1 | MODULE limthd |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE limthd *** |
---|
4 | !! LIM-3 : ice thermodynamic |
---|
5 | !!====================================================================== |
---|
6 | !! History : LIM ! 2000-01 (M.A. Morales Maqueda, H. Goosse, T. Fichefet) LIM-1 |
---|
7 | !! 2.0 ! 2002-07 (C. Ethe, G. Madec) LIM-2 (F90 rewriting) |
---|
8 | !! 3.0 ! 2005-11 (M. Vancoppenolle) LIM-3 : Multi-layer thermodynamics + salinity variations |
---|
9 | !! - ! 2007-04 (M. Vancoppenolle) add lim_thd_glohec, lim_thd_con_dh and lim_thd_con_dif |
---|
10 | !! 3.2 ! 2009-07 (M. Vancoppenolle, Y. Aksenov, G. Madec) bug correction in wfx_snw |
---|
11 | !! 3.3 ! 2010-11 (G. Madec) corrected snow melting heat (due to factor betas) |
---|
12 | !! 4.0 ! 2011-02 (G. Madec) dynamical allocation |
---|
13 | !! - ! 2012-05 (C. Rousset) add penetration solar flux |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | #if defined key_lim3 |
---|
16 | !!---------------------------------------------------------------------- |
---|
17 | !! 'key_lim3' LIM3 sea-ice model |
---|
18 | !!---------------------------------------------------------------------- |
---|
19 | !! lim_thd : thermodynamic of sea ice |
---|
20 | !! lim_thd_init : initialisation of sea-ice thermodynamic |
---|
21 | !!---------------------------------------------------------------------- |
---|
22 | USE phycst ! physical constants |
---|
23 | USE dom_oce ! ocean space and time domain variables |
---|
24 | USE ice ! LIM: sea-ice variables |
---|
25 | USE sbc_oce ! Surface boundary condition: ocean fields |
---|
26 | USE sbc_ice ! Surface boundary condition: ice fields |
---|
27 | USE thd_ice ! LIM thermodynamic sea-ice variables |
---|
28 | USE limthd_dif ! LIM: thermodynamics, vertical diffusion |
---|
29 | USE limthd_dh ! LIM: thermodynamics, ice and snow thickness variation |
---|
30 | USE limthd_da ! LIM: thermodynamics, lateral melting |
---|
31 | USE limthd_sal ! LIM: thermodynamics, ice salinity |
---|
32 | USE limthd_ent ! LIM: thermodynamics, ice enthalpy redistribution |
---|
33 | USE limthd_lac ! LIM-3 lateral accretion |
---|
34 | USE limitd_th ! remapping thickness distribution |
---|
35 | USE limtab ! LIM: 1D <==> 2D transformation |
---|
36 | USE limvar ! LIM: sea-ice variables |
---|
37 | USE lbclnk ! lateral boundary condition - MPP links |
---|
38 | USE lib_mpp ! MPP library |
---|
39 | USE wrk_nemo ! work arrays |
---|
40 | USE in_out_manager ! I/O manager |
---|
41 | USE prtctl ! Print control |
---|
42 | USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) |
---|
43 | USE timing ! Timing |
---|
44 | USE limcons ! conservation tests |
---|
45 | USE limctl |
---|
46 | |
---|
47 | IMPLICIT NONE |
---|
48 | PRIVATE |
---|
49 | |
---|
50 | PUBLIC lim_thd ! called by limstp module |
---|
51 | PUBLIC lim_thd_init ! called by sbc_lim_init |
---|
52 | |
---|
53 | !! * Substitutions |
---|
54 | # include "domzgr_substitute.h90" |
---|
55 | # include "vectopt_loop_substitute.h90" |
---|
56 | !!---------------------------------------------------------------------- |
---|
57 | !! NEMO/LIM3 3.3 , UCL - NEMO Consortium (2010) |
---|
58 | !! $Id$ |
---|
59 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
60 | !!---------------------------------------------------------------------- |
---|
61 | CONTAINS |
---|
62 | |
---|
63 | SUBROUTINE lim_thd( kt ) |
---|
64 | !!------------------------------------------------------------------- |
---|
65 | !! *** ROUTINE lim_thd *** |
---|
66 | !! |
---|
67 | !! ** Purpose : This routine manages ice thermodynamics |
---|
68 | !! |
---|
69 | !! ** Action : - Initialisation of some variables |
---|
70 | !! - Some preliminary computation (oceanic heat flux |
---|
71 | !! at the ice base, snow acc.,heat budget of the leads) |
---|
72 | !! - selection of the icy points and put them in an array |
---|
73 | !! - call lim_thd_dif for vertical heat diffusion |
---|
74 | !! - call lim_thd_dh for vertical ice growth and melt |
---|
75 | !! - call lim_thd_ent for enthalpy remapping |
---|
76 | !! - call lim_thd_sal for ice desalination |
---|
77 | !! - call lim_thd_temp to retrieve temperature from ice enthalpy |
---|
78 | !! - back to the geographic grid |
---|
79 | !! |
---|
80 | !! ** References : |
---|
81 | !!--------------------------------------------------------------------- |
---|
82 | INTEGER, INTENT(in) :: kt ! number of iteration |
---|
83 | !! |
---|
84 | INTEGER :: ji, jj, jk, jl ! dummy loop indices |
---|
85 | INTEGER :: nbpb ! nb of icy pts for vertical thermo calculations |
---|
86 | INTEGER :: ii, ij ! temporary dummy loop index |
---|
87 | REAL(wp) :: zfric_u, zqld, zqfr |
---|
88 | REAL(wp) :: zvi_b, zsmv_b, zei_b, zfs_b, zfw_b, zft_b |
---|
89 | REAL(wp), PARAMETER :: zfric_umin = 0._wp ! lower bound for the friction velocity (cice value=5.e-04) |
---|
90 | REAL(wp), PARAMETER :: zch = 0.0057_wp ! heat transfer coefficient |
---|
91 | REAL(wp), POINTER, DIMENSION(:,:) :: zu_io, zv_io, zfric ! ice-ocean velocity (m/s) and frictional velocity (m2/s2) |
---|
92 | ! |
---|
93 | !!------------------------------------------------------------------- |
---|
94 | |
---|
95 | IF( nn_timing == 1 ) CALL timing_start('limthd') |
---|
96 | |
---|
97 | CALL wrk_alloc( jpi,jpj, zu_io, zv_io, zfric ) |
---|
98 | |
---|
99 | IF( kt == nit000 .AND. lwp ) THEN |
---|
100 | WRITE(numout,*)'' |
---|
101 | WRITE(numout,*)' lim_thd ' |
---|
102 | WRITE(numout,*)' ~~~~~~~~' |
---|
103 | ENDIF |
---|
104 | |
---|
105 | ! conservation test |
---|
106 | IF( ln_limdiahsb ) CALL lim_cons_hsm(0, 'limthd', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) |
---|
107 | |
---|
108 | CALL lim_var_glo2eqv |
---|
109 | |
---|
110 | !---------------------------------------------! |
---|
111 | ! computation of friction velocity at T points |
---|
112 | !---------------------------------------------! |
---|
113 | IF( ln_limdyn ) THEN |
---|
114 | zu_io(:,:) = u_ice(:,:) - ssu_m(:,:) |
---|
115 | zv_io(:,:) = v_ice(:,:) - ssv_m(:,:) |
---|
116 | DO jj = 2, jpjm1 |
---|
117 | DO ji = fs_2, fs_jpim1 |
---|
118 | zfric(ji,jj) = rn_cio * ( 0.5_wp * & |
---|
119 | & ( zu_io(ji,jj) * zu_io(ji,jj) + zu_io(ji-1,jj) * zu_io(ji-1,jj) & |
---|
120 | & + zv_io(ji,jj) * zv_io(ji,jj) + zv_io(ji,jj-1) * zv_io(ji,jj-1) ) ) * tmask(ji,jj,1) |
---|
121 | END DO |
---|
122 | END DO |
---|
123 | ELSE ! if no ice dynamics => transmit directly the atmospheric stress to the ocean |
---|
124 | DO jj = 2, jpjm1 |
---|
125 | DO ji = fs_2, fs_jpim1 |
---|
126 | zfric(ji,jj) = r1_rau0 * SQRT( 0.5_wp * & |
---|
127 | & ( utau(ji,jj) * utau(ji,jj) + utau(ji-1,jj) * utau(ji-1,jj) & |
---|
128 | & + vtau(ji,jj) * vtau(ji,jj) + vtau(ji,jj-1) * vtau(ji,jj-1) ) ) * tmask(ji,jj,1) |
---|
129 | END DO |
---|
130 | END DO |
---|
131 | ENDIF |
---|
132 | CALL lbc_lnk( zfric, 'T', 1. ) |
---|
133 | ! |
---|
134 | !----------------------------------! |
---|
135 | ! Initialization and units change |
---|
136 | !----------------------------------! |
---|
137 | ftr_ice(:,:,:) = 0._wp ! part of solar radiation transmitted through the ice |
---|
138 | |
---|
139 | ! Change the units of heat content; from J/m2 to J/m3 |
---|
140 | DO jl = 1, jpl |
---|
141 | DO jk = 1, nlay_i |
---|
142 | DO jj = 1, jpj |
---|
143 | DO ji = 1, jpi |
---|
144 | rswitch = MAX( 0._wp , SIGN( 1._wp , v_i(ji,jj,jl) - epsi20 ) ) |
---|
145 | !Energy of melting q(S,T) [J.m-3] |
---|
146 | e_i(ji,jj,jk,jl) = rswitch * e_i(ji,jj,jk,jl) / MAX( v_i(ji,jj,jl) , epsi20 ) * REAL( nlay_i ) |
---|
147 | END DO |
---|
148 | END DO |
---|
149 | END DO |
---|
150 | DO jk = 1, nlay_s |
---|
151 | DO jj = 1, jpj |
---|
152 | DO ji = 1, jpi |
---|
153 | rswitch = MAX( 0._wp , SIGN( 1._wp , v_s(ji,jj,jl) - epsi20 ) ) |
---|
154 | !Energy of melting q(S,T) [J.m-3] |
---|
155 | e_s(ji,jj,jk,jl) = rswitch * e_s(ji,jj,jk,jl) / MAX( v_s(ji,jj,jl) , epsi20 ) * REAL( nlay_s ) |
---|
156 | END DO |
---|
157 | END DO |
---|
158 | END DO |
---|
159 | END DO |
---|
160 | |
---|
161 | !--------------------------------------------------------------------! |
---|
162 | ! Partial computation of forcing for the thermodynamic sea ice model |
---|
163 | !--------------------------------------------------------------------! |
---|
164 | DO jj = 1, jpj |
---|
165 | DO ji = 1, jpi |
---|
166 | rswitch = tmask(ji,jj,1) * MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi10 ) ) ! 0 if no ice |
---|
167 | ! |
---|
168 | ! ! solar irradiance transmission at the mixed layer bottom and used in the lead heat budget |
---|
169 | ! ! practically no "direct lateral ablation" |
---|
170 | ! |
---|
171 | ! ! net downward heat flux from the ice to the ocean, expressed as a function of ocean |
---|
172 | ! ! temperature and turbulent mixing (McPhee, 1992) |
---|
173 | ! |
---|
174 | ! --- Energy received in the lead, zqld is defined everywhere (J.m-2) --- ! |
---|
175 | zqld = tmask(ji,jj,1) * rdt_ice * & |
---|
176 | & ( pfrld(ji,jj) * qsr_oce(ji,jj) * frq_m(ji,jj) + pfrld(ji,jj) * qns_oce(ji,jj) + qemp_oce(ji,jj) ) |
---|
177 | |
---|
178 | ! --- Energy needed to bring ocean surface layer until its freezing (<0, J.m-2) --- ! |
---|
179 | zqfr = tmask(ji,jj,1) * rau0 * rcp * fse3t_m(ji,jj) * ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ) |
---|
180 | |
---|
181 | ! --- Energy from the turbulent oceanic heat flux (W/m2) --- ! |
---|
182 | zfric_u = MAX( SQRT( zfric(ji,jj) ), zfric_umin ) |
---|
183 | fhtur(ji,jj) = MAX( 0._wp, rswitch * rau0 * rcp * zch * zfric_u * ( ( sst_m(ji,jj) + rt0 ) - t_bo(ji,jj) ) ) ! W.m-2 |
---|
184 | fhtur(ji,jj) = rswitch * MIN( fhtur(ji,jj), - zqfr * r1_rdtice / MAX( at_i(ji,jj), epsi10 ) ) |
---|
185 | ! upper bound for fhtur: the heat retrieved from the ocean must be smaller than the heat necessary to reach |
---|
186 | ! the freezing point, so that we do not have SST < T_freeze |
---|
187 | ! This implies: - ( fhtur(ji,jj) * at_i(ji,jj) * rtdice ) - zqfr >= 0 |
---|
188 | |
---|
189 | !-- Energy Budget of the leads (J.m-2). Must be < 0 to form ice |
---|
190 | qlead(ji,jj) = MIN( 0._wp , zqld - ( fhtur(ji,jj) * at_i(ji,jj) * rdt_ice ) - zqfr ) |
---|
191 | |
---|
192 | ! If there is ice and leads are warming, then transfer energy from the lead budget and use it for bottom melting |
---|
193 | IF( zqld > 0._wp ) THEN |
---|
194 | fhld (ji,jj) = rswitch * zqld * r1_rdtice / MAX( at_i(ji,jj), epsi10 ) ! divided by at_i since this is (re)multiplied by a_i in limthd_dh.F90 |
---|
195 | qlead(ji,jj) = 0._wp |
---|
196 | ELSE |
---|
197 | fhld (ji,jj) = 0._wp |
---|
198 | ENDIF |
---|
199 | ! |
---|
200 | ! Net heat flux on top of the ice-ocean [W.m-2] |
---|
201 | ! --------------------------------------------- |
---|
202 | hfx_in(ji,jj) = qns_tot(ji,jj) + qsr_tot(ji,jj) |
---|
203 | END DO |
---|
204 | END DO |
---|
205 | |
---|
206 | ! In case we bypass open-water ice formation |
---|
207 | IF( .NOT. ln_limdO ) qlead(:,:) = 0._wp |
---|
208 | ! In case we bypass growing/melting from top and bottom: we suppose ice is impermeable => ocean is isolated from atmosphere |
---|
209 | IF( .NOT. ln_limdH ) hfx_in(:,:) = pfrld(:,:) * ( qns_oce(:,:) + qsr_oce(:,:) ) + qemp_oce(:,:) |
---|
210 | IF( .NOT. ln_limdH ) fhtur (:,:) = 0._wp ; fhld (:,:) = 0._wp |
---|
211 | |
---|
212 | ! --------------------------------------------------------------------- |
---|
213 | ! Net heat flux on top of the ocean after ice thermo (1st step) [W.m-2] |
---|
214 | ! --------------------------------------------------------------------- |
---|
215 | ! First step here : non solar + precip - qlead - qturb |
---|
216 | ! Second step in limthd_dh : heat remaining if total melt (zq_rema) |
---|
217 | ! Third step in limsbc : heat from ice-ocean mass exchange (zf_mass) + solar |
---|
218 | DO jj = 1, jpj |
---|
219 | DO ji = 1, jpi |
---|
220 | hfx_out(ji,jj) = pfrld(ji,jj) * qns_oce(ji,jj) + qemp_oce(ji,jj) & ! Non solar heat flux received by the ocean |
---|
221 | & - qlead(ji,jj) * r1_rdtice & ! heat flux taken from the ocean where there is open water ice formation |
---|
222 | & - at_i(ji,jj) * fhtur(ji,jj) & ! heat flux taken by turbulence |
---|
223 | & - at_i(ji,jj) * fhld(ji,jj) ! heat flux taken during bottom growth/melt |
---|
224 | ! (fhld should be 0 while bott growth) |
---|
225 | END DO |
---|
226 | END DO |
---|
227 | |
---|
228 | !------------------------------------------------------------------------------! |
---|
229 | ! Thermodynamic computation (only on grid points covered by ice) |
---|
230 | !------------------------------------------------------------------------------! |
---|
231 | DO jl = 1, jpl !loop over ice categories |
---|
232 | |
---|
233 | ! select ice covered grid points |
---|
234 | nbpb = 0 |
---|
235 | DO jj = 1, jpj |
---|
236 | DO ji = 1, jpi |
---|
237 | IF ( a_i(ji,jj,jl) > epsi10 ) THEN |
---|
238 | nbpb = nbpb + 1 |
---|
239 | npb(nbpb) = (jj - 1) * jpi + ji |
---|
240 | ENDIF |
---|
241 | END DO |
---|
242 | END DO |
---|
243 | |
---|
244 | ! debug point to follow |
---|
245 | jiindex_1d = 0 |
---|
246 | IF( ln_icectl ) THEN |
---|
247 | DO ji = mi0(iiceprt), mi1(iiceprt) |
---|
248 | DO jj = mj0(jiceprt), mj1(jiceprt) |
---|
249 | jiindex_1d = (jj - 1) * jpi + ji |
---|
250 | WRITE(numout,*) ' lim_thd : Category no : ', jl |
---|
251 | END DO |
---|
252 | END DO |
---|
253 | ENDIF |
---|
254 | |
---|
255 | IF( lk_mpp ) CALL mpp_ini_ice( nbpb , numout ) |
---|
256 | |
---|
257 | IF( nbpb > 0 ) THEN ! If there is no ice, do nothing. |
---|
258 | ! |
---|
259 | s_i_new (:) = 0._wp ; dh_s_tot (:) = 0._wp ! --- some init --- ! |
---|
260 | dh_i_surf (:) = 0._wp ; dh_i_bott(:) = 0._wp |
---|
261 | dh_snowice(:) = 0._wp ; dh_i_sub (:) = 0._wp |
---|
262 | |
---|
263 | CALL lim_thd_1d2d( nbpb, jl, 1 ) ! --- Move to 1D arrays --- ! |
---|
264 | ! |
---|
265 | IF( ln_limdH ) CALL lim_thd_dif( 1, nbpb ) ! --- Ice/Snow Temperature profile --- ! |
---|
266 | ! |
---|
267 | IF( ln_limdH ) CALL lim_thd_dh( 1, nbpb ) ! --- Ice/Snow thickness --- ! |
---|
268 | ! |
---|
269 | IF( ln_limdH ) CALL lim_thd_ent( 1, nbpb, q_i_1d(1:nbpb,:) ) ! --- Ice enthalpy remapping --- ! |
---|
270 | ! |
---|
271 | CALL lim_thd_sal( 1, nbpb ) ! --- Ice salinity --- ! |
---|
272 | ! |
---|
273 | CALL lim_thd_temp( 1, nbpb ) ! --- temperature update --- ! |
---|
274 | ! |
---|
275 | IF( ln_limdH ) THEN |
---|
276 | IF ( ( nn_monocat == 1 .OR. nn_monocat == 4 ) .AND. jpl == 1 ) THEN |
---|
277 | CALL lim_thd_lam( 1, nbpb ) ! --- extra lateral melting if monocat --- ! |
---|
278 | END IF |
---|
279 | END IF |
---|
280 | ! |
---|
281 | CALL lim_thd_1d2d( nbpb, jl, 2 ) ! --- Move to 2D arrays --- ! |
---|
282 | ! |
---|
283 | IF( lk_mpp ) CALL mpp_comm_free( ncomm_ice ) !RB necessary ?? |
---|
284 | ENDIF |
---|
285 | ! |
---|
286 | END DO !jl |
---|
287 | |
---|
288 | IF( ln_limdA) CALL lim_thd_da ! --- lateral melting --- ! |
---|
289 | |
---|
290 | ! Enthalpies are global variables we have to readjust the units (heat content in J/m2) |
---|
291 | DO jl = 1, jpl |
---|
292 | DO jk = 1, nlay_i |
---|
293 | e_i(:,:,jk,jl) = e_i(:,:,jk,jl) * a_i(:,:,jl) * ht_i(:,:,jl) * r1_nlay_i |
---|
294 | END DO |
---|
295 | DO jk = 1, nlay_s |
---|
296 | e_s(:,:,jk,jl) = e_s(:,:,jk,jl) * a_i(:,:,jl) * ht_s(:,:,jl) * r1_nlay_s |
---|
297 | END DO |
---|
298 | END DO |
---|
299 | |
---|
300 | ! Change thickness to volume |
---|
301 | v_i(:,:,:) = ht_i(:,:,:) * a_i(:,:,:) |
---|
302 | v_s(:,:,:) = ht_s(:,:,:) * a_i(:,:,:) |
---|
303 | smv_i(:,:,:) = sm_i(:,:,:) * v_i(:,:,:) |
---|
304 | |
---|
305 | ! update ice age (in case a_i changed, i.e. becomes 0 or lateral melting) |
---|
306 | DO jl = 1, jpl |
---|
307 | DO jj = 1, jpj |
---|
308 | DO ji = 1, jpi |
---|
309 | rswitch = MAX( 0._wp , SIGN( 1._wp, a_i_b(ji,jj,jl) - epsi10 ) ) |
---|
310 | oa_i(ji,jj,jl) = rswitch * oa_i(ji,jj,jl) * a_i(ji,jj,jl) / MAX( a_i_b(ji,jj,jl), epsi10 ) |
---|
311 | END DO |
---|
312 | END DO |
---|
313 | END DO |
---|
314 | |
---|
315 | CALL lim_var_zapsmall |
---|
316 | |
---|
317 | ! control checks |
---|
318 | IF( ln_icectl ) CALL lim_prt( kt, iiceprt, jiceprt, 1, ' - ice thermodyn. - ' ) ! control print |
---|
319 | ! |
---|
320 | IF( ln_limdiahsb ) CALL lim_cons_hsm(1, 'limthd', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) |
---|
321 | |
---|
322 | !------------------------------------------------! |
---|
323 | ! Transport ice between thickness categories |
---|
324 | !------------------------------------------------! |
---|
325 | ! Given thermodynamic growth rates, transport ice between thickness categories. |
---|
326 | IF( ln_limdiahsb ) CALL lim_cons_hsm(0, 'limitd_th_rem', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) |
---|
327 | |
---|
328 | IF( jpl > 1 ) CALL lim_itd_th_rem( 1, jpl, kt ) |
---|
329 | |
---|
330 | IF( ln_limdiahsb ) CALL lim_cons_hsm(1, 'limitd_th_rem', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) |
---|
331 | |
---|
332 | !------------------------------------------------! |
---|
333 | ! Add frazil ice growing in leads |
---|
334 | !------------------------------------------------! |
---|
335 | IF( ln_limdiahsb ) CALL lim_cons_hsm(0, 'limthd_lac', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) |
---|
336 | |
---|
337 | IF( ln_limdO ) CALL lim_thd_lac |
---|
338 | |
---|
339 | IF( ln_limdiahsb ) CALL lim_cons_hsm(1, 'limthd_lac', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) |
---|
340 | |
---|
341 | ! Control print |
---|
342 | IF(ln_ctl) THEN |
---|
343 | CALL lim_var_glo2eqv |
---|
344 | |
---|
345 | CALL prt_ctl_info(' ') |
---|
346 | CALL prt_ctl_info(' - Cell values : ') |
---|
347 | CALL prt_ctl_info(' ~~~~~~~~~~~~~ ') |
---|
348 | CALL prt_ctl(tab2d_1=e12t , clinfo1=' lim_itd_th : cell area :') |
---|
349 | CALL prt_ctl(tab2d_1=at_i , clinfo1=' lim_itd_th : at_i :') |
---|
350 | CALL prt_ctl(tab2d_1=vt_i , clinfo1=' lim_itd_th : vt_i :') |
---|
351 | CALL prt_ctl(tab2d_1=vt_s , clinfo1=' lim_itd_th : vt_s :') |
---|
352 | DO jl = 1, jpl |
---|
353 | CALL prt_ctl_info(' ') |
---|
354 | CALL prt_ctl_info(' - Category : ', ivar1=jl) |
---|
355 | CALL prt_ctl_info(' ~~~~~~~~~~') |
---|
356 | CALL prt_ctl(tab2d_1=a_i (:,:,jl) , clinfo1= ' lim_itd_th : a_i : ') |
---|
357 | CALL prt_ctl(tab2d_1=ht_i (:,:,jl) , clinfo1= ' lim_itd_th : ht_i : ') |
---|
358 | CALL prt_ctl(tab2d_1=ht_s (:,:,jl) , clinfo1= ' lim_itd_th : ht_s : ') |
---|
359 | CALL prt_ctl(tab2d_1=v_i (:,:,jl) , clinfo1= ' lim_itd_th : v_i : ') |
---|
360 | CALL prt_ctl(tab2d_1=v_s (:,:,jl) , clinfo1= ' lim_itd_th : v_s : ') |
---|
361 | CALL prt_ctl(tab2d_1=e_s (:,:,1,jl) , clinfo1= ' lim_itd_th : e_s : ') |
---|
362 | CALL prt_ctl(tab2d_1=t_su (:,:,jl) , clinfo1= ' lim_itd_th : t_su : ') |
---|
363 | CALL prt_ctl(tab2d_1=t_s (:,:,1,jl) , clinfo1= ' lim_itd_th : t_snow : ') |
---|
364 | CALL prt_ctl(tab2d_1=sm_i (:,:,jl) , clinfo1= ' lim_itd_th : sm_i : ') |
---|
365 | CALL prt_ctl(tab2d_1=smv_i (:,:,jl) , clinfo1= ' lim_itd_th : smv_i : ') |
---|
366 | DO jk = 1, nlay_i |
---|
367 | CALL prt_ctl_info(' ') |
---|
368 | CALL prt_ctl_info(' - Layer : ', ivar1=jk) |
---|
369 | CALL prt_ctl_info(' ~~~~~~~') |
---|
370 | CALL prt_ctl(tab2d_1=t_i(:,:,jk,jl) , clinfo1= ' lim_itd_th : t_i : ') |
---|
371 | CALL prt_ctl(tab2d_1=e_i(:,:,jk,jl) , clinfo1= ' lim_itd_th : e_i : ') |
---|
372 | END DO |
---|
373 | END DO |
---|
374 | ENDIF |
---|
375 | ! |
---|
376 | CALL wrk_dealloc( jpi,jpj, zu_io, zv_io, zfric ) |
---|
377 | ! |
---|
378 | IF( nn_timing == 1 ) CALL timing_stop('limthd') |
---|
379 | |
---|
380 | END SUBROUTINE lim_thd |
---|
381 | |
---|
382 | |
---|
383 | SUBROUTINE lim_thd_temp( kideb, kiut ) |
---|
384 | !!----------------------------------------------------------------------- |
---|
385 | !! *** ROUTINE lim_thd_temp *** |
---|
386 | !! |
---|
387 | !! ** Purpose : Computes sea ice temperature (Kelvin) from enthalpy |
---|
388 | !! |
---|
389 | !! ** Method : Formula (Bitz and Lipscomb, 1999) |
---|
390 | !!------------------------------------------------------------------- |
---|
391 | INTEGER, INTENT(in) :: kideb, kiut ! bounds for the spatial loop |
---|
392 | !! |
---|
393 | INTEGER :: ji, jk ! dummy loop indices |
---|
394 | REAL(wp) :: ztmelts, zaaa, zbbb, zccc, zdiscrim ! local scalar |
---|
395 | !!------------------------------------------------------------------- |
---|
396 | ! Recover ice temperature |
---|
397 | DO jk = 1, nlay_i |
---|
398 | DO ji = kideb, kiut |
---|
399 | ztmelts = -tmut * s_i_1d(ji,jk) + rt0 |
---|
400 | ! Conversion q(S,T) -> T (second order equation) |
---|
401 | zaaa = cpic |
---|
402 | zbbb = ( rcp - cpic ) * ( ztmelts - rt0 ) + q_i_1d(ji,jk) * r1_rhoic - lfus |
---|
403 | zccc = lfus * ( ztmelts - rt0 ) |
---|
404 | zdiscrim = SQRT( MAX( zbbb * zbbb - 4._wp * zaaa * zccc, 0._wp ) ) |
---|
405 | t_i_1d(ji,jk) = rt0 - ( zbbb + zdiscrim ) / ( 2._wp * zaaa ) |
---|
406 | |
---|
407 | ! mask temperature |
---|
408 | rswitch = 1._wp - MAX( 0._wp , SIGN( 1._wp , - ht_i_1d(ji) ) ) |
---|
409 | t_i_1d(ji,jk) = rswitch * t_i_1d(ji,jk) + ( 1._wp - rswitch ) * rt0 |
---|
410 | END DO |
---|
411 | END DO |
---|
412 | |
---|
413 | END SUBROUTINE lim_thd_temp |
---|
414 | |
---|
415 | SUBROUTINE lim_thd_lam( kideb, kiut ) |
---|
416 | !!----------------------------------------------------------------------- |
---|
417 | !! *** ROUTINE lim_thd_lam *** |
---|
418 | !! |
---|
419 | !! ** Purpose : Lateral melting in case monocategory |
---|
420 | !! ( dA = A/2h dh ) |
---|
421 | !!----------------------------------------------------------------------- |
---|
422 | INTEGER, INTENT(in) :: kideb, kiut ! bounds for the spatial loop |
---|
423 | INTEGER :: ji ! dummy loop indices |
---|
424 | REAL(wp) :: zhi_bef ! ice thickness before thermo |
---|
425 | REAL(wp) :: zdh_mel, zda_mel ! net melting |
---|
426 | REAL(wp) :: zvi, zvs ! ice/snow volumes |
---|
427 | |
---|
428 | DO ji = kideb, kiut |
---|
429 | zdh_mel = MIN( 0._wp, dh_i_surf(ji) + dh_i_bott(ji) + dh_snowice(ji) + dh_i_sub(ji) ) |
---|
430 | IF( zdh_mel < 0._wp .AND. a_i_1d(ji) > 0._wp ) THEN |
---|
431 | zvi = a_i_1d(ji) * ht_i_1d(ji) |
---|
432 | zvs = a_i_1d(ji) * ht_s_1d(ji) |
---|
433 | ! lateral melting = concentration change |
---|
434 | zhi_bef = ht_i_1d(ji) - zdh_mel |
---|
435 | rswitch = MAX( 0._wp , SIGN( 1._wp , zhi_bef - epsi20 ) ) |
---|
436 | zda_mel = rswitch * a_i_1d(ji) * zdh_mel / ( 2._wp * MAX( zhi_bef, epsi20 ) ) |
---|
437 | a_i_1d(ji) = MAX( epsi20, a_i_1d(ji) + zda_mel ) |
---|
438 | ! adjust thickness |
---|
439 | ht_i_1d(ji) = zvi / a_i_1d(ji) |
---|
440 | ht_s_1d(ji) = zvs / a_i_1d(ji) |
---|
441 | ! retrieve total concentration |
---|
442 | at_i_1d(ji) = a_i_1d(ji) |
---|
443 | END IF |
---|
444 | END DO |
---|
445 | |
---|
446 | END SUBROUTINE lim_thd_lam |
---|
447 | |
---|
448 | SUBROUTINE lim_thd_1d2d( nbpb, jl, kn ) |
---|
449 | !!----------------------------------------------------------------------- |
---|
450 | !! *** ROUTINE lim_thd_1d2d *** |
---|
451 | !! |
---|
452 | !! ** Purpose : move arrays from 1d to 2d and the reverse |
---|
453 | !!----------------------------------------------------------------------- |
---|
454 | INTEGER, INTENT(in) :: kn ! 1= from 2D to 1D |
---|
455 | ! 2= from 1D to 2D |
---|
456 | INTEGER, INTENT(in) :: nbpb ! size of 1D arrays |
---|
457 | INTEGER, INTENT(in) :: jl ! ice cat |
---|
458 | INTEGER :: jk ! dummy loop indices |
---|
459 | |
---|
460 | SELECT CASE( kn ) |
---|
461 | |
---|
462 | CASE( 1 ) |
---|
463 | |
---|
464 | CALL tab_2d_1d( nbpb, at_i_1d (1:nbpb), at_i , jpi, jpj, npb(1:nbpb) ) |
---|
465 | CALL tab_2d_1d( nbpb, a_i_1d (1:nbpb), a_i(:,:,jl) , jpi, jpj, npb(1:nbpb) ) |
---|
466 | CALL tab_2d_1d( nbpb, ht_i_1d (1:nbpb), ht_i(:,:,jl) , jpi, jpj, npb(1:nbpb) ) |
---|
467 | CALL tab_2d_1d( nbpb, ht_s_1d (1:nbpb), ht_s(:,:,jl) , jpi, jpj, npb(1:nbpb) ) |
---|
468 | |
---|
469 | CALL tab_2d_1d( nbpb, t_su_1d (1:nbpb), t_su(:,:,jl) , jpi, jpj, npb(1:nbpb) ) |
---|
470 | CALL tab_2d_1d( nbpb, sm_i_1d (1:nbpb), sm_i(:,:,jl) , jpi, jpj, npb(1:nbpb) ) |
---|
471 | DO jk = 1, nlay_s |
---|
472 | CALL tab_2d_1d( nbpb, t_s_1d(1:nbpb,jk), t_s(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) ) |
---|
473 | CALL tab_2d_1d( nbpb, q_s_1d(1:nbpb,jk), e_s(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) ) |
---|
474 | END DO |
---|
475 | DO jk = 1, nlay_i |
---|
476 | CALL tab_2d_1d( nbpb, t_i_1d(1:nbpb,jk), t_i(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) ) |
---|
477 | CALL tab_2d_1d( nbpb, q_i_1d(1:nbpb,jk), e_i(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) ) |
---|
478 | CALL tab_2d_1d( nbpb, s_i_1d(1:nbpb,jk), s_i(:,:,jk,jl) , jpi, jpj, npb(1:nbpb) ) |
---|
479 | END DO |
---|
480 | |
---|
481 | CALL tab_2d_1d( nbpb, qprec_ice_1d(1:nbpb), qprec_ice(:,:) , jpi, jpj, npb(1:nbpb) ) |
---|
482 | CALL tab_2d_1d( nbpb, qevap_ice_1d(1:nbpb), qevap_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) ) |
---|
483 | CALL tab_2d_1d( nbpb, qsr_ice_1d (1:nbpb), qsr_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) ) |
---|
484 | CALL tab_2d_1d( nbpb, fr1_i0_1d (1:nbpb), fr1_i0 , jpi, jpj, npb(1:nbpb) ) |
---|
485 | CALL tab_2d_1d( nbpb, fr2_i0_1d (1:nbpb), fr2_i0 , jpi, jpj, npb(1:nbpb) ) |
---|
486 | CALL tab_2d_1d( nbpb, qns_ice_1d (1:nbpb), qns_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) ) |
---|
487 | CALL tab_2d_1d( nbpb, ftr_ice_1d (1:nbpb), ftr_ice(:,:,jl) , jpi, jpj, npb(1:nbpb) ) |
---|
488 | CALL tab_2d_1d( nbpb, evap_ice_1d (1:nbpb), evap_ice(:,:,jl), jpi, jpj, npb(1:nbpb) ) |
---|
489 | CALL tab_2d_1d( nbpb, dqns_ice_1d(1:nbpb), dqns_ice(:,:,jl), jpi, jpj, npb(1:nbpb) ) |
---|
490 | CALL tab_2d_1d( nbpb, t_bo_1d (1:nbpb), t_bo , jpi, jpj, npb(1:nbpb) ) |
---|
491 | CALL tab_2d_1d( nbpb, sprecip_1d (1:nbpb), sprecip , jpi, jpj, npb(1:nbpb) ) |
---|
492 | CALL tab_2d_1d( nbpb, fhtur_1d (1:nbpb), fhtur , jpi, jpj, npb(1:nbpb) ) |
---|
493 | CALL tab_2d_1d( nbpb, qlead_1d (1:nbpb), qlead , jpi, jpj, npb(1:nbpb) ) |
---|
494 | CALL tab_2d_1d( nbpb, fhld_1d (1:nbpb), fhld , jpi, jpj, npb(1:nbpb) ) |
---|
495 | |
---|
496 | CALL tab_2d_1d( nbpb, wfx_snw_1d (1:nbpb), wfx_snw , jpi, jpj, npb(1:nbpb) ) |
---|
497 | CALL tab_2d_1d( nbpb, wfx_sub_1d (1:nbpb), wfx_sub , jpi, jpj, npb(1:nbpb) ) |
---|
498 | |
---|
499 | CALL tab_2d_1d( nbpb, wfx_bog_1d (1:nbpb), wfx_bog , jpi, jpj, npb(1:nbpb) ) |
---|
500 | CALL tab_2d_1d( nbpb, wfx_bom_1d (1:nbpb), wfx_bom , jpi, jpj, npb(1:nbpb) ) |
---|
501 | CALL tab_2d_1d( nbpb, wfx_sum_1d (1:nbpb), wfx_sum , jpi, jpj, npb(1:nbpb) ) |
---|
502 | CALL tab_2d_1d( nbpb, wfx_sni_1d (1:nbpb), wfx_sni , jpi, jpj, npb(1:nbpb) ) |
---|
503 | CALL tab_2d_1d( nbpb, wfx_res_1d (1:nbpb), wfx_res , jpi, jpj, npb(1:nbpb) ) |
---|
504 | CALL tab_2d_1d( nbpb, wfx_spr_1d (1:nbpb), wfx_spr , jpi, jpj, npb(1:nbpb) ) |
---|
505 | |
---|
506 | CALL tab_2d_1d( nbpb, sfx_bog_1d (1:nbpb), sfx_bog , jpi, jpj, npb(1:nbpb) ) |
---|
507 | CALL tab_2d_1d( nbpb, sfx_bom_1d (1:nbpb), sfx_bom , jpi, jpj, npb(1:nbpb) ) |
---|
508 | CALL tab_2d_1d( nbpb, sfx_sum_1d (1:nbpb), sfx_sum , jpi, jpj, npb(1:nbpb) ) |
---|
509 | CALL tab_2d_1d( nbpb, sfx_sni_1d (1:nbpb), sfx_sni , jpi, jpj, npb(1:nbpb) ) |
---|
510 | CALL tab_2d_1d( nbpb, sfx_bri_1d (1:nbpb), sfx_bri , jpi, jpj, npb(1:nbpb) ) |
---|
511 | CALL tab_2d_1d( nbpb, sfx_res_1d (1:nbpb), sfx_res , jpi, jpj, npb(1:nbpb) ) |
---|
512 | CALL tab_2d_1d( nbpb, sfx_sub_1d (1:nbpb), sfx_sub , jpi, jpj,npb(1:nbpb) ) |
---|
513 | |
---|
514 | CALL tab_2d_1d( nbpb, hfx_thd_1d (1:nbpb), hfx_thd , jpi, jpj, npb(1:nbpb) ) |
---|
515 | CALL tab_2d_1d( nbpb, hfx_spr_1d (1:nbpb), hfx_spr , jpi, jpj, npb(1:nbpb) ) |
---|
516 | CALL tab_2d_1d( nbpb, hfx_sum_1d (1:nbpb), hfx_sum , jpi, jpj, npb(1:nbpb) ) |
---|
517 | CALL tab_2d_1d( nbpb, hfx_bom_1d (1:nbpb), hfx_bom , jpi, jpj, npb(1:nbpb) ) |
---|
518 | CALL tab_2d_1d( nbpb, hfx_bog_1d (1:nbpb), hfx_bog , jpi, jpj, npb(1:nbpb) ) |
---|
519 | CALL tab_2d_1d( nbpb, hfx_dif_1d (1:nbpb), hfx_dif , jpi, jpj, npb(1:nbpb) ) |
---|
520 | CALL tab_2d_1d( nbpb, hfx_opw_1d (1:nbpb), hfx_opw , jpi, jpj, npb(1:nbpb) ) |
---|
521 | CALL tab_2d_1d( nbpb, hfx_snw_1d (1:nbpb), hfx_snw , jpi, jpj, npb(1:nbpb) ) |
---|
522 | CALL tab_2d_1d( nbpb, hfx_sub_1d (1:nbpb), hfx_sub , jpi, jpj, npb(1:nbpb) ) |
---|
523 | CALL tab_2d_1d( nbpb, hfx_err_1d (1:nbpb), hfx_err , jpi, jpj, npb(1:nbpb) ) |
---|
524 | CALL tab_2d_1d( nbpb, hfx_res_1d (1:nbpb), hfx_res , jpi, jpj, npb(1:nbpb) ) |
---|
525 | CALL tab_2d_1d( nbpb, hfx_err_dif_1d (1:nbpb), hfx_err_dif , jpi, jpj, npb(1:nbpb) ) |
---|
526 | CALL tab_2d_1d( nbpb, hfx_err_rem_1d (1:nbpb), hfx_err_rem , jpi, jpj, npb(1:nbpb) ) |
---|
527 | |
---|
528 | CASE( 2 ) |
---|
529 | |
---|
530 | CALL tab_1d_2d( nbpb, at_i , npb, at_i_1d (1:nbpb) , jpi, jpj ) |
---|
531 | CALL tab_1d_2d( nbpb, ht_i(:,:,jl) , npb, ht_i_1d (1:nbpb) , jpi, jpj ) |
---|
532 | CALL tab_1d_2d( nbpb, ht_s(:,:,jl) , npb, ht_s_1d (1:nbpb) , jpi, jpj ) |
---|
533 | CALL tab_1d_2d( nbpb, a_i (:,:,jl) , npb, a_i_1d (1:nbpb) , jpi, jpj ) |
---|
534 | CALL tab_1d_2d( nbpb, t_su(:,:,jl) , npb, t_su_1d (1:nbpb) , jpi, jpj ) |
---|
535 | CALL tab_1d_2d( nbpb, sm_i(:,:,jl) , npb, sm_i_1d (1:nbpb) , jpi, jpj ) |
---|
536 | DO jk = 1, nlay_s |
---|
537 | CALL tab_1d_2d( nbpb, t_s(:,:,jk,jl), npb, t_s_1d (1:nbpb,jk), jpi, jpj) |
---|
538 | CALL tab_1d_2d( nbpb, e_s(:,:,jk,jl), npb, q_s_1d (1:nbpb,jk), jpi, jpj) |
---|
539 | END DO |
---|
540 | DO jk = 1, nlay_i |
---|
541 | CALL tab_1d_2d( nbpb, t_i(:,:,jk,jl), npb, t_i_1d (1:nbpb,jk), jpi, jpj) |
---|
542 | CALL tab_1d_2d( nbpb, e_i(:,:,jk,jl), npb, q_i_1d (1:nbpb,jk), jpi, jpj) |
---|
543 | CALL tab_1d_2d( nbpb, s_i(:,:,jk,jl), npb, s_i_1d (1:nbpb,jk), jpi, jpj) |
---|
544 | END DO |
---|
545 | CALL tab_1d_2d( nbpb, qlead , npb, qlead_1d (1:nbpb) , jpi, jpj ) |
---|
546 | |
---|
547 | CALL tab_1d_2d( nbpb, wfx_snw , npb, wfx_snw_1d(1:nbpb) , jpi, jpj ) |
---|
548 | CALL tab_1d_2d( nbpb, wfx_sub , npb, wfx_sub_1d(1:nbpb) , jpi, jpj ) |
---|
549 | |
---|
550 | CALL tab_1d_2d( nbpb, wfx_bog , npb, wfx_bog_1d(1:nbpb) , jpi, jpj ) |
---|
551 | CALL tab_1d_2d( nbpb, wfx_bom , npb, wfx_bom_1d(1:nbpb) , jpi, jpj ) |
---|
552 | CALL tab_1d_2d( nbpb, wfx_sum , npb, wfx_sum_1d(1:nbpb) , jpi, jpj ) |
---|
553 | CALL tab_1d_2d( nbpb, wfx_sni , npb, wfx_sni_1d(1:nbpb) , jpi, jpj ) |
---|
554 | CALL tab_1d_2d( nbpb, wfx_res , npb, wfx_res_1d(1:nbpb) , jpi, jpj ) |
---|
555 | CALL tab_1d_2d( nbpb, wfx_spr , npb, wfx_spr_1d(1:nbpb) , jpi, jpj ) |
---|
556 | |
---|
557 | CALL tab_1d_2d( nbpb, sfx_bog , npb, sfx_bog_1d(1:nbpb) , jpi, jpj ) |
---|
558 | CALL tab_1d_2d( nbpb, sfx_bom , npb, sfx_bom_1d(1:nbpb) , jpi, jpj ) |
---|
559 | CALL tab_1d_2d( nbpb, sfx_sum , npb, sfx_sum_1d(1:nbpb) , jpi, jpj ) |
---|
560 | CALL tab_1d_2d( nbpb, sfx_sni , npb, sfx_sni_1d(1:nbpb) , jpi, jpj ) |
---|
561 | CALL tab_1d_2d( nbpb, sfx_res , npb, sfx_res_1d(1:nbpb) , jpi, jpj ) |
---|
562 | CALL tab_1d_2d( nbpb, sfx_bri , npb, sfx_bri_1d(1:nbpb) , jpi, jpj ) |
---|
563 | CALL tab_1d_2d( nbpb, sfx_sub , npb, sfx_sub_1d(1:nbpb) , jpi, jpj ) |
---|
564 | |
---|
565 | CALL tab_1d_2d( nbpb, hfx_thd , npb, hfx_thd_1d(1:nbpb) , jpi, jpj ) |
---|
566 | CALL tab_1d_2d( nbpb, hfx_spr , npb, hfx_spr_1d(1:nbpb) , jpi, jpj ) |
---|
567 | CALL tab_1d_2d( nbpb, hfx_sum , npb, hfx_sum_1d(1:nbpb) , jpi, jpj ) |
---|
568 | CALL tab_1d_2d( nbpb, hfx_bom , npb, hfx_bom_1d(1:nbpb) , jpi, jpj ) |
---|
569 | CALL tab_1d_2d( nbpb, hfx_bog , npb, hfx_bog_1d(1:nbpb) , jpi, jpj ) |
---|
570 | CALL tab_1d_2d( nbpb, hfx_dif , npb, hfx_dif_1d(1:nbpb) , jpi, jpj ) |
---|
571 | CALL tab_1d_2d( nbpb, hfx_opw , npb, hfx_opw_1d(1:nbpb) , jpi, jpj ) |
---|
572 | CALL tab_1d_2d( nbpb, hfx_snw , npb, hfx_snw_1d(1:nbpb) , jpi, jpj ) |
---|
573 | CALL tab_1d_2d( nbpb, hfx_sub , npb, hfx_sub_1d(1:nbpb) , jpi, jpj ) |
---|
574 | CALL tab_1d_2d( nbpb, hfx_err , npb, hfx_err_1d(1:nbpb) , jpi, jpj ) |
---|
575 | CALL tab_1d_2d( nbpb, hfx_res , npb, hfx_res_1d(1:nbpb) , jpi, jpj ) |
---|
576 | CALL tab_1d_2d( nbpb, hfx_err_rem , npb, hfx_err_rem_1d(1:nbpb), jpi, jpj ) |
---|
577 | CALL tab_1d_2d( nbpb, hfx_err_dif , npb, hfx_err_dif_1d(1:nbpb), jpi, jpj ) |
---|
578 | ! |
---|
579 | CALL tab_1d_2d( nbpb, qns_ice(:,:,jl), npb, qns_ice_1d(1:nbpb) , jpi, jpj) |
---|
580 | CALL tab_1d_2d( nbpb, ftr_ice(:,:,jl), npb, ftr_ice_1d(1:nbpb) , jpi, jpj ) |
---|
581 | ! |
---|
582 | END SELECT |
---|
583 | |
---|
584 | END SUBROUTINE lim_thd_1d2d |
---|
585 | |
---|
586 | |
---|
587 | SUBROUTINE lim_thd_init |
---|
588 | !!----------------------------------------------------------------------- |
---|
589 | !! *** ROUTINE lim_thd_init *** |
---|
590 | !! |
---|
591 | !! ** Purpose : Physical constants and parameters linked to the ice |
---|
592 | !! thermodynamics |
---|
593 | !! |
---|
594 | !! ** Method : Read the namicethd namelist and check the ice-thermo |
---|
595 | !! parameter values called at the first timestep (nit000) |
---|
596 | !! |
---|
597 | !! ** input : Namelist namicether |
---|
598 | !!------------------------------------------------------------------- |
---|
599 | INTEGER :: ios ! Local integer output status for namelist read |
---|
600 | NAMELIST/namicethd/ rn_kappa_i, nn_conv_dif, rn_terr_dif, nn_ice_thcon,ln_it_qnsice,nn_monocat, & |
---|
601 | & ln_limdH, rn_betas, & |
---|
602 | & ln_limdA, rn_beta, rn_dmin, & |
---|
603 | & ln_limdO, rn_hnewice, ln_frazil, rn_maxfrazb, rn_vfrazb, rn_Cfrazb, rn_himin |
---|
604 | !!------------------------------------------------------------------- |
---|
605 | ! |
---|
606 | REWIND( numnam_ice_ref ) ! Namelist namicethd in reference namelist : Ice thermodynamics |
---|
607 | READ ( numnam_ice_ref, namicethd, IOSTAT = ios, ERR = 901) |
---|
608 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicethd in reference namelist', lwp ) |
---|
609 | |
---|
610 | REWIND( numnam_ice_cfg ) ! Namelist namicethd in configuration namelist : Ice thermodynamics |
---|
611 | READ ( numnam_ice_cfg, namicethd, IOSTAT = ios, ERR = 902 ) |
---|
612 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicethd in configuration namelist', lwp ) |
---|
613 | IF(lwm) WRITE ( numoni, namicethd ) |
---|
614 | ! |
---|
615 | IF ( ( jpl > 1 ) .AND. ( nn_monocat == 1 ) ) THEN |
---|
616 | nn_monocat = 0 |
---|
617 | IF(lwp) WRITE(numout, *) ' nn_monocat must be 0 in multi-category case ' |
---|
618 | ENDIF |
---|
619 | ! |
---|
620 | IF(lwp) THEN ! control print |
---|
621 | WRITE(numout,*) |
---|
622 | WRITE(numout,*) 'lim_thd_init : Ice Thermodynamics' |
---|
623 | WRITE(numout,*) '~~~~~~~~~~~~~' |
---|
624 | WRITE(numout,*)' -- limthd_dif --' |
---|
625 | WRITE(numout,*)' extinction radiation parameter in sea ice rn_kappa_i = ', rn_kappa_i |
---|
626 | WRITE(numout,*)' maximal n. of iter. for heat diffusion computation nn_conv_dif = ', nn_conv_dif |
---|
627 | WRITE(numout,*)' maximal err. on T for heat diffusion computation rn_terr_dif = ', rn_terr_dif |
---|
628 | WRITE(numout,*)' switch for comp. of thermal conductivity in the ice nn_ice_thcon = ', nn_ice_thcon |
---|
629 | WRITE(numout,*)' iterate the surface non-solar flux (T) or not (F) ln_it_qnsice = ', ln_it_qnsice |
---|
630 | WRITE(numout,*)' virtual ITD mono-category parameterizations (1) or not nn_monocat = ', nn_monocat |
---|
631 | WRITE(numout,*)' -- limthd_dh --' |
---|
632 | WRITE(numout,*)' activate ice thick change from top/bot (T) or not (F) ln_limdH = ', ln_limdH |
---|
633 | WRITE(numout,*)' coefficient for ice-lead partition of snowfall rn_betas = ', rn_betas |
---|
634 | WRITE(numout,*)' -- limthd_da --' |
---|
635 | WRITE(numout,*)' activate lateral melting (T) or not (F) ln_limdA = ', ln_limdA |
---|
636 | WRITE(numout,*)' Coef. beta for lateral melting param. rn_beta = ', rn_beta |
---|
637 | WRITE(numout,*)' Minimum floe diameter for lateral melting param. rn_dmin = ', rn_dmin |
---|
638 | WRITE(numout,*)' -- limthd_lac --' |
---|
639 | WRITE(numout,*)' activate ice growth in open-water (T) or not (F) ln_limdO = ', ln_limdO |
---|
640 | WRITE(numout,*)' ice thick. for lateral accretion rn_hnewice = ', rn_hnewice |
---|
641 | WRITE(numout,*)' Frazil ice thickness as a function of wind or not ln_frazil = ', ln_frazil |
---|
642 | WRITE(numout,*)' Maximum proportion of frazil ice collecting at bottom rn_maxfrazb = ', rn_maxfrazb |
---|
643 | WRITE(numout,*)' Thresold relative drift speed for collection of frazil rn_vfrazb = ', rn_vfrazb |
---|
644 | WRITE(numout,*)' Squeezing coefficient for collection of frazil rn_Cfrazb = ', rn_Cfrazb |
---|
645 | WRITE(numout,*)' -- limitd_th --' |
---|
646 | WRITE(numout,*)' minimum ice thickness rn_himin = ', rn_himin |
---|
647 | WRITE(numout,*)' check heat conservation in the ice/snow con_i = ', con_i |
---|
648 | ENDIF |
---|
649 | ! |
---|
650 | END SUBROUTINE lim_thd_init |
---|
651 | |
---|
652 | #else |
---|
653 | !!---------------------------------------------------------------------- |
---|
654 | !! Default option Dummy module NO LIM3 sea-ice model |
---|
655 | !!---------------------------------------------------------------------- |
---|
656 | #endif |
---|
657 | |
---|
658 | !!====================================================================== |
---|
659 | END MODULE limthd |
---|