1 | MODULE sbcisf |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE sbcisf *** |
---|
4 | !! Surface module : update surface ocean boundary condition under ice |
---|
5 | !! shelf |
---|
6 | !!====================================================================== |
---|
7 | !! History : 3.2 ! 2011-02 (C.Harris ) Original code isf cav |
---|
8 | !! X.X ! 2006-02 (C. Wang ) Original code bg03 |
---|
9 | !! 3.4 ! 2013-03 (P. Mathiot) Merging + parametrization |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! sbc_isf : update sbc under ice shelf |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | USE oce ! ocean dynamics and tracers |
---|
16 | USE dom_oce ! ocean space and time domain |
---|
17 | USE phycst ! physical constants |
---|
18 | USE eosbn2 ! equation of state |
---|
19 | USE sbc_oce ! surface boundary condition: ocean fields |
---|
20 | USE zdfbfr ! |
---|
21 | ! |
---|
22 | USE in_out_manager ! I/O manager |
---|
23 | USE iom ! I/O manager library |
---|
24 | USE fldread ! read input field at current time step |
---|
25 | USE lbclnk ! |
---|
26 | USE wrk_nemo ! Memory allocation |
---|
27 | USE timing ! Timing |
---|
28 | USE lib_fortran ! glob_sum |
---|
29 | |
---|
30 | IMPLICIT NONE |
---|
31 | PRIVATE |
---|
32 | |
---|
33 | PUBLIC sbc_isf, sbc_isf_div, sbc_isf_alloc ! routine called in sbcmod and divhor |
---|
34 | |
---|
35 | ! public in order to be able to output then |
---|
36 | |
---|
37 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: risf_tsc_b, risf_tsc !: before and now T & S isf contents [K.m/s & PSU.m/s] |
---|
38 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: qisf !: net heat flux from ice shelf [W/m2] |
---|
39 | REAL(wp), PUBLIC :: rn_hisf_tbl !: thickness of top boundary layer [m] |
---|
40 | INTEGER , PUBLIC :: nn_isf !: flag to choose between explicit/param/specified |
---|
41 | INTEGER , PUBLIC :: nn_isfblk !: flag to choose the bulk formulation to compute the ice shelf melting |
---|
42 | INTEGER , PUBLIC :: nn_gammablk !: flag to choose how the exchange coefficient is computed |
---|
43 | REAL(wp), PUBLIC :: rn_gammat0 !: temperature exchange coeficient [] |
---|
44 | REAL(wp), PUBLIC :: rn_gammas0 !: salinity exchange coeficient [] |
---|
45 | |
---|
46 | REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: rzisf_tbl !:depth of calving front (shallowest point) nn_isf ==2/3 |
---|
47 | REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: rhisf_tbl, rhisf_tbl_0 !:thickness of tbl [m] |
---|
48 | REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: r1_hisf_tbl !:1/thickness of tbl |
---|
49 | REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: ralpha !:proportion of bottom cell influenced by tbl |
---|
50 | REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: risfLeff !:effective length (Leff) BG03 nn_isf==2 |
---|
51 | REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: ttbl, stbl, utbl, vtbl !:top boundary layer variable at T point |
---|
52 | INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: misfkt, misfkb !:Level of ice shelf base |
---|
53 | |
---|
54 | REAL(wp), PUBLIC, SAVE :: rcpi = 2000.0_wp ! specific heat of ice shelf [J/kg/K] |
---|
55 | REAL(wp), PUBLIC, SAVE :: rkappa = 1.54e-6_wp ! heat diffusivity through the ice-shelf [m2/s] |
---|
56 | REAL(wp), PUBLIC, SAVE :: rhoisf = 920.0_wp ! volumic mass of ice shelf [kg/m3] |
---|
57 | REAL(wp), PUBLIC, SAVE :: tsurf = -20.0_wp ! air temperature on top of ice shelf [C] |
---|
58 | REAL(wp), PUBLIC, SAVE :: rlfusisf = 0.334e6_wp ! latent heat of fusion of ice shelf [J/kg] |
---|
59 | |
---|
60 | !: Variable used in fldread to read the forcing file (nn_isf == 4 .OR. nn_isf == 3) |
---|
61 | CHARACTER(len=100), PUBLIC :: cn_dirisf = './' !: Root directory for location of ssr files |
---|
62 | TYPE(FLD_N) , PUBLIC :: sn_fwfisf !: information about the isf melting file to be read |
---|
63 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_fwfisf |
---|
64 | TYPE(FLD_N) , PUBLIC :: sn_rnfisf !: information about the isf melting param. file to be read |
---|
65 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_rnfisf |
---|
66 | TYPE(FLD_N) , PUBLIC :: sn_depmax_isf !: information about the grounding line depth file to be read |
---|
67 | TYPE(FLD_N) , PUBLIC :: sn_depmin_isf !: information about the calving line depth file to be read |
---|
68 | TYPE(FLD_N) , PUBLIC :: sn_Leff_isf !: information about the effective length file to be read |
---|
69 | |
---|
70 | !!---------------------------------------------------------------------- |
---|
71 | !! NEMO/OPA 3.7 , LOCEAN-IPSL (2015) |
---|
72 | !! $Id$ |
---|
73 | !! Software governed by the CeCILL licence (modipsl/doc/NEMO_CeCILL.txt) |
---|
74 | !!---------------------------------------------------------------------- |
---|
75 | CONTAINS |
---|
76 | |
---|
77 | SUBROUTINE sbc_isf(kt) |
---|
78 | !!--------------------------------------------------------------------- |
---|
79 | !! *** ROUTINE sbc_isf *** |
---|
80 | !! |
---|
81 | !! ** Purpose : Compute Salt and Heat fluxes related to ice_shelf |
---|
82 | !! melting and freezing |
---|
83 | !! |
---|
84 | !! ** Method : 4 parameterizations are available according to nn_isf |
---|
85 | !! nn_isf = 1 : Realistic ice_shelf formulation |
---|
86 | !! 2 : Beckmann & Goose parameterization |
---|
87 | !! 3 : Specified runoff in deptht (Mathiot & al. ) |
---|
88 | !! 4 : specified fwf and heat flux forcing beneath the ice shelf |
---|
89 | !!---------------------------------------------------------------------- |
---|
90 | INTEGER, INTENT( in ) :: kt ! ocean time step |
---|
91 | ! |
---|
92 | INTEGER :: ji, jj, jk ! loop index |
---|
93 | INTEGER :: ikt, ikb ! loop index |
---|
94 | REAL(wp), DIMENSION (:,:), POINTER :: zt_frz, zdep ! freezing temperature (zt_frz) at depth (zdep) |
---|
95 | REAL(wp), DIMENSION(:,:,:), POINTER :: zfwfisf3d, zqhcisf3d, zqlatisf3d |
---|
96 | REAL(wp), DIMENSION(:,: ), POINTER :: zqhcisf2d |
---|
97 | !!--------------------------------------------------------------------- |
---|
98 | ! |
---|
99 | ! ! ====================== ! |
---|
100 | IF( kt == nit000 ) THEN ! First call kt=nit000 ! |
---|
101 | ! ! ====================== ! |
---|
102 | CALL sbc_isf_init |
---|
103 | ! ! ---------------------------------------- ! |
---|
104 | ELSE ! Swap of forcing fields ! |
---|
105 | ! ! ---------------------------------------- ! |
---|
106 | fwfisf_b (:,: ) = fwfisf (:,: ) ! Swap the ocean forcing fields except at nit000 |
---|
107 | risf_tsc_b(:,:,:) = risf_tsc(:,:,:) ! where before fields are set at the end of the routine |
---|
108 | ! |
---|
109 | END IF |
---|
110 | |
---|
111 | IF( MOD( kt-1, nn_fsbc) == 0 ) THEN |
---|
112 | ! allocation |
---|
113 | CALL wrk_alloc( jpi,jpj, zt_frz, zdep ) |
---|
114 | |
---|
115 | ! compute salt and heat flux |
---|
116 | SELECT CASE ( nn_isf ) |
---|
117 | CASE ( 1 ) ! realistic ice shelf formulation |
---|
118 | ! compute T/S/U/V for the top boundary layer |
---|
119 | CALL sbc_isf_tbl(tsn(:,:,:,jp_tem),ttbl(:,:),'T') |
---|
120 | CALL sbc_isf_tbl(tsn(:,:,:,jp_sal),stbl(:,:),'T') |
---|
121 | CALL sbc_isf_tbl(un(:,:,:) ,utbl(:,:),'U') |
---|
122 | CALL sbc_isf_tbl(vn(:,:,:) ,vtbl(:,:),'V') |
---|
123 | ! iom print |
---|
124 | CALL iom_put('ttbl',ttbl(:,:)) |
---|
125 | CALL iom_put('stbl',stbl(:,:)) |
---|
126 | CALL iom_put('utbl',utbl(:,:) * (1._wp - tmask(:,:,1)) * ssmask(:,:)) |
---|
127 | CALL iom_put('vtbl',vtbl(:,:) * (1._wp - tmask(:,:,1)) * ssmask(:,:)) |
---|
128 | ! compute fwf and heat flux |
---|
129 | CALL sbc_isf_cav (kt) |
---|
130 | |
---|
131 | CASE ( 2 ) ! Beckmann and Goosse parametrisation |
---|
132 | stbl(:,:) = soce |
---|
133 | CALL sbc_isf_bg03(kt) |
---|
134 | |
---|
135 | CASE ( 3 ) ! specified runoff in depth (Mathiot et al., XXXX in preparation) |
---|
136 | CALL fld_read ( kt, nn_fsbc, sf_rnfisf ) |
---|
137 | fwfisf(:,:) = - sf_rnfisf(1)%fnow(:,:,1) ! fwf flux from the isf (fwfisf <0 mean melting) |
---|
138 | qisf(:,:) = fwfisf(:,:) * rlfusisf ! heat flux |
---|
139 | stbl(:,:) = soce |
---|
140 | |
---|
141 | CASE ( 4 ) ! specified fwf and heat flux forcing beneath the ice shelf |
---|
142 | CALL fld_read ( kt, nn_fsbc, sf_fwfisf ) |
---|
143 | fwfisf(:,:) = - sf_fwfisf(1)%fnow(:,:,1) ! fwf flux from the isf (fwfisf <0 mean melting) |
---|
144 | qisf(:,:) = fwfisf(:,:) * rlfusisf ! heat flux |
---|
145 | stbl(:,:) = soce |
---|
146 | |
---|
147 | END SELECT |
---|
148 | |
---|
149 | ! compute tsc due to isf |
---|
150 | ! isf melting implemented as a volume flux and we assume that melt water is at 0 PSU. |
---|
151 | ! WARNING water add at temp = 0C, need to add a correction term (fwfisf * tfreez / rau0). |
---|
152 | ! compute freezing point beneath ice shelf (or top cell if nn_isf = 3) |
---|
153 | DO jj = 1,jpj |
---|
154 | DO ji = 1,jpi |
---|
155 | zdep(ji,jj)=gdepw_n(ji,jj,misfkt(ji,jj)) |
---|
156 | END DO |
---|
157 | END DO |
---|
158 | CALL eos_fzp( stbl(:,:), zt_frz(:,:), zdep(:,:) ) |
---|
159 | |
---|
160 | risf_tsc(:,:,jp_tem) = qisf(:,:) * r1_rau0_rcp - fwfisf(:,:) * zt_frz(:,:) * r1_rau0 ! |
---|
161 | risf_tsc(:,:,jp_sal) = 0.0_wp |
---|
162 | |
---|
163 | ! lbclnk |
---|
164 | CALL lbc_lnk(risf_tsc(:,:,jp_tem),'T',1.) |
---|
165 | CALL lbc_lnk(risf_tsc(:,:,jp_sal),'T',1.) |
---|
166 | CALL lbc_lnk(fwfisf(:,:) ,'T',1.) |
---|
167 | CALL lbc_lnk(qisf(:,:) ,'T',1.) |
---|
168 | |
---|
169 | !============================================================================================================================================= |
---|
170 | IF ( iom_use('fwfisf3d') .OR. iom_use('qlatisf3d') .OR. iom_use('qhcisf3d') .OR. iom_use('qhcisf')) THEN |
---|
171 | CALL wrk_alloc( jpi,jpj,jpk, zfwfisf3d, zqhcisf3d, zqlatisf3d ) |
---|
172 | CALL wrk_alloc( jpi,jpj, zqhcisf2d ) |
---|
173 | |
---|
174 | zfwfisf3d(:,:,:) = 0.0_wp ! 3d ice shelf melting (kg/m2/s) |
---|
175 | zqhcisf3d(:,:,:) = 0.0_wp ! 3d heat content flux (W/m2) |
---|
176 | zqlatisf3d(:,:,:)= 0.0_wp ! 3d ice shelf melting latent heat flux (W/m2) |
---|
177 | zqhcisf2d(:,:) = fwfisf(:,:) * zt_frz * rcp ! 2d heat content flux (W/m2) |
---|
178 | |
---|
179 | DO jj = 1,jpj |
---|
180 | DO ji = 1,jpi |
---|
181 | ikt = misfkt(ji,jj) |
---|
182 | ikb = misfkb(ji,jj) |
---|
183 | DO jk = ikt, ikb - 1 |
---|
184 | zfwfisf3d (ji,jj,jk) = zfwfisf3d (ji,jj,jk) + fwfisf (ji,jj) * r1_hisf_tbl(ji,jj) * e3t_n(ji,jj,jk) |
---|
185 | zqhcisf3d (ji,jj,jk) = zqhcisf3d (ji,jj,jk) + zqhcisf2d(ji,jj) * r1_hisf_tbl(ji,jj) * e3t_n(ji,jj,jk) |
---|
186 | zqlatisf3d(ji,jj,jk) = zqlatisf3d(ji,jj,jk) + qisf (ji,jj) * r1_hisf_tbl(ji,jj) * e3t_n(ji,jj,jk) |
---|
187 | END DO |
---|
188 | zfwfisf3d (ji,jj,jk) = zfwfisf3d (ji,jj,jk) + fwfisf (ji,jj) * r1_hisf_tbl(ji,jj) * ralpha(ji,jj) * e3t_n(ji,jj,jk) |
---|
189 | zqhcisf3d (ji,jj,jk) = zqhcisf3d (ji,jj,jk) + zqhcisf2d(ji,jj) * r1_hisf_tbl(ji,jj) * ralpha(ji,jj) * e3t_n(ji,jj,jk) |
---|
190 | zqlatisf3d(ji,jj,jk) = zqlatisf3d(ji,jj,jk) + qisf (ji,jj) * r1_hisf_tbl(ji,jj) * ralpha(ji,jj) * e3t_n(ji,jj,jk) |
---|
191 | END DO |
---|
192 | END DO |
---|
193 | |
---|
194 | CALL iom_put('fwfisf3d' , zfwfisf3d (:,:,:)) |
---|
195 | CALL iom_put('qlatisf3d', zqlatisf3d(:,:,:)) |
---|
196 | CALL iom_put('qhcisf3d' , zqhcisf3d (:,:,:)) |
---|
197 | CALL iom_put('qhcisf' , zqhcisf2d (:,: )) |
---|
198 | |
---|
199 | CALL wrk_dealloc( jpi,jpj,jpk, zfwfisf3d, zqhcisf3d, zqlatisf3d ) |
---|
200 | CALL wrk_dealloc( jpi,jpj, zqhcisf2d ) |
---|
201 | END IF |
---|
202 | |
---|
203 | ! output |
---|
204 | CALL iom_put('qlatisf' , qisf) |
---|
205 | CALL iom_put('fwfisf', fwfisf) |
---|
206 | !============================================================================================================================================= |
---|
207 | |
---|
208 | IF( kt == nit000 ) THEN ! set the forcing field at nit000 - 1 ! |
---|
209 | IF( ln_rstart .AND. & ! Restart: read in restart file |
---|
210 | & iom_varid( numror, 'fwf_isf_b', ldstop = .FALSE. ) > 0 ) THEN |
---|
211 | IF(lwp) WRITE(numout,*) ' nit000-1 isf tracer content forcing fields read in the restart file' |
---|
212 | CALL iom_get( numror, jpdom_autoglo, 'fwf_isf_b', fwfisf_b(:,:) ) ! before salt content isf_tsc trend |
---|
213 | CALL iom_get( numror, jpdom_autoglo, 'isf_sc_b', risf_tsc_b(:,:,jp_sal) ) ! before salt content isf_tsc trend |
---|
214 | CALL iom_get( numror, jpdom_autoglo, 'isf_hc_b', risf_tsc_b(:,:,jp_tem) ) ! before salt content isf_tsc trend |
---|
215 | ELSE |
---|
216 | fwfisf_b(:,:) = fwfisf(:,:) |
---|
217 | risf_tsc_b(:,:,:)= risf_tsc(:,:,:) |
---|
218 | END IF |
---|
219 | END IF |
---|
220 | ! |
---|
221 | ! deallocation |
---|
222 | CALL wrk_dealloc( jpi,jpj, zt_frz, zdep ) |
---|
223 | END IF |
---|
224 | ! |
---|
225 | END SUBROUTINE sbc_isf |
---|
226 | |
---|
227 | |
---|
228 | INTEGER FUNCTION sbc_isf_alloc() |
---|
229 | !!---------------------------------------------------------------------- |
---|
230 | !! *** FUNCTION sbc_isf_rnf_alloc *** |
---|
231 | !!---------------------------------------------------------------------- |
---|
232 | sbc_isf_alloc = 0 ! set to zero if no array to be allocated |
---|
233 | IF( .NOT. ALLOCATED( qisf ) ) THEN |
---|
234 | ALLOCATE( risf_tsc(jpi,jpj,jpts), risf_tsc_b(jpi,jpj,jpts), qisf(jpi,jpj) , & |
---|
235 | & rhisf_tbl(jpi,jpj) , r1_hisf_tbl(jpi,jpj), rzisf_tbl(jpi,jpj) , & |
---|
236 | & ttbl(jpi,jpj) , stbl(jpi,jpj) , utbl(jpi,jpj) , & |
---|
237 | & vtbl(jpi, jpj) , risfLeff(jpi,jpj) , rhisf_tbl_0(jpi,jpj), & |
---|
238 | & ralpha(jpi,jpj) , misfkt(jpi,jpj) , misfkb(jpi,jpj) , & |
---|
239 | & STAT= sbc_isf_alloc ) |
---|
240 | ! |
---|
241 | IF( lk_mpp ) CALL mpp_sum ( sbc_isf_alloc ) |
---|
242 | IF( sbc_isf_alloc /= 0 ) CALL ctl_warn('sbc_isf_alloc: failed to allocate arrays.') |
---|
243 | ! |
---|
244 | END IF |
---|
245 | END FUNCTION |
---|
246 | |
---|
247 | SUBROUTINE sbc_isf_init |
---|
248 | !!--------------------------------------------------------------------- |
---|
249 | !! *** ROUTINE sbc_isf_init *** |
---|
250 | !! |
---|
251 | !! ** Purpose : Initialisation of variables for iceshelf fluxes formulation |
---|
252 | !! |
---|
253 | !! ** Method : 4 parameterizations are available according to nn_isf |
---|
254 | !! nn_isf = 1 : Realistic ice_shelf formulation |
---|
255 | !! 2 : Beckmann & Goose parameterization |
---|
256 | !! 3 : Specified runoff in deptht (Mathiot & al. ) |
---|
257 | !! 4 : specified fwf and heat flux forcing beneath the ice shelf |
---|
258 | !!---------------------------------------------------------------------- |
---|
259 | INTEGER :: ji, jj, jk ! loop index |
---|
260 | INTEGER :: ik ! current level index |
---|
261 | INTEGER :: ikt, ikb ! top and bottom level of the isf boundary layer |
---|
262 | INTEGER :: inum, ierror |
---|
263 | INTEGER :: ios ! Local integer output status for namelist read |
---|
264 | REAL(wp) :: zhk |
---|
265 | CHARACTER(len=256) :: cvarzisf, cvarhisf ! name for isf file |
---|
266 | CHARACTER(LEN=32 ) :: cvarLeff ! variable name for efficient Length scale |
---|
267 | !!---------------------------------------------------------------------- |
---|
268 | NAMELIST/namsbc_isf/ nn_isfblk, rn_hisf_tbl, rn_gammat0, rn_gammas0, nn_gammablk, nn_isf, & |
---|
269 | & sn_fwfisf, sn_rnfisf, sn_depmax_isf, sn_depmin_isf, sn_Leff_isf |
---|
270 | !!---------------------------------------------------------------------- |
---|
271 | |
---|
272 | REWIND( numnam_ref ) ! Namelist namsbc_rnf in reference namelist : Runoffs |
---|
273 | READ ( numnam_ref, namsbc_isf, IOSTAT = ios, ERR = 901) |
---|
274 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_isf in reference namelist', lwp ) |
---|
275 | |
---|
276 | REWIND( numnam_cfg ) ! Namelist namsbc_rnf in configuration namelist : Runoffs |
---|
277 | READ ( numnam_cfg, namsbc_isf, IOSTAT = ios, ERR = 902 ) |
---|
278 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_isf in configuration namelist', lwp ) |
---|
279 | IF(lwm) WRITE ( numond, namsbc_isf ) |
---|
280 | |
---|
281 | IF ( lwp ) WRITE(numout,*) |
---|
282 | IF ( lwp ) WRITE(numout,*) 'sbc_isf: heat flux of the ice shelf' |
---|
283 | IF ( lwp ) WRITE(numout,*) '~~~~~~~~~' |
---|
284 | IF ( lwp ) WRITE(numout,*) 'sbcisf :' |
---|
285 | IF ( lwp ) WRITE(numout,*) '~~~~~~~~' |
---|
286 | IF ( lwp ) WRITE(numout,*) ' nn_isf = ', nn_isf |
---|
287 | IF ( lwp ) WRITE(numout,*) ' nn_isfblk = ', nn_isfblk |
---|
288 | IF ( lwp ) WRITE(numout,*) ' rn_hisf_tbl = ', rn_hisf_tbl |
---|
289 | IF ( lwp ) WRITE(numout,*) ' nn_gammablk = ', nn_gammablk |
---|
290 | IF ( lwp ) WRITE(numout,*) ' rn_gammat0 = ', rn_gammat0 |
---|
291 | IF ( lwp ) WRITE(numout,*) ' rn_gammas0 = ', rn_gammas0 |
---|
292 | IF ( lwp ) WRITE(numout,*) ' rn_tfri2 = ', rn_tfri2 |
---|
293 | ! |
---|
294 | ! Allocate public variable |
---|
295 | IF ( sbc_isf_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_isf : unable to allocate arrays' ) |
---|
296 | ! |
---|
297 | ! initialisation |
---|
298 | qisf(:,:) = 0._wp ; fwfisf (:,:) = 0._wp |
---|
299 | risf_tsc(:,:,:) = 0._wp ; fwfisf_b(:,:) = 0._wp |
---|
300 | ! |
---|
301 | ! define isf tbl tickness, top and bottom indice |
---|
302 | SELECT CASE ( nn_isf ) |
---|
303 | CASE ( 1 ) |
---|
304 | rhisf_tbl(:,:) = rn_hisf_tbl |
---|
305 | misfkt(:,:) = mikt(:,:) ! same indice for bg03 et cav => used in isfdiv |
---|
306 | |
---|
307 | CASE ( 2 , 3 ) |
---|
308 | ALLOCATE( sf_rnfisf(1), STAT=ierror ) |
---|
309 | ALLOCATE( sf_rnfisf(1)%fnow(jpi,jpj,1), sf_rnfisf(1)%fdta(jpi,jpj,1,2) ) |
---|
310 | CALL fld_fill( sf_rnfisf, (/ sn_rnfisf /), cn_dirisf, 'sbc_isf_init', 'read fresh water flux isf data', 'namsbc_isf' ) |
---|
311 | |
---|
312 | ! read effective lenght (BG03) |
---|
313 | IF (nn_isf == 2) THEN |
---|
314 | CALL iom_open( sn_Leff_isf%clname, inum ) |
---|
315 | cvarLeff = TRIM(sn_Leff_isf%clvar) |
---|
316 | CALL iom_get( inum, jpdom_data, cvarLeff, risfLeff , 1) |
---|
317 | CALL iom_close(inum) |
---|
318 | ! |
---|
319 | risfLeff = risfLeff*1000.0_wp !: convertion in m |
---|
320 | END IF |
---|
321 | |
---|
322 | ! read depth of the top and bottom of the isf top boundary layer (in this case, isf front depth and grounding line depth) |
---|
323 | CALL iom_open( sn_depmax_isf%clname, inum ) |
---|
324 | cvarhisf = TRIM(sn_depmax_isf%clvar) |
---|
325 | CALL iom_get( inum, jpdom_data, cvarhisf, rhisf_tbl, 1) !: depth of deepest point of the ice shelf base |
---|
326 | CALL iom_close(inum) |
---|
327 | ! |
---|
328 | CALL iom_open( sn_depmin_isf%clname, inum ) |
---|
329 | cvarzisf = TRIM(sn_depmin_isf%clvar) |
---|
330 | CALL iom_get( inum, jpdom_data, cvarzisf, rzisf_tbl, 1) !: depth of shallowest point of the ice shelves base |
---|
331 | CALL iom_close(inum) |
---|
332 | ! |
---|
333 | rhisf_tbl(:,:) = rhisf_tbl(:,:) - rzisf_tbl(:,:) !: tickness isf boundary layer |
---|
334 | |
---|
335 | !! compute first level of the top boundary layer |
---|
336 | DO ji = 1, jpi |
---|
337 | DO jj = 1, jpj |
---|
338 | ik = 2 |
---|
339 | DO WHILE ( ik <= mbkt(ji,jj) .AND. gdepw_n(ji,jj,ik) < rzisf_tbl(ji,jj) ) ; ik = ik + 1 ; END DO |
---|
340 | misfkt(ji,jj) = ik-1 |
---|
341 | END DO |
---|
342 | END DO |
---|
343 | |
---|
344 | CASE ( 4 ) |
---|
345 | ! as in nn_isf == 1 |
---|
346 | rhisf_tbl(:,:) = rn_hisf_tbl |
---|
347 | misfkt(:,:) = mikt(:,:) ! same indice for bg03 et cav => used in isfdiv |
---|
348 | |
---|
349 | ! load variable used in fldread (use for temporal interpolation of isf fwf forcing) |
---|
350 | ALLOCATE( sf_fwfisf(1), STAT=ierror ) |
---|
351 | ALLOCATE( sf_fwfisf(1)%fnow(jpi,jpj,1), sf_fwfisf(1)%fdta(jpi,jpj,1,2) ) |
---|
352 | CALL fld_fill( sf_fwfisf, (/ sn_fwfisf /), cn_dirisf, 'sbc_isf_init', 'read fresh water flux isf data', 'namsbc_isf' ) |
---|
353 | |
---|
354 | END SELECT |
---|
355 | |
---|
356 | rhisf_tbl_0(:,:) = rhisf_tbl(:,:) |
---|
357 | |
---|
358 | ! compute bottom level of isf tbl and thickness of tbl below the ice shelf |
---|
359 | DO jj = 1,jpj |
---|
360 | DO ji = 1,jpi |
---|
361 | ikt = misfkt(ji,jj) |
---|
362 | ikb = misfkt(ji,jj) |
---|
363 | ! thickness of boundary layer at least the top level thickness |
---|
364 | rhisf_tbl(ji,jj) = MAX(rhisf_tbl_0(ji,jj), e3t_n(ji,jj,ikt)) |
---|
365 | |
---|
366 | ! determine the deepest level influenced by the boundary layer |
---|
367 | DO jk = ikt+1, mbkt(ji,jj) |
---|
368 | IF ( (SUM(e3t_n(ji,jj,ikt:jk-1)) < rhisf_tbl(ji,jj)) .AND. (tmask(ji,jj,jk) == 1) ) ikb = jk |
---|
369 | END DO |
---|
370 | rhisf_tbl(ji,jj) = MIN(rhisf_tbl(ji,jj), SUM(e3t_n(ji,jj,ikt:ikb))) ! limit the tbl to water thickness. |
---|
371 | misfkb(ji,jj) = ikb ! last wet level of the tbl |
---|
372 | r1_hisf_tbl(ji,jj) = 1._wp / rhisf_tbl(ji,jj) |
---|
373 | |
---|
374 | zhk = SUM( e3t_n(ji, jj, ikt:ikb - 1)) * r1_hisf_tbl(ji,jj) ! proportion of tbl cover by cell from ikt to ikb - 1 |
---|
375 | ralpha(ji,jj) = rhisf_tbl(ji,jj) * (1._wp - zhk ) / e3t_n(ji,jj,ikb) ! proportion of bottom cell influenced by boundary layer |
---|
376 | END DO |
---|
377 | END DO |
---|
378 | |
---|
379 | END SUBROUTINE sbc_isf_init |
---|
380 | |
---|
381 | SUBROUTINE sbc_isf_bg03(kt) |
---|
382 | !!--------------------------------------------------------------------- |
---|
383 | !! *** ROUTINE sbc_isf_bg03 *** |
---|
384 | !! |
---|
385 | !! ** Purpose : add net heat and fresh water flux from ice shelf melting |
---|
386 | !! into the adjacent ocean |
---|
387 | !! |
---|
388 | !! ** Method : See reference |
---|
389 | !! |
---|
390 | !! ** Reference : Beckmann and Goosse (2003), "A parameterization of ice shelf-ocean |
---|
391 | !! interaction for climate models", Ocean Modelling 5(2003) 157-170. |
---|
392 | !! (hereafter BG) |
---|
393 | !! History : |
---|
394 | !! 06-02 (C. Wang) Original code |
---|
395 | !!---------------------------------------------------------------------- |
---|
396 | INTEGER, INTENT ( in ) :: kt |
---|
397 | ! |
---|
398 | INTEGER :: ji, jj, jk ! dummy loop index |
---|
399 | INTEGER :: ik ! current level |
---|
400 | REAL(wp) :: zt_sum ! sum of the temperature between 200m and 600m |
---|
401 | REAL(wp) :: zt_ave ! averaged temperature between 200m and 600m |
---|
402 | REAL(wp) :: zt_frz ! freezing point temperature at depth z |
---|
403 | REAL(wp) :: zpress ! pressure to compute the freezing point in depth |
---|
404 | !!---------------------------------------------------------------------- |
---|
405 | |
---|
406 | IF ( nn_timing == 1 ) CALL timing_start('sbc_isf_bg03') |
---|
407 | ! |
---|
408 | DO ji = 1, jpi |
---|
409 | DO jj = 1, jpj |
---|
410 | ik = misfkt(ji,jj) |
---|
411 | !! Initialize arrays to 0 (each step) |
---|
412 | zt_sum = 0.e0_wp |
---|
413 | IF ( ik > 1 ) THEN |
---|
414 | ! 1. -----------the average temperature between 200m and 600m --------------------- |
---|
415 | DO jk = misfkt(ji,jj),misfkb(ji,jj) |
---|
416 | ! freezing point temperature at ice shelf base BG eq. 2 (JMM sign pb ??? +7.64e-4 !!!) |
---|
417 | ! after verif with UNESCO, wrong sign in BG eq. 2 |
---|
418 | ! Calculate freezing temperature |
---|
419 | CALL eos_fzp(stbl(ji,jj), zt_frz, zpress) |
---|
420 | zt_sum = zt_sum + (tsn(ji,jj,jk,jp_tem)-zt_frz) * e3t_n(ji,jj,jk) * tmask(ji,jj,jk) ! sum temp |
---|
421 | END DO |
---|
422 | zt_ave = zt_sum/rhisf_tbl(ji,jj) ! calcul mean value |
---|
423 | ! 2. ------------Net heat flux and fresh water flux due to the ice shelf |
---|
424 | ! For those corresponding to zonal boundary |
---|
425 | qisf(ji,jj) = - rau0 * rcp * rn_gammat0 * risfLeff(ji,jj) * e1t(ji,jj) * zt_ave & |
---|
426 | & * r1_e1e2t(ji,jj) * tmask(ji,jj,jk) |
---|
427 | |
---|
428 | fwfisf(ji,jj) = qisf(ji,jj) / rlfusisf !fresh water flux kg/(m2s) |
---|
429 | fwfisf(ji,jj) = fwfisf(ji,jj) * ( soce / stbl(ji,jj) ) |
---|
430 | !add to salinity trend |
---|
431 | ELSE |
---|
432 | qisf(ji,jj) = 0._wp ; fwfisf(ji,jj) = 0._wp |
---|
433 | END IF |
---|
434 | END DO |
---|
435 | END DO |
---|
436 | ! |
---|
437 | IF( nn_timing == 1 ) CALL timing_stop('sbc_isf_bg03') |
---|
438 | ! |
---|
439 | END SUBROUTINE sbc_isf_bg03 |
---|
440 | |
---|
441 | SUBROUTINE sbc_isf_cav( kt ) |
---|
442 | !!--------------------------------------------------------------------- |
---|
443 | !! *** ROUTINE sbc_isf_cav *** |
---|
444 | !! |
---|
445 | !! ** Purpose : handle surface boundary condition under ice shelf |
---|
446 | !! |
---|
447 | !! ** Method : - |
---|
448 | !! |
---|
449 | !! ** Action : utau, vtau : remain unchanged |
---|
450 | !! taum, wndm : remain unchanged |
---|
451 | !! qns : update heat flux below ice shelf |
---|
452 | !! emp, emps : update freshwater flux below ice shelf |
---|
453 | !!--------------------------------------------------------------------- |
---|
454 | INTEGER, INTENT(in) :: kt ! ocean time step |
---|
455 | ! |
---|
456 | INTEGER :: ji, jj ! dummy loop indices |
---|
457 | INTEGER :: nit |
---|
458 | REAL(wp) :: zlamb1, zlamb2, zlamb3 |
---|
459 | REAL(wp) :: zeps1,zeps2,zeps3,zeps4,zeps6,zeps7 |
---|
460 | REAL(wp) :: zaqe,zbqe,zcqe,zaqer,zdis,zsfrz,zcfac |
---|
461 | REAL(wp) :: zeps = 1.e-20_wp |
---|
462 | REAL(wp) :: zerr |
---|
463 | REAL(wp), DIMENSION(:,:), POINTER :: zfrz |
---|
464 | REAL(wp), DIMENSION(:,:), POINTER :: zgammat, zgammas |
---|
465 | REAL(wp), DIMENSION(:,:), POINTER :: zfwflx, zhtflx, zhtflx_b |
---|
466 | LOGICAL :: lit |
---|
467 | !!--------------------------------------------------------------------- |
---|
468 | ! coeficient for linearisation of potential tfreez |
---|
469 | ! Crude approximation for pressure (but commonly used) |
---|
470 | zlamb1 =-0.0573_wp |
---|
471 | zlamb2 = 0.0832_wp |
---|
472 | zlamb3 =-7.53e-08_wp * grav * rau0 |
---|
473 | IF( nn_timing == 1 ) CALL timing_start('sbc_isf_cav') |
---|
474 | ! |
---|
475 | CALL wrk_alloc( jpi,jpj, zfrz , zgammat, zgammas ) |
---|
476 | CALL wrk_alloc( jpi,jpj, zfwflx, zhtflx , zhtflx_b ) |
---|
477 | |
---|
478 | ! initialisation |
---|
479 | zgammat(:,:) = rn_gammat0 ; zgammas (:,:) = rn_gammas0 |
---|
480 | zhtflx (:,:) = 0.0_wp ; zhtflx_b(:,:) = 0.0_wp |
---|
481 | zfwflx (:,:) = 0.0_wp |
---|
482 | |
---|
483 | ! compute ice shelf melting |
---|
484 | nit = 1 ; lit = .TRUE. |
---|
485 | DO WHILE ( lit ) ! maybe just a constant number of iteration as in blk_core is fine |
---|
486 | SELECT CASE ( nn_isfblk ) |
---|
487 | CASE ( 1 ) ! ISOMIP formulation (2 equations) for volume flux (Hunter et al., 2006) |
---|
488 | ! Calculate freezing temperature |
---|
489 | CALL eos_fzp( stbl(:,:), zfrz(:,:), risfdep(:,:) ) |
---|
490 | |
---|
491 | ! compute gammat every where (2d) |
---|
492 | CALL sbc_isf_gammats(zgammat, zgammas, zhtflx, zfwflx) |
---|
493 | |
---|
494 | ! compute upward heat flux zhtflx and upward water flux zwflx |
---|
495 | DO jj = 1, jpj |
---|
496 | DO ji = 1, jpi |
---|
497 | zhtflx(ji,jj) = zgammat(ji,jj)*rcp*rau0*(ttbl(ji,jj)-zfrz(ji,jj)) |
---|
498 | zfwflx(ji,jj) = - zhtflx(ji,jj)/rlfusisf |
---|
499 | END DO |
---|
500 | END DO |
---|
501 | |
---|
502 | ! Compute heat flux and upward fresh water flux |
---|
503 | qisf (:,:) = - zhtflx(:,:) * (1._wp - tmask(:,:,1)) * ssmask(:,:) |
---|
504 | fwfisf(:,:) = zfwflx(:,:) * (1._wp - tmask(:,:,1)) * ssmask(:,:) |
---|
505 | |
---|
506 | CASE ( 2 ) ! ISOMIP+ formulation (3 equations) for volume flux (Asay-Davis et al., 2015) |
---|
507 | ! compute gammat every where (2d) |
---|
508 | CALL sbc_isf_gammats(zgammat, zgammas, zhtflx, zfwflx) |
---|
509 | |
---|
510 | ! compute upward heat flux zhtflx and upward water flux zwflx |
---|
511 | ! Resolution of a 2d equation from equation 21, 22 and 23 to find Sb (Asay-Davis et al., 2015) |
---|
512 | DO jj = 1, jpj |
---|
513 | DO ji = 1, jpi |
---|
514 | ! compute coeficient to solve the 2nd order equation |
---|
515 | zeps1 = rcp*rau0*zgammat(ji,jj) |
---|
516 | zeps2 = rlfusisf*rau0*zgammas(ji,jj) |
---|
517 | zeps3 = rhoisf*rcpi*rkappa/MAX(risfdep(ji,jj),zeps) |
---|
518 | zeps4 = zlamb2+zlamb3*risfdep(ji,jj) |
---|
519 | zeps6 = zeps4-ttbl(ji,jj) |
---|
520 | zeps7 = zeps4-tsurf |
---|
521 | zaqe = zlamb1 * (zeps1 + zeps3) |
---|
522 | zaqer = 0.5_wp/MIN(zaqe,-zeps) |
---|
523 | zbqe = zeps1*zeps6+zeps3*zeps7-zeps2 |
---|
524 | zcqe = zeps2*stbl(ji,jj) |
---|
525 | zdis = zbqe*zbqe-4.0_wp*zaqe*zcqe |
---|
526 | |
---|
527 | ! Presumably zdis can never be negative because gammas is very small compared to gammat |
---|
528 | ! compute s freeze |
---|
529 | zsfrz=(-zbqe-SQRT(zdis))*zaqer |
---|
530 | IF ( zsfrz < 0.0_wp ) zsfrz=(-zbqe+SQRT(zdis))*zaqer |
---|
531 | |
---|
532 | ! compute t freeze (eq. 22) |
---|
533 | zfrz(ji,jj)=zeps4+zlamb1*zsfrz |
---|
534 | |
---|
535 | ! zfwflx is upward water flux |
---|
536 | ! zhtflx is upward heat flux (out of ocean) |
---|
537 | ! compute the upward water and heat flux (eq. 28 and eq. 29) |
---|
538 | zfwflx(ji,jj) = rau0 * zgammas(ji,jj) * (zsfrz-stbl(ji,jj)) / MAX(zsfrz,zeps) |
---|
539 | zhtflx(ji,jj) = zgammat(ji,jj) * rau0 * rcp * (ttbl(ji,jj) - zfrz(ji,jj) ) |
---|
540 | END DO |
---|
541 | END DO |
---|
542 | |
---|
543 | ! compute heat and water flux |
---|
544 | qisf (:,:) = - zhtflx(:,:) * (1._wp - tmask(:,:,1)) * ssmask(:,:) |
---|
545 | fwfisf(:,:) = zfwflx(:,:) * (1._wp - tmask(:,:,1)) * ssmask(:,:) |
---|
546 | |
---|
547 | END SELECT |
---|
548 | |
---|
549 | ! define if we need to iterate (nn_gammablk 0/1 do not need iteration) |
---|
550 | IF ( nn_gammablk < 2 ) THEN ; lit = .FALSE. |
---|
551 | ELSE |
---|
552 | ! check total number of iteration |
---|
553 | IF (nit >= 100) THEN ; CALL ctl_stop( 'STOP', 'sbc_isf_hol99 : too many iteration ...' ) |
---|
554 | ELSE ; nit = nit + 1 |
---|
555 | END IF |
---|
556 | |
---|
557 | ! compute error between 2 iterations |
---|
558 | ! if needed save gammat and compute zhtflx_b for next iteration |
---|
559 | zerr = MAXVAL(ABS(zhtflx-zhtflx_b)) |
---|
560 | IF ( zerr <= 0.01_wp ) THEN ; lit = .FALSE. |
---|
561 | ELSE ; zhtflx_b(:,:) = zhtflx(:,:) |
---|
562 | END IF |
---|
563 | END IF |
---|
564 | END DO |
---|
565 | ! |
---|
566 | CALL iom_put('isfgammat', zgammat) |
---|
567 | CALL iom_put('isfgammas', zgammas) |
---|
568 | ! |
---|
569 | CALL wrk_dealloc( jpi,jpj, zfrz , zgammat, zgammas ) |
---|
570 | CALL wrk_dealloc( jpi,jpj, zfwflx, zhtflx , zhtflx_b ) |
---|
571 | ! |
---|
572 | IF( nn_timing == 1 ) CALL timing_stop('sbc_isf_cav') |
---|
573 | ! |
---|
574 | END SUBROUTINE sbc_isf_cav |
---|
575 | |
---|
576 | SUBROUTINE sbc_isf_gammats(pgt, pgs, pqhisf, pqwisf ) |
---|
577 | !!---------------------------------------------------------------------- |
---|
578 | !! ** Purpose : compute the coefficient echange for heat flux |
---|
579 | !! |
---|
580 | !! ** Method : gamma assume constant or depends of u* and stability |
---|
581 | !! |
---|
582 | !! ** References : Holland and Jenkins, 1999, JPO, p1787-1800, eq 14 |
---|
583 | !! Jenkins et al., 2010, JPO, p2298-2312 |
---|
584 | !!--------------------------------------------------------------------- |
---|
585 | REAL(wp), DIMENSION(:,:), INTENT(out) :: pgt, pgs |
---|
586 | REAL(wp), DIMENSION(:,:), INTENT(in ) :: pqhisf, pqwisf |
---|
587 | ! |
---|
588 | INTEGER :: ikt |
---|
589 | INTEGER :: ji, jj ! loop index |
---|
590 | REAL(wp), DIMENSION(:,:), POINTER :: zustar ! U, V at T point and friction velocity |
---|
591 | REAL(wp) :: zdku, zdkv ! U, V shear |
---|
592 | REAL(wp) :: zPr, zSc, zRc ! Prandtl, Scmidth and Richardson number |
---|
593 | REAL(wp) :: zmob, zmols ! Monin Obukov length, coriolis factor at T point |
---|
594 | REAL(wp) :: zbuofdep, zhnu ! Bouyancy length scale, sublayer tickness |
---|
595 | REAL(wp) :: zhmax ! limitation of mol |
---|
596 | REAL(wp) :: zetastar ! stability parameter |
---|
597 | REAL(wp) :: zgmolet, zgmoles, zgturb ! contribution of modelecular sublayer and turbulence |
---|
598 | REAL(wp) :: zcoef ! temporary coef |
---|
599 | REAL(wp) :: zdep |
---|
600 | REAL(wp) :: zeps = 1.0e-20_wp |
---|
601 | REAL(wp), PARAMETER :: zxsiN = 0.052_wp ! dimensionless constant |
---|
602 | REAL(wp), PARAMETER :: znu = 1.95e-6_wp ! kinamatic viscosity of sea water (m2.s-1) |
---|
603 | REAL(wp), DIMENSION(2) :: zts, zab |
---|
604 | !!--------------------------------------------------------------------- |
---|
605 | CALL wrk_alloc( jpi,jpj, zustar ) |
---|
606 | ! |
---|
607 | SELECT CASE ( nn_gammablk ) |
---|
608 | CASE ( 0 ) ! gamma is constant (specified in namelist) |
---|
609 | !! ISOMIP formulation (Hunter et al, 2006) |
---|
610 | pgt(:,:) = rn_gammat0 |
---|
611 | pgs(:,:) = rn_gammas0 |
---|
612 | |
---|
613 | CASE ( 1 ) ! gamma is assume to be proportional to u* |
---|
614 | !! Jenkins et al., 2010, JPO, p2298-2312 |
---|
615 | !! Adopted by Asay-Davis et al. (2015) |
---|
616 | |
---|
617 | !! compute ustar (eq. 24) |
---|
618 | zustar(:,:) = SQRT( rn_tfri2 * (utbl(:,:) * utbl(:,:) + vtbl(:,:) * vtbl(:,:) + rn_tfeb2) ) |
---|
619 | |
---|
620 | !! Compute gammats |
---|
621 | pgt(:,:) = zustar(:,:) * rn_gammat0 |
---|
622 | pgs(:,:) = zustar(:,:) * rn_gammas0 |
---|
623 | |
---|
624 | CASE ( 2 ) ! gamma depends of stability of boundary layer |
---|
625 | !! Holland and Jenkins, 1999, JPO, p1787-1800, eq 14 |
---|
626 | !! as MOL depends of flux and flux depends of MOL, best will be iteration (TO DO) |
---|
627 | !! compute ustar |
---|
628 | zustar(:,:) = SQRT( rn_tfri2 * (utbl(:,:) * utbl(:,:) + vtbl(:,:) * vtbl(:,:) + rn_tfeb2) ) |
---|
629 | |
---|
630 | !! compute Pr and Sc number (can be improved) |
---|
631 | zPr = 13.8_wp |
---|
632 | zSc = 2432.0_wp |
---|
633 | |
---|
634 | !! compute gamma mole |
---|
635 | zgmolet = 12.5_wp * zPr ** (2.0/3.0) - 6.0_wp |
---|
636 | zgmoles = 12.5_wp * zSc ** (2.0/3.0) - 6.0_wp |
---|
637 | |
---|
638 | !! compute gamma |
---|
639 | DO ji=2,jpi |
---|
640 | DO jj=2,jpj |
---|
641 | ikt = mikt(ji,jj) |
---|
642 | |
---|
643 | IF (zustar(ji,jj) == 0._wp) THEN ! only for kt = 1 I think |
---|
644 | pgt = rn_gammat0 |
---|
645 | pgs = rn_gammas0 |
---|
646 | ELSE |
---|
647 | !! compute Rc number (as done in zdfric.F90) |
---|
648 | zcoef = 0.5_wp / e3w_n(ji,jj,ikt) |
---|
649 | ! ! shear of horizontal velocity |
---|
650 | zdku = zcoef * ( un(ji-1,jj ,ikt ) + un(ji,jj,ikt ) & |
---|
651 | & -un(ji-1,jj ,ikt+1) - un(ji,jj,ikt+1) ) |
---|
652 | zdkv = zcoef * ( vn(ji ,jj-1,ikt ) + vn(ji,jj,ikt ) & |
---|
653 | & -vn(ji ,jj-1,ikt+1) - vn(ji,jj,ikt+1) ) |
---|
654 | ! ! richardson number (minimum value set to zero) |
---|
655 | zRc = rn2(ji,jj,ikt+1) / MAX( zdku*zdku + zdkv*zdkv, zeps ) |
---|
656 | |
---|
657 | !! compute bouyancy |
---|
658 | zts(jp_tem) = ttbl(ji,jj) |
---|
659 | zts(jp_sal) = stbl(ji,jj) |
---|
660 | zdep = gdepw_n(ji,jj,ikt) |
---|
661 | ! |
---|
662 | CALL eos_rab( zts, zdep, zab ) |
---|
663 | ! |
---|
664 | !! compute length scale |
---|
665 | zbuofdep = grav * ( zab(jp_tem) * pqhisf(ji,jj) - zab(jp_sal) * pqwisf(ji,jj) ) !!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
666 | |
---|
667 | !! compute Monin Obukov Length |
---|
668 | ! Maximum boundary layer depth |
---|
669 | zhmax = gdept_n(ji,jj,mbkt(ji,jj)) - gdepw_n(ji,jj,mikt(ji,jj)) -0.001_wp |
---|
670 | ! Compute Monin obukhov length scale at the surface and Ekman depth: |
---|
671 | zmob = zustar(ji,jj) ** 3 / (vkarmn * (zbuofdep + zeps)) |
---|
672 | zmols = SIGN(1._wp, zmob) * MIN(ABS(zmob), zhmax) * tmask(ji,jj,ikt) |
---|
673 | |
---|
674 | !! compute eta* (stability parameter) |
---|
675 | zetastar = 1._wp / ( SQRT(1._wp + MAX(zxsiN * zustar(ji,jj) / ( ABS(ff(ji,jj)) * zmols * zRc ), 0.0_wp))) |
---|
676 | |
---|
677 | !! compute the sublayer thickness |
---|
678 | zhnu = 5 * znu / zustar(ji,jj) |
---|
679 | |
---|
680 | !! compute gamma turb |
---|
681 | zgturb = 1._wp / vkarmn * LOG(zustar(ji,jj) * zxsiN * zetastar * zetastar / ( ABS(ff(ji,jj)) * zhnu )) & |
---|
682 | & + 1._wp / ( 2 * zxsiN * zetastar ) - 1._wp / vkarmn |
---|
683 | |
---|
684 | !! compute gammats |
---|
685 | pgt(ji,jj) = zustar(ji,jj) / (zgturb + zgmolet) |
---|
686 | pgs(ji,jj) = zustar(ji,jj) / (zgturb + zgmoles) |
---|
687 | END IF |
---|
688 | END DO |
---|
689 | END DO |
---|
690 | CALL lbc_lnk(pgt(:,:),'T',1.) |
---|
691 | CALL lbc_lnk(pgs(:,:),'T',1.) |
---|
692 | END SELECT |
---|
693 | CALL wrk_dealloc( jpi,jpj, zustar ) |
---|
694 | ! |
---|
695 | END SUBROUTINE sbc_isf_gammats |
---|
696 | |
---|
697 | SUBROUTINE sbc_isf_tbl( pvarin, pvarout, cd_ptin ) |
---|
698 | !!---------------------------------------------------------------------- |
---|
699 | !! *** SUBROUTINE sbc_isf_tbl *** |
---|
700 | !! |
---|
701 | !! ** Purpose : compute mean T/S/U/V in the boundary layer at T- point |
---|
702 | !! |
---|
703 | !!---------------------------------------------------------------------- |
---|
704 | REAL(wp), DIMENSION(:,:,:), INTENT( in ) :: pvarin |
---|
705 | REAL(wp), DIMENSION(:,:) , INTENT( out ) :: pvarout |
---|
706 | CHARACTER(len=1), INTENT( in ) :: cd_ptin ! point of variable in/out |
---|
707 | ! |
---|
708 | REAL(wp) :: ze3, zhk |
---|
709 | REAL(wp), DIMENSION(:,:), POINTER :: zhisf_tbl ! thickness of the tbl |
---|
710 | |
---|
711 | INTEGER :: ji, jj, jk ! loop index |
---|
712 | INTEGER :: ikt, ikb ! top and bottom index of the tbl |
---|
713 | !!---------------------------------------------------------------------- |
---|
714 | ! allocation |
---|
715 | CALL wrk_alloc( jpi,jpj, zhisf_tbl) |
---|
716 | |
---|
717 | ! initialisation |
---|
718 | pvarout(:,:)=0._wp |
---|
719 | |
---|
720 | SELECT CASE ( cd_ptin ) |
---|
721 | CASE ( 'U' ) ! compute U in the top boundary layer at T- point |
---|
722 | DO jj = 1,jpj |
---|
723 | DO ji = 1,jpi |
---|
724 | ikt = miku(ji,jj) ; ikb = miku(ji,jj) |
---|
725 | ! thickness of boundary layer at least the top level thickness |
---|
726 | zhisf_tbl(ji,jj) = MAX(rhisf_tbl_0(ji,jj), e3u_n(ji,jj,ikt)) |
---|
727 | |
---|
728 | ! determine the deepest level influenced by the boundary layer |
---|
729 | DO jk = ikt+1, mbku(ji,jj) |
---|
730 | IF ( (SUM(e3u_n(ji,jj,ikt:jk-1)) < zhisf_tbl(ji,jj)) .AND. (umask(ji,jj,jk) == 1) ) ikb = jk |
---|
731 | END DO |
---|
732 | zhisf_tbl(ji,jj) = MIN(zhisf_tbl(ji,jj), SUM(e3u_n(ji,jj,ikt:ikb))) ! limit the tbl to water thickness. |
---|
733 | |
---|
734 | ! level fully include in the ice shelf boundary layer |
---|
735 | DO jk = ikt, ikb - 1 |
---|
736 | ze3 = e3u_n(ji,jj,jk) |
---|
737 | pvarout(ji,jj) = pvarout(ji,jj) + pvarin(ji,jj,jk) / zhisf_tbl(ji,jj) * ze3 |
---|
738 | END DO |
---|
739 | |
---|
740 | ! level partially include in ice shelf boundary layer |
---|
741 | zhk = SUM( e3u_n(ji, jj, ikt:ikb - 1)) / zhisf_tbl(ji,jj) |
---|
742 | pvarout(ji,jj) = pvarout(ji,jj) + pvarin(ji,jj,ikb) * (1._wp - zhk) |
---|
743 | END DO |
---|
744 | END DO |
---|
745 | DO jj = 2,jpj |
---|
746 | DO ji = 2,jpi |
---|
747 | pvarout(ji,jj) = 0.5_wp * (pvarout(ji,jj) + pvarout(ji-1,jj)) |
---|
748 | END DO |
---|
749 | END DO |
---|
750 | CALL lbc_lnk(pvarout,'T',-1.) |
---|
751 | |
---|
752 | CASE ( 'V' ) ! compute V in the top boundary layer at T- point |
---|
753 | DO jj = 1,jpj |
---|
754 | DO ji = 1,jpi |
---|
755 | ikt = mikv(ji,jj) ; ikb = mikv(ji,jj) |
---|
756 | ! thickness of boundary layer at least the top level thickness |
---|
757 | zhisf_tbl(ji,jj) = MAX(rhisf_tbl_0(ji,jj), e3v_n(ji,jj,ikt)) |
---|
758 | |
---|
759 | ! determine the deepest level influenced by the boundary layer |
---|
760 | DO jk = ikt+1, mbkv(ji,jj) |
---|
761 | IF ( (SUM(e3v_n(ji,jj,ikt:jk-1)) < zhisf_tbl(ji,jj)) .AND. (vmask(ji,jj,jk) == 1) ) ikb = jk |
---|
762 | END DO |
---|
763 | zhisf_tbl(ji,jj) = MIN(zhisf_tbl(ji,jj), SUM(e3v_n(ji,jj,ikt:ikb))) ! limit the tbl to water thickness. |
---|
764 | |
---|
765 | ! level fully include in the ice shelf boundary layer |
---|
766 | DO jk = ikt, ikb - 1 |
---|
767 | ze3 = e3v_n(ji,jj,jk) |
---|
768 | pvarout(ji,jj) = pvarout(ji,jj) + pvarin(ji,jj,jk) / zhisf_tbl(ji,jj) * ze3 |
---|
769 | END DO |
---|
770 | |
---|
771 | ! level partially include in ice shelf boundary layer |
---|
772 | zhk = SUM( e3v_n(ji, jj, ikt:ikb - 1)) / zhisf_tbl(ji,jj) |
---|
773 | pvarout(ji,jj) = pvarout(ji,jj) + pvarin(ji,jj,ikb) * (1._wp - zhk) |
---|
774 | END DO |
---|
775 | END DO |
---|
776 | DO jj = 2,jpj |
---|
777 | DO ji = 2,jpi |
---|
778 | pvarout(ji,jj) = 0.5_wp * (pvarout(ji,jj) + pvarout(ji,jj-1)) |
---|
779 | END DO |
---|
780 | END DO |
---|
781 | CALL lbc_lnk(pvarout,'T',-1.) |
---|
782 | |
---|
783 | CASE ( 'T' ) ! compute T in the top boundary layer at T- point |
---|
784 | DO jj = 1,jpj |
---|
785 | DO ji = 1,jpi |
---|
786 | ikt = misfkt(ji,jj) |
---|
787 | ikb = misfkb(ji,jj) |
---|
788 | |
---|
789 | ! level fully include in the ice shelf boundary layer |
---|
790 | DO jk = ikt, ikb - 1 |
---|
791 | ze3 = e3t_n(ji,jj,jk) |
---|
792 | pvarout(ji,jj) = pvarout(ji,jj) + pvarin(ji,jj,jk) * r1_hisf_tbl(ji,jj) * ze3 |
---|
793 | END DO |
---|
794 | |
---|
795 | ! level partially include in ice shelf boundary layer |
---|
796 | zhk = SUM( e3t_n(ji, jj, ikt:ikb - 1)) * r1_hisf_tbl(ji,jj) |
---|
797 | pvarout(ji,jj) = pvarout(ji,jj) + pvarin(ji,jj,ikb) * (1._wp - zhk) |
---|
798 | END DO |
---|
799 | END DO |
---|
800 | END SELECT |
---|
801 | |
---|
802 | ! mask mean tbl value |
---|
803 | pvarout(:,:) = pvarout(:,:) * ssmask(:,:) |
---|
804 | |
---|
805 | ! deallocation |
---|
806 | CALL wrk_dealloc( jpi,jpj, zhisf_tbl ) |
---|
807 | ! |
---|
808 | END SUBROUTINE sbc_isf_tbl |
---|
809 | |
---|
810 | |
---|
811 | SUBROUTINE sbc_isf_div( phdivn ) |
---|
812 | !!---------------------------------------------------------------------- |
---|
813 | !! *** SUBROUTINE sbc_isf_div *** |
---|
814 | !! |
---|
815 | !! ** Purpose : update the horizontal divergence with the runoff inflow |
---|
816 | !! |
---|
817 | !! ** Method : |
---|
818 | !! CAUTION : risf_tsc(:,:,jp_sal) is negative (outflow) increase the |
---|
819 | !! divergence and expressed in m/s |
---|
820 | !! |
---|
821 | !! ** Action : phdivn decreased by the runoff inflow |
---|
822 | !!---------------------------------------------------------------------- |
---|
823 | REAL(wp), DIMENSION(:,:,:), INTENT( inout ) :: phdivn ! horizontal divergence |
---|
824 | ! |
---|
825 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
826 | INTEGER :: ikt, ikb |
---|
827 | REAL(wp) :: zhk |
---|
828 | REAL(wp) :: zfact ! local scalar |
---|
829 | !!---------------------------------------------------------------------- |
---|
830 | ! |
---|
831 | zfact = 0.5_wp |
---|
832 | ! |
---|
833 | IF(.NOT.ln_linssh ) THEN ! need to re compute level distribution of isf fresh water |
---|
834 | DO jj = 1,jpj |
---|
835 | DO ji = 1,jpi |
---|
836 | ikt = misfkt(ji,jj) |
---|
837 | ikb = misfkt(ji,jj) |
---|
838 | ! thickness of boundary layer at least the top level thickness |
---|
839 | rhisf_tbl(ji,jj) = MAX(rhisf_tbl_0(ji,jj), e3t_n(ji,jj,ikt)) |
---|
840 | |
---|
841 | ! determine the deepest level influenced by the boundary layer |
---|
842 | DO jk = ikt, mbkt(ji,jj) |
---|
843 | IF ( (SUM(e3t_n(ji,jj,ikt:jk-1)) .LT. rhisf_tbl(ji,jj)) .AND. (tmask(ji,jj,jk) == 1) ) ikb = jk |
---|
844 | END DO |
---|
845 | rhisf_tbl(ji,jj) = MIN(rhisf_tbl(ji,jj), SUM(e3t_n(ji,jj,ikt:ikb))) ! limit the tbl to water thickness. |
---|
846 | misfkb(ji,jj) = ikb ! last wet level of the tbl |
---|
847 | r1_hisf_tbl(ji,jj) = 1._wp / rhisf_tbl(ji,jj) |
---|
848 | |
---|
849 | zhk = SUM( e3t_n(ji, jj, ikt:ikb - 1)) * r1_hisf_tbl(ji,jj) ! proportion of tbl cover by cell from ikt to ikb - 1 |
---|
850 | ralpha(ji,jj) = rhisf_tbl(ji,jj) * (1._wp - zhk ) / e3t_n(ji,jj,ikb) ! proportion of bottom cell influenced by boundary layer |
---|
851 | END DO |
---|
852 | END DO |
---|
853 | END IF |
---|
854 | ! |
---|
855 | !== ice shelf melting distributed over several levels ==! |
---|
856 | DO jj = 1,jpj |
---|
857 | DO ji = 1,jpi |
---|
858 | ikt = misfkt(ji,jj) |
---|
859 | ikb = misfkb(ji,jj) |
---|
860 | ! level fully include in the ice shelf boundary layer |
---|
861 | DO jk = ikt, ikb - 1 |
---|
862 | phdivn(ji,jj,jk) = phdivn(ji,jj,jk) + ( fwfisf(ji,jj) + fwfisf_b(ji,jj) ) & |
---|
863 | & * r1_hisf_tbl(ji,jj) * r1_rau0 * zfact |
---|
864 | END DO |
---|
865 | ! level partially include in ice shelf boundary layer |
---|
866 | phdivn(ji,jj,ikb) = phdivn(ji,jj,ikb) + ( fwfisf(ji,jj) & |
---|
867 | & + fwfisf_b(ji,jj) ) * r1_hisf_tbl(ji,jj) * r1_rau0 * zfact * ralpha(ji,jj) |
---|
868 | END DO |
---|
869 | END DO |
---|
870 | ! |
---|
871 | END SUBROUTINE sbc_isf_div |
---|
872 | !!====================================================================== |
---|
873 | END MODULE sbcisf |
---|