1 | MODULE p4zsink |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p4zsink *** |
---|
4 | !! TOP : PISCES vertical flux of particulate matter due to gravitational sinking |
---|
5 | !!====================================================================== |
---|
6 | !! History : 1.0 ! 2004 (O. Aumont) Original code |
---|
7 | !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 |
---|
8 | !! 3.4 ! 2011-06 (O. Aumont, C. Ethe) Change aggregation formula |
---|
9 | !! 3.5 ! 2012-07 (O. Aumont) Introduce potential time-splitting |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | !! p4z_sink : Compute vertical flux of particulate matter due to gravitational sinking |
---|
12 | !! p4z_sink_init : Unitialisation of sinking speed parameters |
---|
13 | !! p4z_sink_alloc : Allocate sinking speed variables |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
16 | USE trc ! passive tracers common variables |
---|
17 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
18 | USE prtctl_trc ! print control for debugging |
---|
19 | USE iom ! I/O manager |
---|
20 | USE lib_mpp |
---|
21 | |
---|
22 | IMPLICIT NONE |
---|
23 | PRIVATE |
---|
24 | |
---|
25 | PUBLIC p4z_sink ! called in p4zbio.F90 |
---|
26 | PUBLIC p4z_sink_init ! called in trcsms_pisces.F90 |
---|
27 | PUBLIC p4z_sink_alloc |
---|
28 | |
---|
29 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sinking, sinking2 !: POC sinking fluxes |
---|
30 | ! ! (different meanings depending on the parameterization) |
---|
31 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sinkingn, sinking2n !: POC sinking fluxes |
---|
32 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sinkingp, sinking2p !: POC sinking fluxes |
---|
33 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sinkcal, sinksil !: CaCO3 and BSi sinking fluxes |
---|
34 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sinkfer !: Small BFe sinking fluxes |
---|
35 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sinkfer2 !: Big iron sinking fluxes |
---|
36 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sinkfep !: Fep sinking fluxes |
---|
37 | |
---|
38 | INTEGER :: ik100 |
---|
39 | |
---|
40 | !!---------------------------------------------------------------------- |
---|
41 | !! NEMO/TOP 3.3 , NEMO Consortium (2010) |
---|
42 | !! $Id: p4zsink.F90 3160 2011-11-20 14:27:18Z cetlod $ |
---|
43 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
44 | !!---------------------------------------------------------------------- |
---|
45 | CONTAINS |
---|
46 | |
---|
47 | !!---------------------------------------------------------------------- |
---|
48 | !! 'standard sinking parameterisation' ??? |
---|
49 | !!---------------------------------------------------------------------- |
---|
50 | |
---|
51 | SUBROUTINE p4z_sink ( kt, knt ) |
---|
52 | !!--------------------------------------------------------------------- |
---|
53 | !! *** ROUTINE p4z_sink *** |
---|
54 | !! |
---|
55 | !! ** Purpose : Compute vertical flux of particulate matter due to |
---|
56 | !! gravitational sinking |
---|
57 | !! |
---|
58 | !! ** Method : - ??? |
---|
59 | !!--------------------------------------------------------------------- |
---|
60 | INTEGER, INTENT(in) :: kt, knt |
---|
61 | INTEGER :: ji, jj, jk, jit |
---|
62 | INTEGER :: iiter1, iiter2 |
---|
63 | REAL(wp) :: zagg1, zagg2, zagg3, zagg4 |
---|
64 | REAL(wp) :: zagg , zaggfe, zaggdoc, zaggdoc2, zaggdoc3 |
---|
65 | REAL(wp) :: zfact, zwsmax, zmax |
---|
66 | CHARACTER (len=25) :: charout |
---|
67 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zw3d |
---|
68 | REAL(wp), POINTER, DIMENSION(:,: ) :: zw2d |
---|
69 | !!--------------------------------------------------------------------- |
---|
70 | ! |
---|
71 | IF( nn_timing == 1 ) CALL timing_start('p4z_sink') |
---|
72 | |
---|
73 | |
---|
74 | ! Initialization of some global variables |
---|
75 | ! --------------------------------------- |
---|
76 | prodpoc(:,:,:) = 0. |
---|
77 | conspoc(:,:,:) = 0. |
---|
78 | prodgoc(:,:,:) = 0. |
---|
79 | consgoc(:,:,:) = 0. |
---|
80 | |
---|
81 | ! |
---|
82 | ! Sinking speeds of detritus is increased with depth as shown |
---|
83 | ! by data and from the coagulation theory |
---|
84 | ! ----------------------------------------------------------- |
---|
85 | DO jk = 1, jpkm1 |
---|
86 | DO jj = 1, jpj |
---|
87 | DO ji = 1,jpi |
---|
88 | zmax = MAX( heup_01(ji,jj), hmld(ji,jj) ) |
---|
89 | zfact = MAX( 0., gdepw_n(ji,jj,jk+1) - zmax ) / wsbio2scale |
---|
90 | wsbio4(ji,jj,jk) = wsbio2 + MAX(0., ( wsbio2max - wsbio2 )) * zfact |
---|
91 | END DO |
---|
92 | END DO |
---|
93 | END DO |
---|
94 | |
---|
95 | ! limit the values of the sinking speeds to avoid numerical instabilities |
---|
96 | wsbio3(:,:,:) = wsbio |
---|
97 | |
---|
98 | ! |
---|
99 | ! OA This is (I hope) a temporary solution for the problem that may |
---|
100 | ! OA arise in specific situation where the CFL criterion is broken |
---|
101 | ! OA for vertical sedimentation of particles. To avoid this, a time |
---|
102 | ! OA splitting algorithm has been coded. A specific maximum |
---|
103 | ! OA iteration number is provided and may be specified in the namelist |
---|
104 | ! OA This is to avoid very large iteration number when explicit free |
---|
105 | ! OA surface is used (for instance). When niter?max is set to 1, |
---|
106 | ! OA this computation is skipped. The crude old threshold method is |
---|
107 | ! OA then applied. This also happens when niter exceeds nitermax. |
---|
108 | IF( MAX( niter1max, niter2max ) == 1 ) THEN |
---|
109 | iiter1 = 1 |
---|
110 | iiter2 = 1 |
---|
111 | ELSE |
---|
112 | iiter1 = 1 |
---|
113 | iiter2 = 1 |
---|
114 | DO jk = 1, jpkm1 |
---|
115 | DO jj = 1, jpj |
---|
116 | DO ji = 1, jpi |
---|
117 | IF( tmask(ji,jj,jk) == 1) THEN |
---|
118 | zwsmax = 0.5 * e3t_n(ji,jj,jk) / xstep |
---|
119 | iiter1 = MAX( iiter1, INT( wsbio3(ji,jj,jk) / zwsmax ) ) |
---|
120 | iiter2 = MAX( iiter2, INT( wsbio4(ji,jj,jk) / zwsmax ) ) |
---|
121 | ENDIF |
---|
122 | END DO |
---|
123 | END DO |
---|
124 | END DO |
---|
125 | IF( lk_mpp ) THEN |
---|
126 | CALL mpp_max( iiter1 ) |
---|
127 | CALL mpp_max( iiter2 ) |
---|
128 | ENDIF |
---|
129 | iiter1 = MIN( iiter1, niter1max ) |
---|
130 | iiter2 = MIN( iiter2, niter2max ) |
---|
131 | ENDIF |
---|
132 | |
---|
133 | DO jk = 1,jpkm1 |
---|
134 | DO jj = 1, jpj |
---|
135 | DO ji = 1, jpi |
---|
136 | IF( tmask(ji,jj,jk) == 1 ) THEN |
---|
137 | zwsmax = 0.5 * e3t_n(ji,jj,jk) / xstep |
---|
138 | wsbio3(ji,jj,jk) = MIN( wsbio3(ji,jj,jk), zwsmax * FLOAT( iiter1 ) ) |
---|
139 | wsbio4(ji,jj,jk) = MIN( wsbio4(ji,jj,jk), zwsmax * FLOAT( iiter2 ) ) |
---|
140 | ENDIF |
---|
141 | END DO |
---|
142 | END DO |
---|
143 | END DO |
---|
144 | |
---|
145 | wscal (:,:,:) = wsbio4(:,:,:) |
---|
146 | |
---|
147 | ! Initializa to zero all the sinking arrays |
---|
148 | ! ----------------------------------------- |
---|
149 | sinking (:,:,:) = 0.e0 |
---|
150 | sinking2(:,:,:) = 0.e0 |
---|
151 | sinkcal (:,:,:) = 0.e0 |
---|
152 | sinkfer (:,:,:) = 0.e0 |
---|
153 | sinksil (:,:,:) = 0.e0 |
---|
154 | sinkfer2(:,:,:) = 0.e0 |
---|
155 | |
---|
156 | ! Compute the sedimentation term using p4zsink2 for all the sinking particles |
---|
157 | ! ----------------------------------------------------- |
---|
158 | DO jit = 1, iiter1 |
---|
159 | CALL p4z_sink2( wsbio3, sinking , jppoc, iiter1 ) |
---|
160 | CALL p4z_sink2( wsbio3, sinkfer , jpsfe, iiter1 ) |
---|
161 | END DO |
---|
162 | |
---|
163 | DO jit = 1, iiter2 |
---|
164 | CALL p4z_sink2( wsbio4, sinking2, jpgoc, iiter2 ) |
---|
165 | CALL p4z_sink2( wsbio4, sinkfer2, jpbfe, iiter2 ) |
---|
166 | CALL p4z_sink2( wsbio4, sinksil , jpgsi, iiter2 ) |
---|
167 | CALL p4z_sink2( wscal , sinkcal , jpcal, iiter2 ) |
---|
168 | END DO |
---|
169 | |
---|
170 | IF( ln_p5z ) THEN |
---|
171 | sinkingn (:,:,:) = 0.e0 |
---|
172 | sinking2n(:,:,:) = 0.e0 |
---|
173 | sinkingp (:,:,:) = 0.e0 |
---|
174 | sinking2p(:,:,:) = 0.e0 |
---|
175 | |
---|
176 | ! Compute the sedimentation term using p4zsink2 for all the sinking particles |
---|
177 | ! ----------------------------------------------------- |
---|
178 | DO jit = 1, iiter1 |
---|
179 | CALL p4z_sink2( wsbio3, sinkingn , jppon, iiter1 ) |
---|
180 | CALL p4z_sink2( wsbio3, sinkingp , jppop, iiter1 ) |
---|
181 | END DO |
---|
182 | |
---|
183 | DO jit = 1, iiter2 |
---|
184 | CALL p4z_sink2( wsbio4, sinking2n, jpgon, iiter2 ) |
---|
185 | CALL p4z_sink2( wsbio4, sinking2p, jpgop, iiter2 ) |
---|
186 | END DO |
---|
187 | ENDIF |
---|
188 | |
---|
189 | IF( ln_ligand ) THEN |
---|
190 | wsfep (:,:,:) = wfep |
---|
191 | DO jk = 1,jpkm1 |
---|
192 | DO jj = 1, jpj |
---|
193 | DO ji = 1, jpi |
---|
194 | IF( tmask(ji,jj,jk) == 1 ) THEN |
---|
195 | zwsmax = 0.5 * e3t_n(ji,jj,jk) / xstep |
---|
196 | wsfep(ji,jj,jk) = MIN( wsfep(ji,jj,jk), zwsmax * FLOAT( iiter1 ) ) |
---|
197 | ENDIF |
---|
198 | END DO |
---|
199 | END DO |
---|
200 | END DO |
---|
201 | ! |
---|
202 | sinkfep(:,:,:) = 0.e0 |
---|
203 | DO jit = 1, iiter1 |
---|
204 | CALL p4z_sink2( wsfep, sinkfep , jpfep, iiter1 ) |
---|
205 | END DO |
---|
206 | ENDIF |
---|
207 | |
---|
208 | ! Total carbon export per year |
---|
209 | IF( iom_use( "tcexp" ) .OR. ( ln_check_mass .AND. kt == nitend .AND. knt == nrdttrc ) ) & |
---|
210 | & t_oce_co2_exp = glob_sum( ( sinking(:,:,ik100) + sinking2(:,:,ik100) ) * e1e2t(:,:) * tmask(:,:,1) ) |
---|
211 | ! |
---|
212 | IF( lk_iomput ) THEN |
---|
213 | IF( knt == nrdttrc ) THEN |
---|
214 | CALL wrk_alloc( jpi, jpj, zw2d ) |
---|
215 | CALL wrk_alloc( jpi, jpj, jpk, zw3d ) |
---|
216 | zfact = 1.e+3 * rfact2r ! conversion from mol/l/kt to mol/m3/s |
---|
217 | ! |
---|
218 | IF( iom_use( "EPC100" ) ) THEN |
---|
219 | zw2d(:,:) = ( sinking(:,:,ik100) + sinking2(:,:,ik100) ) * zfact * tmask(:,:,1) ! Export of carbon at 100m |
---|
220 | CALL iom_put( "EPC100" , zw2d ) |
---|
221 | ENDIF |
---|
222 | IF( iom_use( "EPFE100" ) ) THEN |
---|
223 | zw2d(:,:) = ( sinkfer(:,:,ik100) + sinkfer2(:,:,ik100) ) * zfact * tmask(:,:,1) ! Export of iron at 100m |
---|
224 | CALL iom_put( "EPFE100" , zw2d ) |
---|
225 | ENDIF |
---|
226 | IF( iom_use( "EPCAL100" ) ) THEN |
---|
227 | zw2d(:,:) = sinkcal(:,:,ik100) * zfact * tmask(:,:,1) ! Export of calcite at 100m |
---|
228 | CALL iom_put( "EPCAL100" , zw2d ) |
---|
229 | ENDIF |
---|
230 | IF( iom_use( "EPSI100" ) ) THEN |
---|
231 | zw2d(:,:) = sinksil(:,:,ik100) * zfact * tmask(:,:,1) ! Export of bigenic silica at 100m |
---|
232 | CALL iom_put( "EPSI100" , zw2d ) |
---|
233 | ENDIF |
---|
234 | IF( iom_use( "EXPC" ) ) THEN |
---|
235 | zw3d(:,:,:) = ( sinking(:,:,:) + sinking2(:,:,:) ) * zfact * tmask(:,:,:) ! Export of carbon in the water column |
---|
236 | CALL iom_put( "EXPC" , zw3d ) |
---|
237 | ENDIF |
---|
238 | IF( iom_use( "EXPFE" ) ) THEN |
---|
239 | zw3d(:,:,:) = ( sinkfer(:,:,:) + sinkfer2(:,:,:) ) * zfact * tmask(:,:,:) ! Export of iron |
---|
240 | CALL iom_put( "EXPFE" , zw3d ) |
---|
241 | ENDIF |
---|
242 | IF( iom_use( "EXPCAL" ) ) THEN |
---|
243 | zw3d(:,:,:) = sinkcal(:,:,:) * zfact * tmask(:,:,:) ! Export of calcite |
---|
244 | CALL iom_put( "EXPCAL" , zw3d ) |
---|
245 | ENDIF |
---|
246 | IF( iom_use( "EXPSI" ) ) THEN |
---|
247 | zw3d(:,:,:) = sinksil(:,:,:) * zfact * tmask(:,:,:) ! Export of bigenic silica |
---|
248 | CALL iom_put( "EXPSI" , zw3d ) |
---|
249 | ENDIF |
---|
250 | IF( iom_use( "tcexp" ) ) CALL iom_put( "tcexp" , t_oce_co2_exp * zfact ) ! molC/s |
---|
251 | ! |
---|
252 | CALL wrk_dealloc( jpi, jpj, zw2d ) |
---|
253 | CALL wrk_dealloc( jpi, jpj, jpk, zw3d ) |
---|
254 | ENDIF |
---|
255 | ENDIF |
---|
256 | ! |
---|
257 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
258 | WRITE(charout, FMT="('sink')") |
---|
259 | CALL prt_ctl_trc_info(charout) |
---|
260 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
261 | ENDIF |
---|
262 | ! |
---|
263 | IF( nn_timing == 1 ) CALL timing_stop('p4z_sink') |
---|
264 | ! |
---|
265 | END SUBROUTINE p4z_sink |
---|
266 | |
---|
267 | SUBROUTINE p4z_sink_init |
---|
268 | !!---------------------------------------------------------------------- |
---|
269 | !! *** ROUTINE p4z_sink_init *** |
---|
270 | !!---------------------------------------------------------------------- |
---|
271 | INTEGER :: jk |
---|
272 | |
---|
273 | ik100 = 10 ! last level where depth less than 100 m |
---|
274 | DO jk = jpkm1, 1, -1 |
---|
275 | IF( gdept_1d(jk) > 100. ) ik100 = jk - 1 |
---|
276 | END DO |
---|
277 | IF (lwp) WRITE(numout,*) |
---|
278 | IF (lwp) WRITE(numout,*) ' Level corresponding to 100m depth ', ik100 + 1 |
---|
279 | IF (lwp) WRITE(numout,*) |
---|
280 | ! |
---|
281 | t_oce_co2_exp = 0._wp |
---|
282 | ! |
---|
283 | END SUBROUTINE p4z_sink_init |
---|
284 | |
---|
285 | SUBROUTINE p4z_sink2( pwsink, psinkflx, jp_tra, kiter ) |
---|
286 | !!--------------------------------------------------------------------- |
---|
287 | !! *** ROUTINE p4z_sink2 *** |
---|
288 | !! |
---|
289 | !! ** Purpose : Compute the sedimentation terms for the various sinking |
---|
290 | !! particles. The scheme used to compute the trends is based |
---|
291 | !! on MUSCL. |
---|
292 | !! |
---|
293 | !! ** Method : - this ROUTINE compute not exactly the advection but the |
---|
294 | !! transport term, i.e. div(u*tra). |
---|
295 | !!--------------------------------------------------------------------- |
---|
296 | ! |
---|
297 | INTEGER , INTENT(in ) :: jp_tra ! tracer index index |
---|
298 | INTEGER , INTENT(in ) :: kiter ! number of iterations for time-splitting |
---|
299 | REAL(wp), INTENT(in ), DIMENSION(jpi,jpj,jpk) :: pwsink ! sinking speed |
---|
300 | REAL(wp), INTENT(inout), DIMENSION(jpi,jpj,jpk) :: psinkflx ! sinking fluxe |
---|
301 | !! |
---|
302 | INTEGER :: ji, jj, jk, jn |
---|
303 | REAL(wp) :: zigma,zew,zign, zflx, zstep |
---|
304 | REAL(wp), POINTER, DIMENSION(:,:,:) :: ztraz, zakz, zwsink2, ztrb |
---|
305 | !!--------------------------------------------------------------------- |
---|
306 | ! |
---|
307 | IF( nn_timing == 1 ) CALL timing_start('p4z_sink2') |
---|
308 | ! |
---|
309 | ! Allocate temporary workspace |
---|
310 | CALL wrk_alloc( jpi, jpj, jpk, ztraz, zakz, zwsink2, ztrb ) |
---|
311 | |
---|
312 | zstep = rfact2 / FLOAT( kiter ) / 2. |
---|
313 | |
---|
314 | ztraz(:,:,:) = 0.e0 |
---|
315 | zakz (:,:,:) = 0.e0 |
---|
316 | ztrb (:,:,:) = trb(:,:,:,jp_tra) |
---|
317 | |
---|
318 | DO jk = 1, jpkm1 |
---|
319 | zwsink2(:,:,jk+1) = -pwsink(:,:,jk) / rday * tmask(:,:,jk+1) |
---|
320 | END DO |
---|
321 | zwsink2(:,:,1) = 0.e0 |
---|
322 | |
---|
323 | |
---|
324 | ! Vertical advective flux |
---|
325 | DO jn = 1, 2 |
---|
326 | ! first guess of the slopes interior values |
---|
327 | DO jk = 2, jpkm1 |
---|
328 | ztraz(:,:,jk) = ( trb(:,:,jk-1,jp_tra) - trb(:,:,jk,jp_tra) ) * tmask(:,:,jk) |
---|
329 | END DO |
---|
330 | ztraz(:,:,1 ) = 0.0 |
---|
331 | ztraz(:,:,jpk) = 0.0 |
---|
332 | |
---|
333 | ! slopes |
---|
334 | DO jk = 2, jpkm1 |
---|
335 | DO jj = 1,jpj |
---|
336 | DO ji = 1, jpi |
---|
337 | zign = 0.25 + SIGN( 0.25, ztraz(ji,jj,jk) * ztraz(ji,jj,jk+1) ) |
---|
338 | zakz(ji,jj,jk) = ( ztraz(ji,jj,jk) + ztraz(ji,jj,jk+1) ) * zign |
---|
339 | END DO |
---|
340 | END DO |
---|
341 | END DO |
---|
342 | |
---|
343 | ! Slopes limitation |
---|
344 | DO jk = 2, jpkm1 |
---|
345 | DO jj = 1, jpj |
---|
346 | DO ji = 1, jpi |
---|
347 | zakz(ji,jj,jk) = SIGN( 1., zakz(ji,jj,jk) ) * & |
---|
348 | & MIN( ABS( zakz(ji,jj,jk) ), 2. * ABS(ztraz(ji,jj,jk+1)), 2. * ABS(ztraz(ji,jj,jk) ) ) |
---|
349 | END DO |
---|
350 | END DO |
---|
351 | END DO |
---|
352 | |
---|
353 | ! vertical advective flux |
---|
354 | DO jk = 1, jpkm1 |
---|
355 | DO jj = 1, jpj |
---|
356 | DO ji = 1, jpi |
---|
357 | zigma = zwsink2(ji,jj,jk+1) * zstep / e3w_n(ji,jj,jk+1) |
---|
358 | zew = zwsink2(ji,jj,jk+1) |
---|
359 | psinkflx(ji,jj,jk+1) = -zew * ( trb(ji,jj,jk,jp_tra) - 0.5 * ( 1 + zigma ) * zakz(ji,jj,jk) ) * zstep |
---|
360 | END DO |
---|
361 | END DO |
---|
362 | END DO |
---|
363 | ! |
---|
364 | ! Boundary conditions |
---|
365 | psinkflx(:,:,1 ) = 0.e0 |
---|
366 | psinkflx(:,:,jpk) = 0.e0 |
---|
367 | |
---|
368 | DO jk=1,jpkm1 |
---|
369 | DO jj = 1,jpj |
---|
370 | DO ji = 1, jpi |
---|
371 | zflx = ( psinkflx(ji,jj,jk) - psinkflx(ji,jj,jk+1) ) / e3t_n(ji,jj,jk) |
---|
372 | trb(ji,jj,jk,jp_tra) = trb(ji,jj,jk,jp_tra) + zflx |
---|
373 | END DO |
---|
374 | END DO |
---|
375 | END DO |
---|
376 | |
---|
377 | ENDDO |
---|
378 | |
---|
379 | DO jk = 1,jpkm1 |
---|
380 | DO jj = 1,jpj |
---|
381 | DO ji = 1, jpi |
---|
382 | zflx = ( psinkflx(ji,jj,jk) - psinkflx(ji,jj,jk+1) ) / e3t_n(ji,jj,jk) |
---|
383 | ztrb(ji,jj,jk) = ztrb(ji,jj,jk) + 2. * zflx |
---|
384 | END DO |
---|
385 | END DO |
---|
386 | END DO |
---|
387 | |
---|
388 | trb(:,:,:,jp_tra) = ztrb(:,:,:) |
---|
389 | psinkflx(:,:,:) = 2. * psinkflx(:,:,:) |
---|
390 | ! |
---|
391 | CALL wrk_dealloc( jpi, jpj, jpk, ztraz, zakz, zwsink2, ztrb ) |
---|
392 | ! |
---|
393 | IF( nn_timing == 1 ) CALL timing_stop('p4z_sink2') |
---|
394 | ! |
---|
395 | END SUBROUTINE p4z_sink2 |
---|
396 | |
---|
397 | |
---|
398 | INTEGER FUNCTION p4z_sink_alloc() |
---|
399 | !!---------------------------------------------------------------------- |
---|
400 | !! *** ROUTINE p4z_sink_alloc *** |
---|
401 | !!---------------------------------------------------------------------- |
---|
402 | INTEGER :: ierr(3) |
---|
403 | |
---|
404 | ierr(:) = 0 |
---|
405 | ! |
---|
406 | ALLOCATE( sinking(jpi,jpj,jpk) , sinking2(jpi,jpj,jpk) , & |
---|
407 | & sinkcal(jpi,jpj,jpk) , sinksil (jpi,jpj,jpk) , & |
---|
408 | & sinkfer2(jpi,jpj,jpk) , & |
---|
409 | & sinkfer(jpi,jpj,jpk) , STAT=ierr(1) ) |
---|
410 | ! |
---|
411 | IF( ln_ligand ) ALLOCATE( sinkfep(jpi,jpj,jpk) , STAT=ierr(2) ) |
---|
412 | |
---|
413 | IF( ln_p5z ) ALLOCATE( sinkingn(jpi,jpj,jpk), sinking2n(jpi,jpj,jpk) , & |
---|
414 | & sinkingp(jpi,jpj,jpk), sinking2p(jpi,jpj,jpk) , STAT=ierr(3) ) |
---|
415 | ! |
---|
416 | p4z_sink_alloc = MAXVAL( ierr ) |
---|
417 | IF( p4z_sink_alloc /= 0 ) CALL ctl_warn('p4z_sink_alloc : failed to allocate arrays.') |
---|
418 | ! |
---|
419 | END FUNCTION p4z_sink_alloc |
---|
420 | |
---|
421 | !!====================================================================== |
---|
422 | END MODULE p4zsink |
---|