jk-1,jpgoc) + consgoc(ji,jj,jk-1) * rday / rfact2 & |
---|
167 | & * e3t_n(ji,jj,jk-1) / 2. / (wsbio4(ji,jj,jk-1) + rtrn) + consgoc(ji,jj,jk) & |
---|
168 | & * rday / rfact2 * e3t_n(ji,jj,jk) / 2. / (wsbio4(ji,jj,jk) + rtrn) |
---|
169 | zpoc = max(0., zpoc) |
---|
170 | ! |
---|
171 | DO jn = 1, jcpoc |
---|
172 | alphag(ji,jj,jk,jn) = alphag(ji,jj,jk-1,jn) * exp( -reminp(jn) * ( zsizek & |
---|
173 | & + zsizek1 ) ) * zpoc + ( prodgoc(ji,jj,jk-1) / tgfunc(ji,jj,jk-1) * ( 1. & |
---|
174 | & - exp( -reminp(jn) * zsizek1 ) ) * exp( -reminp(jn) * zsizek ) + prodgoc(ji,jj,jk) & |
---|
175 | & / tgfunc(ji,jj,jk) * ( 1. - exp( -reminp(jn) * zsizek ) ) ) * rday / rfact2 / reminp(jn) |
---|
176 | alphat = alphat + alphag(ji,jj,jk,jn) |
---|
177 | remint = remint + alphag(ji,jj,jk,jn) * reminp(jn) |
---|
178 | END DO |
---|
179 | ENDIF |
---|
180 | ! |
---|
181 | DO jn = 1, jcpoc |
---|
182 | ! The contribution of each lability class at the current |
---|
183 | ! level is computed |
---|
184 | alphag(ji,jj,jk,jn) = alphag(ji,jj,jk,jn) / ( alphat + rtrn) |
---|
185 | END DO |
---|
186 | ! Computation of the mean remineralisation rate |
---|
187 | ztremint(ji,jj,jk) = MAX(0., remint / ( alphat + rtrn) ) |
---|
188 | ! |
---|
189 | ENDIF |
---|
190 | ENDIF |
---|
191 | END DO |
---|
192 | END DO |
---|
193 | END DO |
---|
194 | |
---|
195 | IF( ln_p4z ) THEN ; zremigoc(:,:,:) = MIN( xremip , ztremint(:,:,:) ) |
---|
196 | ELSE ; zremigoc(:,:,:) = MIN( xremipc, ztremint(:,:,:) ) |
---|
197 | ENDIF |
---|
198 | |
---|
199 | IF( ln_p4z ) THEN |
---|
200 | DO jk = 1, jpkm1 |
---|
201 | DO jj = 1, jpj |
---|
202 | DO ji = 1, jpi |
---|
203 | ! POC disaggregation by turbulence and bacterial activity. |
---|
204 | ! -------------------------------------------------------- |
---|
205 | zremig = zremigoc(ji,jj,jk) * xstep * tgfunc(ji,jj,jk) |
---|
206 | zorem2 = zremig * trb(ji,jj,jk,jpgoc) |
---|
207 | orem(ji,jj,jk) = zorem2 |
---|
208 | zorem3(ji,jj,jk) = zremig * solgoc * trb(ji,jj,jk,jpgoc) |
---|
209 | zofer2 = zremig * trb(ji,jj,jk,jpbfe) |
---|
210 | zofer3 = zremig * solgoc * trb(ji,jj,jk,jpbfe) |
---|
211 | |
---|
212 | ! ------------------------------------- |
---|
213 | tra(ji,jj,jk,jppoc) = tra(ji,jj,jk,jppoc) + zorem3(ji,jj,jk) |
---|
214 | tra(ji,jj,jk,jpgoc) = tra(ji,jj,jk,jpgoc) - zorem2 - zorem3(ji,jj,jk) |
---|
215 | tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + zofer3 |
---|
216 | tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) - zofer2 - zofer3 |
---|
217 | tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + zorem2 |
---|
218 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) + zofer2 |
---|
219 | END DO |
---|
220 | END DO |
---|
221 | END DO |
---|
222 | ELSE |
---|
223 | DO jk = 1, jpkm1 |
---|
224 | DO jj = 1, jpj |
---|
225 | DO ji = 1, jpi |
---|
226 | ! POC disaggregation by turbulence and bacterial activity. |
---|
227 | ! -------------------------------------------------------- |
---|
228 | zremig = zremigoc(ji,jj,jk) * xstep * tgfunc(ji,jj,jk) |
---|
229 | zopoc2 = zremig * trb(ji,jj,jk,jpgoc) |
---|
230 | orem(ji,jj,jk) = zopoc2 |
---|
231 | zorem3(ji,jj,jk) = zremig * solgoc * trb(ji,jj,jk,jpgoc) |
---|
232 | zopon2 = xremipn / xremipc * zremig * trb(ji,jj,jk,jpgon) |
---|
233 | zopop2 = xremipp / xremipc * zremig * trb(ji,jj,jk,jpgop) |
---|
234 | zofer2 = xremipn / xremipc * zremig * trb(ji,jj,jk,jpbfe) |
---|
235 | |
---|
236 | ! ------------------------------------- |
---|
237 | tra(ji,jj,jk,jppoc) = tra(ji,jj,jk,jppoc) + zorem3(ji,jj,jk) |
---|
238 | tra(ji,jj,jk,jppon) = tra(ji,jj,jk,jppon) + solgoc * zopon2 |
---|
239 | tra(ji,jj,jk,jppop) = tra(ji,jj,jk,jppop) + solgoc * zopop2 |
---|
240 | tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + solgoc * zofer2 |
---|
241 | tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + zopoc2 |
---|
242 | tra(ji,jj,jk,jpdon) = tra(ji,jj,jk,jpdon) + zopon2 |
---|
243 | tra(ji,jj,jk,jpdop) = tra(ji,jj,jk,jpdop) + zopop2 |
---|
244 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) + zofer2 |
---|
245 | tra(ji,jj,jk,jpgoc) = tra(ji,jj,jk,jpgoc) - zopoc2 - zorem3(ji,jj,jk) |
---|
246 | tra(ji,jj,jk,jpgon) = tra(ji,jj,jk,jpgon) - zopon2 * (1. + solgoc) |
---|
247 | tra(ji,jj,jk,jpgop) = tra(ji,jj,jk,jpgop) - zopop2 * (1. + solgoc) |
---|
248 | tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) - zofer2 * (1. + solgoc) |
---|
249 | END DO |
---|
250 | END DO |
---|
251 | END DO |
---|
252 | ENDIF |
---|
253 | |
---|
254 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
255 | WRITE(charout, FMT="('poc1')") |
---|
256 | CALL prt_ctl_trc_info(charout) |
---|
257 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
258 | ENDIF |
---|
259 | |
---|
260 | ! ------------------------------------------------------------------ |
---|
261 | ! Lability parameterization for the small OM particles. This param |
---|
262 | ! is based on the same theoretical background as the big particles. |
---|
263 | ! However, because of its low sinking speed, lability is not supposed |
---|
264 | ! to be equal to its initial value (the value of the freshly produced |
---|
265 | ! organic matter). It is however uniform in the mixed layer. |
---|
266 | ! ------------------------------------------------------------------- |
---|
267 | ! |
---|
268 | totprod(:,:) = 0. |
---|
269 | totthick(:,:) = 0. |
---|
270 | totcons(:,:) = 0. |
---|
271 | ! intregrated production and consumption of POC in the mixed layer |
---|
272 | ! ---------------------------------------------------------------- |
---|
273 | ! |
---|
274 | DO jk = 1, jpkm1 |
---|
275 | DO jj = 1, jpj |
---|
276 | DO ji = 1, jpi |
---|
277 | zdep = hmld(ji,jj) |
---|
278 | IF (tmask(ji,jj,jk) == 1. .AND. gdept_n(ji,jj,jk) <= zdep ) THEN |
---|
279 | totprod(ji,jj) = totprod(ji,jj) + prodpoc(ji,jj,jk) * e3t_n(ji,jj,jk) * rday/ rfact2 |
---|
280 | ! The temperature effect is included here |
---|
281 | totthick(ji,jj) = totthick(ji,jj) + e3t_n(ji,jj,jk)* tgfunc(ji,jj,jk) |
---|
282 | totcons(ji,jj) = totcons(ji,jj) - conspoc(ji,jj,jk) * e3t_n(ji,jj,jk) * rday/ rfact2 & |
---|
283 | & / ( trb(ji,jj,jk,jppoc) + rtrn ) |
---|
284 | ENDIF |
---|
285 | END DO |
---|
286 | END DO |
---|
287 | END DO |
---|
288 | |
---|
289 | ! Computation of the lability spectrum in the mixed layer. In the mixed |
---|
290 | ! layer, this spectrum is supposed to be uniform. |
---|
291 | ! --------------------------------------------------------------------- |
---|
292 | DO jk = 1, jpkm1 |
---|
293 | DO jj = 1, jpj |
---|
294 | DO ji = 1, jpi |
---|
295 | IF (tmask(ji,jj,jk) == 1.) THEN |
---|
296 | zdep = hmld(ji,jj) |
---|
297 | alphat = 0.0 |
---|
298 | remint = 0.0 |
---|
299 | IF( gdept_n(ji,jj,jk) <= zdep ) THEN |
---|
300 | DO jn = 1, jcpoc |
---|
301 | ! For each lability class, the system is supposed to be |
---|
302 | ! at equilibrium: Prod - Sink - w alphap = 0. |
---|
303 | alphap(ji,jj,jk,jn) = totprod(ji,jj) * alphan(jn) / ( reminp(jn) & |
---|
304 | & * totthick(ji,jj) + totcons(ji,jj) + wsbio + rtrn ) |
---|
305 | alphat = alphat + alphap(ji,jj,jk,jn) |
---|
306 | END DO |
---|
307 | DO jn = 1, jcpoc |
---|
308 | alphap(ji,jj,jk,jn) = alphap(ji,jj,jk,jn) / ( alphat + rtrn) |
---|
309 | remint = remint + alphap(ji,jj,jk,jn) * reminp(jn) |
---|
310 | END DO |
---|
311 | ! Mean remineralization rate in the mixed layer |
---|
312 | ztremint(ji,jj,jk) = MAX( 0., remint ) |
---|
313 | ENDIF |
---|
314 | ENDIF |
---|
315 | END DO |
---|
316 | END DO |
---|
317 | END DO |
---|
318 | ! |
---|
319 | IF( ln_p4z ) THEN ; zremipoc(:,:,:) = MIN( xremip , ztremint(:,:,:) ) |
---|
320 | ELSE ; zremipoc(:,:,:) = MIN( xremipc, ztremint(:,:,:) ) |
---|
321 | ENDIF |
---|
322 | |
---|
323 | ! ----------------------------------------------------------------------- |
---|
324 | ! The lability parameterization is used here. The code is here |
---|
325 | ! almost identical to what is done for big particles. The only difference |
---|
326 | ! is that an additional source from GOC to POC is included. This means |
---|
327 | ! that since we need the lability spectrum of GOC, GOC spectrum |
---|
328 | ! should be determined before. |
---|
329 | ! ----------------------------------------------------------------------- |
---|
330 | ! |
---|
331 | DO jk = 2, jpkm1 |
---|
332 | DO jj = 1, jpj |
---|
333 | DO ji = 1, jpi |
---|
334 | IF (tmask(ji,jj,jk) == 1.) THEN |
---|
335 | zdep = hmld(ji,jj) |
---|
336 | IF( gdept_n(ji,jj,jk) > zdep ) THEN |
---|
337 | alphat = 0. |
---|
338 | remint = 0. |
---|
339 | ! |
---|
340 | ! the scale factors are corrected with temperature |
---|
341 | zsizek1 = e3t_n(ji,jj,jk-1) / 2. / (wsbio3(ji,jj,jk-1) + rtrn) * tgfunc(ji,jj,jk-1) |
---|
342 | zsizek = e3t_n(ji,jj,jk) / 2. / (wsbio3(ji,jj,jk) + rtrn) * tgfunc(ji,jj,jk) |
---|
343 | ! |
---|
344 | ! Special treatment of the level just below the MXL |
---|
345 | ! See the comments in the GOC section |
---|
346 | ! --------------------------------------------------- |
---|
347 | ! |
---|
348 | IF ( gdept_n(ji,jj,jk-1) <= zdep ) THEN |
---|
349 | ! |
---|
350 | ! Computation of the POC concentration using the |
---|
351 | ! lagrangian algorithm |
---|
352 | zpoc = trb(ji,jj,jk-1,jppoc) + conspoc(ji,jj,jk) * rday / rfact2 & |
---|
353 | & * e3t_n(ji,jj,jk) / 2. / (wsbio3(ji,jj,jk) + rtrn) |
---|
354 | zpoc = max(0., zpoc) |
---|
355 | ! |
---|
356 | DO jn = 1, jcpoc |
---|
357 | ! computation of the lability spectrum applying the |
---|
358 | ! different sources and sinks |
---|
359 | alphap(ji,jj,jk,jn) = alphap(ji,jj,jk-1,jn) * exp( -reminp(jn) * zsizek ) * zpoc & |
---|
360 | & + ( prodpoc(ji,jj,jk) * alphan(jn) + zorem3(ji,jj,jk) * alphag(ji,jj,jk,jn) ) & |
---|
361 | & / tgfunc(ji,jj,jk) / reminp(jn) * rday / rfact2 * ( 1. - exp( -reminp(jn) & |
---|
362 | & * zsizek ) ) |
---|
363 | alphap(ji,jj,jk,jn) = MAX( 0., alphap(ji,jj,jk,jn) ) |
---|
364 | alphat = alphat + alphap(ji,jj,jk,jn) |
---|
365 | END DO |
---|
366 | ELSE |
---|
367 | ! |
---|
368 | ! Lability parameterization for the interior of the ocean |
---|
369 | ! This is very similar to what is done in the previous |
---|
370 | ! block |
---|
371 | ! -------------------------------------------------------- |
---|
372 | ! |
---|
373 | zpoc = trb(ji,jj,jk-1,jppoc) + conspoc(ji,jj,jk-1) * rday / rfact2 & |
---|
374 | & * e3t_n(ji,jj,jk-1) / 2. / (wsbio3(ji,jj,jk-1) + rtrn) + conspoc(ji,jj,jk) & |
---|
375 | & * rday / rfact2 * e3t_n(ji,jj,jk) / 2. / (wsbio3(ji,jj,jk) + rtrn) |
---|
376 | zpoc = max(0., zpoc) |
---|
377 | ! |
---|
378 | DO jn = 1, jcpoc |
---|
379 | alphap(ji,jj,jk,jn) = alphap(ji,jj,jk-1,jn) * exp( -reminp(jn) & |
---|
380 | & * ( zsizek + zsizek1 ) ) * zpoc + ( prodpoc(ji,jj,jk-1) * alphan(jn) & |
---|
381 | & + zorem3(ji,jj,jk-1) * alphag(ji,jj,jk-1,jn) ) * rday / rfact2 / reminp(jn) & |
---|
382 | & / tgfunc(ji,jj,jk-1) * ( 1. - exp( -reminp(jn) * zsizek1 ) ) * exp( -reminp(jn) & |
---|
383 | & * zsizek ) + ( prodpoc(ji,jj,jk) * alphan(jn) + zorem3(ji,jj,jk) & |
---|
384 | & * alphag(ji,jj,jk,jn) ) * rday / rfact2 / reminp(jn) / tgfunc(ji,jj,jk) * ( 1. & |
---|
385 | & - exp( -reminp(jn) * zsizek ) ) |
---|
386 | alphap(ji,jj,jk,jn) = max(0., alphap(ji,jj,jk,jn) ) |
---|
387 | alphat = alphat + alphap(ji,jj,jk,jn) |
---|
388 | END DO |
---|
389 | ENDIF |
---|
390 | ! Normalization of the lability spectrum so that the |
---|
391 | ! integral is equal to 1 |
---|
392 | DO jn = 1, jcpoc |
---|
393 | alphap(ji,jj,jk,jn) = alphap(ji,jj,jk,jn) / ( alphat + rtrn) |
---|
394 | remint = remint + alphap(ji,jj,jk,jn) * reminp(jn) |
---|
395 | END DO |
---|
396 | ! Mean remineralization rate in the water column |
---|
397 | ztremint(ji,jj,jk) = MAX( 0., remint ) |
---|
398 | ENDIF |
---|
399 | ENDIF |
---|
400 | END DO |
---|
401 | END DO |
---|
402 | END DO |
---|
403 | |
---|
404 | IF( ln_p4z ) THEN ; zremipoc(:,:,:) = MIN( xremip , ztremint(:,:,:) ) |
---|
405 | ELSE ; zremipoc(:,:,:) = MIN( xremipc, ztremint(:,:,:) ) |
---|
406 | ENDIF |
---|
407 | |
---|
408 | IF( ln_p4z ) THEN |
---|
409 | DO jk = 1, jpkm1 |
---|
410 | DO jj = 1, jpj |
---|
411 | DO ji = 1, jpi |
---|
412 | IF (tmask(ji,jj,jk) == 1.) THEN |
---|
413 | ! POC disaggregation by turbulence and bacterial activity. |
---|
414 | ! -------------------------------------------------------- |
---|
415 | zremip = zremipoc(ji,jj,jk) * xstep * tgfunc(ji,jj,jk) |
---|
416 | zorem = zremip * trb(ji,jj,jk,jppoc) |
---|
417 | zofer = zremip * trb(ji,jj,jk,jpsfe) |
---|
418 | |
---|
419 | tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + zorem |
---|
420 | orem(ji,jj,jk) = orem(ji,jj,jk) + zorem |
---|
421 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) + zofer |
---|
422 | tra(ji,jj,jk,jppoc) = tra(ji,jj,jk,jppoc) - zorem |
---|
423 | tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) - zofer |
---|
424 | ENDIF |
---|
425 | END DO |
---|
426 | END DO |
---|
427 | END DO |
---|
428 | ELSE |
---|
429 | DO jk = 1, jpkm1 |
---|
430 | DO jj = 1, jpj |
---|
431 | DO ji = 1, jpi |
---|
432 | ! POC disaggregation by turbulence and bacterial activity. |
---|
433 | ! -------------------------------------------------------- |
---|
434 | zremip = zremipoc(ji,jj,jk) * xstep * tgfunc(ji,jj,jk) |
---|
435 | zopoc = zremip * trb(ji,jj,jk,jppoc) |
---|
436 | orem(ji,jj,jk) = orem(ji,jj,jk) + zopoc |
---|
437 | zopon = xremipn / xremipc * zremip * trb(ji,jj,jk,jppon) |
---|
438 | zopop = xremipp / xremipc * zremip * trb(ji,jj,jk,jppop) |
---|
439 | zofer = xremipn / xremipc * zremip * trb(ji,jj,jk,jpsfe) |
---|
440 | |
---|
441 | tra(ji,jj,jk,jppoc) = tra(ji,jj,jk,jppoc) - zopoc |
---|
442 | tra(ji,jj,jk,jppon) = tra(ji,jj,jk,jppon) - zopon |
---|
443 | tra(ji,jj,jk,jppop) = tra(ji,jj,jk,jppop) - zopop |
---|
444 | tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) - zofer |
---|
445 | tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + zopoc |
---|
446 | tra(ji,jj,jk,jpdon) = tra(ji,jj,jk,jpdon) + zopon |
---|
447 | tra(ji,jj,jk,jpdop) = tra(ji,jj,jk,jpdop) + zopop |
---|
448 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) + zofer |
---|
449 | END DO |
---|
450 | END DO |
---|
451 | END DO |
---|
452 | ENDIF |
---|
453 | |
---|
454 | IF( lk_iomput ) THEN |
---|
455 | IF( knt == nrdttrc ) THEN |
---|
456 | zrfact2 = 1.e3 * rfact2r |
---|
457 | CALL iom_put( "REMINP" , zremipoc(:,:,:) * tmask(:,:,:) ) ! Remineralisation rate |
---|
458 | CALL iom_put( "REMING" , zremigoc(:,:,:) * tmask(:,:,:) ) ! Remineralisation rate |
---|
459 | ENDIF |
---|
460 | ENDIF |
---|
461 | |
---|
462 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
463 | WRITE(charout, FMT="('poc2')") |
---|
464 | CALL prt_ctl_trc_info(charout) |
---|
465 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
466 | ENDIF |
---|
467 | ! |
---|
468 | CALL wrk_dealloc( jpi, jpj, totprod, totthick, totcons ) |
---|
469 | CALL wrk_dealloc( jpi, jpj, jpk, zremipoc, zremigoc, zorem3, ztremint ) |
---|
470 | DEALLOCATE( alphag ) |
---|
471 | ! |
---|
472 | IF( nn_timing == 1 ) CALL timing_stop('p4z_poc') |
---|
473 | ! |
---|
474 | END SUBROUTINE p4z_poc |
---|
475 | |
---|
476 | |
---|
477 | SUBROUTINE p4z_poc_init |
---|
478 | !!---------------------------------------------------------------------- |
---|
479 | !! *** ROUTINE p4z_poc_init *** |
---|
480 | !! |
---|
481 | !! ** Purpose : Initialization of remineralization parameters |
---|
482 | !! |
---|
483 | !! ** Method : Read the nampispoc namelist and check the parameters |
---|
484 | !! called at the first timestep |
---|
485 | !! |
---|
486 | !! ** input : Namelist nampispoc |
---|
487 | !! |
---|
488 | !!---------------------------------------------------------------------- |
---|
489 | INTEGER :: jn |
---|
490 | REAL(wp) :: remindelta, reminup, remindown |
---|
491 | INTEGER :: ifault |
---|
492 | |
---|
493 | NAMELIST/nampispoc/ xremip, jcpoc, rshape, & |
---|
494 | & xremipc, xremipn, xremipp |
---|
495 | |
---|
496 | |
---|
497 | INTEGER :: ios ! Local integer output status for namelist read |
---|
498 | |
---|
499 | REWIND( numnatp_ref ) ! Namelist nampisrem in reference namelist : Pisces remineralization |
---|
500 | READ ( numnatp_ref, nampispoc, IOSTAT = ios, ERR = 901) |
---|
501 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampispoc in reference namelist', lwp ) |
---|
502 | |
---|
503 | REWIND( numnatp_cfg ) ! Namelist nampisrem in configuration namelist : Pisces remineralization |
---|
504 | READ ( numnatp_cfg, nampispoc, IOSTAT = ios, ERR = 902 ) |
---|
505 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampispoc in configuration namelist', lwp ) |
---|
506 | IF(lwm) WRITE ( numonp, nampispoc ) |
---|
507 | |
---|
508 | IF(lwp) THEN ! control print |
---|
509 | WRITE(numout,*) ' ' |
---|
510 | WRITE(numout,*) ' Namelist parameters for remineralization, nampispoc' |
---|
511 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
512 | IF( ln_p4z ) THEN |
---|
513 | WRITE(numout,*) ' remineralisation rate of POC xremip =', xremip |
---|
514 | ELSE |
---|
515 | WRITE(numout,*) ' remineralisation rate of POC xremipc =', xremipc |
---|
516 | WRITE(numout,*) ' remineralisation rate of PON xremipn =', xremipn |
---|
517 | WRITE(numout,*) ' remineralisation rate of POP xremipp =', xremipp |
---|
518 | ENDIF |
---|
519 | WRITE(numout,*) ' Number of lability classes for POC jcpoc =', jcpoc |
---|
520 | WRITE(numout,*) ' Shape factor of the gamma distribution rshape =', rshape |
---|
521 | ENDIF |
---|
522 | ! |
---|
523 | ! Discretization along the lability space |
---|
524 | ! --------------------------------------- |
---|
525 | ! |
---|
526 | ALLOCATE( alphan(jcpoc), reminp(jcpoc) ) |
---|
527 | ALLOCATE( alphap(jpi,jpj,jpk,jcpoc) ) |
---|
528 | ! |
---|
529 | IF (jcpoc > 1) THEN |
---|
530 | ! |
---|
531 | remindelta = LOG(4. * 1000. ) / REAL(jcpoc-1, wp) |
---|
532 | reminup = 1./ 400. * EXP(remindelta) |
---|
533 | ! |
---|
534 | ! Discretization based on incomplete gamma functions |
---|
535 | ! As incomplete gamma functions are not available in standard |
---|
536 | ! fortran 95, they have been coded as functions in this module (gamain) |
---|
537 | ! --------------------------------------------------------------------- |
---|
538 | ! |
---|
539 | alphan(1) = gamain(reminup, rshape, ifault) |
---|
540 | reminp(1) = gamain(reminup, rshape+1.0, ifault) * xremip / alphan(1) |
---|
541 | DO jn = 2, jcpoc-1 |
---|
542 | reminup = 1./ 400. * EXP( REAL(jn, wp) * remindelta) |
---|
543 | remindown = 1. / 400. * EXP( REAL(jn-1, wp) * remindelta) |
---|
544 | alphan(jn) = gamain(reminup, rshape, ifault) - gamain(remindown, rshape, ifault) |
---|
545 | reminp(jn) = gamain(reminup, rshape+1.0, ifault) - gamain(remindown, rshape+1.0, ifault) |
---|
546 | reminp(jn) = reminp(jn) * xremip / alphan(jn) |
---|
547 | END DO |
---|
548 | remindown = 1. / 400. * EXP( REAL(jcpoc-1, wp) * remindelta) |
---|
549 | alphan(jcpoc) = 1.0 - gamain(remindown, rshape, ifault) |
---|
550 | reminp(jcpoc) = 1.0 - gamain(remindown, rshape+1.0, ifault) |
---|
551 | reminp(jcpoc) = reminp(jcpoc) * xremip / alphan(jcpoc) |
---|
552 | |
---|
553 | ELSE |
---|
554 | alphan(jcpoc) = 1. |
---|
555 | reminp(jcpoc) = xremip |
---|
556 | ENDIF |
---|
557 | |
---|
558 | DO jn = 1, jcpoc |
---|
559 | alphap(:,:,:,jn) = alphan(jn) |
---|
560 | END DO |
---|
561 | |
---|
562 | END SUBROUTINE p4z_poc_init |
---|
563 | |
---|
564 | REAL FUNCTION alngam( xvalue, ifault ) |
---|
565 | |
---|
566 | !*****************************************************************************80 |
---|
567 | ! |
---|
568 | !! ALNGAM computes the logarithm of the gamma function. |
---|
569 | ! |
---|
570 | ! Modified: |
---|
571 | ! |
---|
572 | ! 13 January 2008 |
---|
573 | ! |
---|
574 | ! Author: |
---|
575 | ! |
---|
576 | ! Allan Macleod |
---|
577 | ! FORTRAN90 version by John Burkardt |
---|
578 | ! |
---|
579 | ! Reference: |
---|
580 | ! |
---|
581 | ! Allan Macleod, |
---|
582 | ! Algorithm AS 245, |
---|
583 | ! A Robust and Reliable Algorithm for the Logarithm of the Gamma Function, |
---|
584 | ! Applied Statistics, |
---|
585 | ! Volume 38, Number 2, 1989, pages 397-402. |
---|
586 | ! |
---|
587 | ! Parameters: |
---|
588 | ! |
---|
589 | ! Input, real ( kind = 8 ) XVALUE, the argument of the Gamma function. |
---|
590 | ! |
---|
591 | ! Output, integer ( kind = 4 ) IFAULT, error flag. |
---|
592 | ! 0, no error occurred. |
---|
593 | ! 1, XVALUE is less than or equal to 0. |
---|
594 | ! 2, XVALUE is too big. |
---|
595 | ! |
---|
596 | ! Output, real ( kind = 8 ) ALNGAM, the logarithm of the gamma function of X. |
---|
597 | ! |
---|
598 | implicit none |
---|
599 | |
---|
600 | real(wp), parameter :: alr2pi = 0.918938533204673E+00 |
---|
601 | integer:: ifault |
---|
602 | real(wp), dimension ( 9 ) :: r1 = (/ & |
---|
603 | -2.66685511495E+00, & |
---|
604 | -24.4387534237E+00, & |
---|
605 | -21.9698958928E+00, & |
---|
606 | 11.1667541262E+00, & |
---|
607 | 3.13060547623E+00, & |
---|
608 | 0.607771387771E+00, & |
---|
609 | 11.9400905721E+00, & |
---|
610 | 31.4690115749E+00, & |
---|
611 | 15.2346874070E+00 /) |
---|
612 | real(wp), dimension ( 9 ) :: r2 = (/ & |
---|
613 | -78.3359299449E+00, & |
---|
614 | -142.046296688E+00, & |
---|
615 | 137.519416416E+00, & |
---|
616 | 78.6994924154E+00, & |
---|
617 | 4.16438922228E+00, & |
---|
618 | 47.0668766060E+00, & |
---|
619 | 313.399215894E+00, & |
---|
620 | 263.505074721E+00, & |
---|
621 | 43.3400022514E+00 /) |
---|
622 | real(wp), dimension ( 9 ) :: r3 = (/ & |
---|
623 | -2.12159572323E+05, & |
---|
624 | 2.30661510616E+05, & |
---|
625 | 2.74647644705E+04, & |
---|
626 | -4.02621119975E+04, & |
---|
627 | -2.29660729780E+03, & |
---|
628 | -1.16328495004E+05, & |
---|
629 | -1.46025937511E+05, & |
---|
630 | -2.42357409629E+04, & |
---|
631 | -5.70691009324E+02 /) |
---|
632 | real(wp), dimension ( 5 ) :: r4 = (/ & |
---|
633 | 0.279195317918525E+00, & |
---|
634 | 0.4917317610505968E+00, & |
---|
635 | 0.0692910599291889E+00, & |
---|
636 | 3.350343815022304E+00, & |
---|
637 | 6.012459259764103E+00 /) |
---|
638 | real (wp) :: x |
---|
639 | real (wp) :: x1 |
---|
640 | real (wp) :: x2 |
---|
641 | real (wp), parameter :: xlge = 5.10E+05 |
---|
642 | real (wp), parameter :: xlgst = 1.0E+30 |
---|
643 | real (wp) :: xvalue |
---|
644 | real (wp) :: y |
---|
645 | |
---|
646 | x = xvalue |
---|
647 | alngam = 0.0E+00 |
---|
648 | ! |
---|
649 | ! Check the input. |
---|
650 | ! |
---|
651 | if ( xlgst <= x ) then |
---|
652 | ifault = 2 |
---|
653 | return |
---|
654 | end if |
---|
655 | if ( x <= 0.0E+00 ) then |
---|
656 | ifault = 1 |
---|
657 | return |
---|
658 | end if |
---|
659 | |
---|
660 | ifault = 0 |
---|
661 | ! |
---|
662 | ! Calculation for 0 < X < 0.5 and 0.5 <= X < 1.5 combined. |
---|
663 | ! |
---|
664 | if ( x < 1.5E+00 ) then |
---|
665 | |
---|
666 | if ( x < 0.5E+00 ) then |
---|
667 | alngam = - log ( x ) |
---|
668 | y = x + 1.0E+00 |
---|
669 | ! |
---|
670 | ! Test whether X < machine epsilon. |
---|
671 | ! |
---|
672 | if ( y == 1.0E+00 ) then |
---|
673 | return |
---|
674 | end if |
---|
675 | |
---|
676 | else |
---|
677 | |
---|
678 | alngam = 0.0E+00 |
---|
679 | y = x |
---|
680 | x = ( x - 0.5E+00 ) - 0.5E+00 |
---|
681 | |
---|
682 | end if |
---|
683 | |
---|
684 | alngam = alngam + x * (((( & |
---|
685 | r1(5) * y & |
---|
686 | + r1(4) ) * y & |
---|
687 | + r1(3) ) * y & |
---|
688 | + r1(2) ) * y & |
---|
689 | + r1(1) ) / (((( & |
---|
690 | y & |
---|
691 | + r1(9) ) * y & |
---|
692 | + r1(8) ) * y & |
---|
693 | + r1(7) ) * y & |
---|
694 | + r1(6) ) |
---|
695 | |
---|
696 | return |
---|
697 | |
---|
698 | end if |
---|
699 | ! |
---|
700 | ! Calculation for 1.5 <= X < 4.0. |
---|
701 | ! |
---|
702 | if ( x < 4.0E+00 ) then |
---|
703 | |
---|
704 | y = ( x - 1.0E+00 ) - 1.0E+00 |
---|
705 | |
---|
706 | alngam = y * (((( & |
---|
707 | r2(5) * x & |
---|
708 | + r2(4) ) * x & |
---|
709 | + r2(3) ) * x & |
---|
710 | + r2(2) ) * x & |
---|
711 | + r2(1) ) / (((( & |
---|
712 | x & |
---|
713 | + r2(9) ) * x & |
---|
714 | + r2(8) ) * x & |
---|
715 | + r2(7) ) * x & |
---|
716 | + r2(6) ) |
---|
717 | ! |
---|
718 | ! Calculation for 4.0 <= X < 12.0. |
---|
719 | ! |
---|
720 | else if ( x < 12.0E+00 ) then |
---|
721 | |
---|
722 | alngam = (((( & |
---|
723 | r3(5) * x & |
---|
724 | + r3(4) ) * x & |
---|
725 | + r3(3) ) * x & |
---|
726 | + r3(2) ) * x & |
---|
727 | + r3(1) ) / (((( & |
---|
728 | x & |
---|
729 | + r3(9) ) * x & |
---|
730 | + r3(8) ) * x & |
---|
731 | + r3(7) ) * x & |
---|
732 | + r3(6) ) |
---|
733 | ! |
---|
734 | ! Calculation for 12.0 <= X. |
---|
735 | ! |
---|
736 | else |
---|
737 | |
---|
738 | y = log ( x ) |
---|
739 | alngam = x * ( y - 1.0E+00 ) - 0.5E+00 * y + alr2pi |
---|
740 | |
---|
741 | if ( x <= xlge ) then |
---|
742 | |
---|
743 | x1 = 1.0E+00 / x |
---|
744 | x2 = x1 * x1 |
---|
745 | |
---|
746 | alngam = alngam + x1 * ( ( & |
---|
747 | r4(3) * & |
---|
748 | x2 + r4(2) ) * & |
---|
749 | x2 + r4(1) ) / ( ( & |
---|
750 | x2 + r4(5) ) * & |
---|
751 | x2 + r4(4) ) |
---|
752 | |
---|
753 | end if |
---|
754 | |
---|
755 | end if |
---|
756 | |
---|
757 | END FUNCTION alngam |
---|
758 | |
---|
759 | REAL FUNCTION gamain( x, p, ifault ) |
---|
760 | |
---|
761 | !*****************************************************************************80 |
---|
762 | ! |
---|
763 | !! GAMAIN computes the incomplete gamma ratio. |
---|
764 | ! |
---|
765 | ! Discussion: |
---|
766 | ! |
---|
767 | ! A series expansion is used if P > X or X <= 1. Otherwise, a |
---|
768 | ! continued fraction approximation is used. |
---|
769 | ! |
---|
770 | ! Modified: |
---|
771 | ! |
---|
772 | ! 17 January 2008 |
---|
773 | ! |
---|
774 | ! Author: |
---|
775 | ! |
---|
776 | ! G Bhattacharjee |
---|
777 | ! FORTRAN90 version by John Burkardt |
---|
778 | ! |
---|
779 | ! Reference: |
---|
780 | ! |
---|
781 | ! G Bhattacharjee, |
---|
782 | ! Algorithm AS 32: |
---|
783 | ! The Incomplete Gamma Integral, |
---|
784 | ! Applied Statistics, |
---|
785 | ! Volume 19, Number 3, 1970, pages 285-287. |
---|
786 | ! |
---|
787 | ! Parameters: |
---|
788 | ! |
---|
789 | ! Input, real ( kind = 8 ) X, P, the parameters of the incomplete |
---|
790 | ! gamma ratio. 0 <= X, and 0 < P. |
---|
791 | ! |
---|
792 | ! Output, integer ( kind = 4 ) IFAULT, error flag. |
---|
793 | ! 0, no errors. |
---|
794 | ! 1, P <= 0. |
---|
795 | ! 2, X < 0. |
---|
796 | ! 3, underflow. |
---|
797 | ! 4, error return from the Log Gamma routine. |
---|
798 | ! |
---|
799 | ! Output, real ( kind = 8 ) GAMAIN, the value of the incomplete |
---|
800 | ! gamma ratio. |
---|
801 | ! |
---|
802 | implicit none |
---|
803 | |
---|
804 | real (wp) a |
---|
805 | real (wp), parameter :: acu = 1.0E-08 |
---|
806 | real (wp) an |
---|
807 | real (wp) arg |
---|
808 | real (wp) b |
---|
809 | real (wp) dif |
---|
810 | real (wp) factor |
---|
811 | real (wp) g |
---|
812 | real (wp) gin |
---|
813 | integer i |
---|
814 | integer ifault |
---|
815 | real (wp), parameter :: oflo = 1.0E+37 |
---|
816 | real (wp) p |
---|
817 | real (wp) pn(6) |
---|
818 | real (wp) rn |
---|
819 | real (wp) term |
---|
820 | real (wp), parameter :: uflo = 1.0E-37 |
---|
821 | real (wp) x |
---|
822 | ! |
---|
823 | ! Check the input. |
---|
824 | ! |
---|
825 | if ( p <= 0.0E+00 ) then |
---|
826 | ifault = 1 |
---|
827 | gamain = 0.0E+00 |
---|
828 | return |
---|
829 | end if |
---|
830 | |
---|
831 | if ( x < 0.0E+00 ) then |
---|
832 | ifault = 2 |
---|
833 | gamain = 0.0E+00 |
---|
834 | return |
---|
835 | end if |
---|
836 | |
---|
837 | if ( x == 0.0E+00 ) then |
---|
838 | ifault = 0 |
---|
839 | gamain = 0.0E+00 |
---|
840 | return |
---|
841 | end if |
---|
842 | |
---|
843 | g = alngam ( p, ifault ) |
---|
844 | |
---|
845 | if ( ifault /= 0 ) then |
---|
846 | ifault = 4 |
---|
847 | gamain = 0.0E+00 |
---|
848 | return |
---|
849 | end if |
---|
850 | |
---|
851 | arg = p * log ( x ) - x - g |
---|
852 | |
---|
853 | if ( arg < log ( uflo ) ) then |
---|
854 | ifault = 3 |
---|
855 | gamain = 0.0E+00 |
---|
856 | return |
---|
857 | end if |
---|
858 | |
---|
859 | ifault = 0 |
---|
860 | factor = exp ( arg ) |
---|
861 | ! |
---|
862 | ! Calculation by series expansion. |
---|
863 | ! |
---|
864 | if ( x <= 1.0E+00 .or. x < p ) then |
---|
865 | |
---|
866 | gin = 1.0E+00 |
---|
867 | term = 1.0E+00 |
---|
868 | rn = p |
---|
869 | |
---|
870 | do |
---|
871 | |
---|
872 | rn = rn + 1.0E+00 |
---|
873 | term = term * x / rn |
---|
874 | gin = gin + term |
---|
875 | |
---|
876 | if ( term <= acu ) then |
---|
877 | exit |
---|
878 | end if |
---|
879 | |
---|
880 | end do |
---|
881 | |
---|
882 | gamain = gin * factor / p |
---|
883 | return |
---|
884 | |
---|
885 | end if |
---|
886 | ! |
---|
887 | ! Calculation by continued fraction. |
---|
888 | ! |
---|
889 | a = 1.0E+00 - p |
---|
890 | b = a + x + 1.0E+00 |
---|
891 | term = 0.0E+00 |
---|
892 | |
---|
893 | pn(1) = 1.0E+00 |
---|
894 | pn(2) = x |
---|
895 | pn(3) = x + 1.0E+00 |
---|
896 | pn(4) = x * b |
---|
897 | |
---|
898 | gin = pn(3) / pn(4) |
---|
899 | |
---|
900 | do |
---|
901 | |
---|
902 | a = a + 1.0E+00 |
---|
903 | b = b + 2.0E+00 |
---|
904 | term = term + 1.0E+00 |
---|
905 | an = a * term |
---|
906 | do i = 1, 2 |
---|
907 | pn(i+4) = b * pn(i+2) - an * pn(i) |
---|
908 | end do |
---|
909 | |
---|
910 | if ( pn(6) /= 0.0E+00 ) then |
---|
911 | |
---|
912 | rn = pn(5) / pn(6) |
---|
913 | dif = abs ( gin - rn ) |
---|
914 | ! |
---|
915 | ! Absolute error tolerance satisfied? |
---|
916 | ! |
---|
917 | if ( dif <= acu ) then |
---|
918 | ! |
---|
919 | ! Relative error tolerance satisfied? |
---|
920 | ! |
---|
921 | if ( dif <= acu * rn ) then |
---|
922 | gamain = 1.0E+00 - factor * gin |
---|
923 | exit |
---|
924 | end if |
---|
925 | |
---|
926 | end if |
---|
927 | |
---|
928 | gin = rn |
---|
929 | |
---|
930 | end if |
---|
931 | |
---|
932 | do i = 1, 4 |
---|
933 | pn(i) = pn(i+2) |
---|
934 | end do |
---|
935 | if ( oflo <= abs ( pn(5) ) ) then |
---|
936 | |
---|
937 | do i = 1, 4 |
---|
938 | pn(i) = pn(i) / oflo |
---|
939 | end do |
---|
940 | |
---|
941 | end if |
---|
942 | |
---|
943 | end do |
---|
944 | |
---|
945 | END FUNCTION gamain |
---|
946 | |
---|
947 | !!====================================================================== |
---|
948 | END MODULE p4zpoc |
---|