1 | MODULE limthd_lac |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE limthd_lac *** |
---|
4 | !! lateral thermodynamic growth of the ice |
---|
5 | !!====================================================================== |
---|
6 | !! History : LIM ! 2005-12 (M. Vancoppenolle) Original code |
---|
7 | !! - ! 2006-01 (M. Vancoppenolle) add ITD |
---|
8 | !! 3.0 ! 2007-07 (M. Vancoppenolle) Mass and energy conservation tested |
---|
9 | !! 4.0 ! 2011-02 (G. Madec) dynamical allocation |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | #if defined key_lim3 |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! 'key_lim3' LIM3 sea-ice model |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | !! lim_lat_acr : lateral accretion of ice |
---|
16 | !!---------------------------------------------------------------------- |
---|
17 | USE par_oce ! ocean parameters |
---|
18 | USE dom_oce ! domain variables |
---|
19 | USE phycst ! physical constants |
---|
20 | USE sbc_oce ! Surface boundary condition: ocean fields |
---|
21 | USE sbc_ice ! Surface boundary condition: ice fields |
---|
22 | USE thd_ice ! LIM thermodynamics |
---|
23 | USE ice ! LIM variables |
---|
24 | USE limtab ! LIM 2D <==> 1D |
---|
25 | USE limcons ! LIM conservation |
---|
26 | USE in_out_manager ! I/O manager |
---|
27 | USE lib_mpp ! MPP library |
---|
28 | USE wrk_nemo ! work arrays |
---|
29 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
30 | USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) |
---|
31 | USE limthd_ent |
---|
32 | USE limvar |
---|
33 | |
---|
34 | IMPLICIT NONE |
---|
35 | PRIVATE |
---|
36 | |
---|
37 | PUBLIC lim_thd_lac ! called by lim_thd |
---|
38 | |
---|
39 | !!---------------------------------------------------------------------- |
---|
40 | !! NEMO/LIM3 4.0 , UCL - NEMO Consortium (2011) |
---|
41 | !! $Id$ |
---|
42 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
43 | !!---------------------------------------------------------------------- |
---|
44 | CONTAINS |
---|
45 | |
---|
46 | SUBROUTINE lim_thd_lac |
---|
47 | !!------------------------------------------------------------------- |
---|
48 | !! *** ROUTINE lim_thd_lac *** |
---|
49 | !! |
---|
50 | !! ** Purpose : Computation of the evolution of the ice thickness and |
---|
51 | !! concentration as a function of the heat balance in the leads. |
---|
52 | !! It is only used for lateral accretion |
---|
53 | !! |
---|
54 | !! ** Method : Ice is formed in the open water when ocean lose heat |
---|
55 | !! (heat budget of open water Bl is negative) . |
---|
56 | !! Computation of the increase of 1-A (ice concentration) fol- |
---|
57 | !! lowing the law : |
---|
58 | !! (dA/dt)acc = F[ (1-A)/(1-a) ] * [ Bl / (Li*h0) ] |
---|
59 | !! where - h0 is the thickness of ice created in the lead |
---|
60 | !! - a is a minimum fraction for leads |
---|
61 | !! - F is a monotonic non-increasing function defined as: |
---|
62 | !! F(X)=( 1 - X**exld )**(1.0/exld) |
---|
63 | !! - exld is the exponent closure rate (=2 default val.) |
---|
64 | !! |
---|
65 | !! ** Action : - Adjustment of snow and ice thicknesses and heat |
---|
66 | !! content in brine pockets |
---|
67 | !! - Updating ice internal temperature |
---|
68 | !! - Computation of variation of ice volume and mass |
---|
69 | !! - Computation of frldb after lateral accretion and |
---|
70 | !! update ht_s_1d, ht_i_1d and tbif_1d(:,:) |
---|
71 | !!------------------------------------------------------------------------ |
---|
72 | INTEGER :: ji,jj,jk,jl ! dummy loop indices |
---|
73 | INTEGER :: nbpac ! local integers |
---|
74 | INTEGER :: ii, ij, iter ! - - |
---|
75 | REAL(wp) :: ztmelts, zdv, zfrazb, zweight, zde ! local scalars |
---|
76 | REAL(wp) :: zgamafr, zvfrx, zvgx, ztaux, ztwogp, zf ! - - |
---|
77 | REAL(wp) :: ztenagm, zvfry, zvgy, ztauy, zvrel2, zfp, zsqcd , zhicrit ! - - |
---|
78 | CHARACTER (len = 15) :: fieldid |
---|
79 | |
---|
80 | REAL(wp) :: zQm ! enthalpy exchanged with the ocean (J/m2, >0 towards ocean) |
---|
81 | REAL(wp) :: zEi ! sea ice specific enthalpy (J/kg) |
---|
82 | REAL(wp) :: zEw ! seawater specific enthalpy (J/kg) |
---|
83 | REAL(wp) :: zfmdt ! mass flux x time step (kg/m2, >0 towards ocean) |
---|
84 | |
---|
85 | REAL(wp) :: zv_newfra |
---|
86 | |
---|
87 | INTEGER , POINTER, DIMENSION(:) :: jcat ! indexes of categories where new ice grows |
---|
88 | REAL(wp), POINTER, DIMENSION(:) :: zswinew ! switch for new ice or not |
---|
89 | |
---|
90 | REAL(wp), POINTER, DIMENSION(:) :: zv_newice ! volume of accreted ice |
---|
91 | REAL(wp), POINTER, DIMENSION(:) :: za_newice ! fractional area of accreted ice |
---|
92 | REAL(wp), POINTER, DIMENSION(:) :: zh_newice ! thickness of accreted ice |
---|
93 | REAL(wp), POINTER, DIMENSION(:) :: ze_newice ! heat content of accreted ice |
---|
94 | REAL(wp), POINTER, DIMENSION(:) :: zs_newice ! salinity of accreted ice |
---|
95 | REAL(wp), POINTER, DIMENSION(:) :: zo_newice ! age of accreted ice |
---|
96 | REAL(wp), POINTER, DIMENSION(:) :: zdv_res ! residual volume in case of excessive heat budget |
---|
97 | REAL(wp), POINTER, DIMENSION(:) :: zda_res ! residual area in case of excessive heat budget |
---|
98 | REAL(wp), POINTER, DIMENSION(:) :: zat_i_1d ! total ice fraction |
---|
99 | REAL(wp), POINTER, DIMENSION(:) :: zv_frazb ! accretion of frazil ice at the ice bottom |
---|
100 | REAL(wp), POINTER, DIMENSION(:) :: zvrel_1d ! relative ice / frazil velocity (1D vector) |
---|
101 | |
---|
102 | REAL(wp), POINTER, DIMENSION(:,:) :: zv_b ! old volume of ice in category jl |
---|
103 | REAL(wp), POINTER, DIMENSION(:,:) :: za_b ! old area of ice in category jl |
---|
104 | REAL(wp), POINTER, DIMENSION(:,:) :: za_i_1d ! 1-D version of a_i |
---|
105 | REAL(wp), POINTER, DIMENSION(:,:) :: zv_i_1d ! 1-D version of v_i |
---|
106 | REAL(wp), POINTER, DIMENSION(:,:) :: zsmv_i_1d ! 1-D version of smv_i |
---|
107 | |
---|
108 | REAL(wp), POINTER, DIMENSION(:,:,:) :: ze_i_1d !: 1-D version of e_i |
---|
109 | |
---|
110 | REAL(wp), POINTER, DIMENSION(:,:) :: zvrel ! relative ice / frazil velocity |
---|
111 | |
---|
112 | REAL(wp) :: zcai = 1.4e-3_wp ! ice-air drag (clem: should be dependent on coupling/forcing used) |
---|
113 | !!-----------------------------------------------------------------------! |
---|
114 | |
---|
115 | CALL wrk_alloc( jpij, jcat ) ! integer |
---|
116 | CALL wrk_alloc( jpij, zswinew, zv_newice, za_newice, zh_newice, ze_newice, zs_newice, zo_newice ) |
---|
117 | CALL wrk_alloc( jpij, zdv_res, zda_res, zat_i_1d, zv_frazb, zvrel_1d ) |
---|
118 | CALL wrk_alloc( jpij,jpl, zv_b, za_b, za_i_1d, zv_i_1d, zsmv_i_1d ) |
---|
119 | CALL wrk_alloc( jpij,nlay_i,jpl, ze_i_1d ) |
---|
120 | CALL wrk_alloc( jpi,jpj, zvrel ) |
---|
121 | |
---|
122 | CALL lim_var_agg(1) |
---|
123 | CALL lim_var_glo2eqv |
---|
124 | !------------------------------------------------------------------------------| |
---|
125 | ! 2) Convert units for ice internal energy |
---|
126 | !------------------------------------------------------------------------------| |
---|
127 | DO jl = 1, jpl |
---|
128 | DO jk = 1, nlay_i |
---|
129 | DO jj = 1, jpj |
---|
130 | DO ji = 1, jpi |
---|
131 | !Energy of melting q(S,T) [J.m-3] |
---|
132 | rswitch = MAX( 0._wp , SIGN( 1._wp , v_i(ji,jj,jl) - epsi20 ) ) !0 if no ice |
---|
133 | e_i(ji,jj,jk,jl) = rswitch * e_i(ji,jj,jk,jl) / MAX( v_i(ji,jj,jl), epsi20 ) * REAL( nlay_i, wp ) |
---|
134 | END DO |
---|
135 | END DO |
---|
136 | END DO |
---|
137 | END DO |
---|
138 | |
---|
139 | !------------------------------------------------------------------------------! |
---|
140 | ! 3) Collection thickness of ice formed in leads and polynyas |
---|
141 | !------------------------------------------------------------------------------! |
---|
142 | ! hicol is the thickness of new ice formed in open water |
---|
143 | ! hicol can be either prescribed (frazswi = 0) or computed (frazswi = 1) |
---|
144 | ! Frazil ice forms in open water, is transported by wind |
---|
145 | ! accumulates at the edge of the consolidated ice edge |
---|
146 | ! where it forms aggregates of a specific thickness called |
---|
147 | ! collection thickness. |
---|
148 | |
---|
149 | ! Note : the following algorithm currently breaks vectorization |
---|
150 | ! |
---|
151 | |
---|
152 | zvrel(:,:) = 0._wp |
---|
153 | |
---|
154 | ! Default new ice thickness |
---|
155 | WHERE( qlead(:,:) < 0._wp ) ; hicol(:,:) = rn_hnewice |
---|
156 | ELSEWHERE ; hicol(:,:) = 0._wp |
---|
157 | END WHERE |
---|
158 | |
---|
159 | IF( ln_frazil ) THEN |
---|
160 | |
---|
161 | !-------------------- |
---|
162 | ! Physical constants |
---|
163 | !-------------------- |
---|
164 | hicol(:,:) = 0._wp |
---|
165 | |
---|
166 | zhicrit = 0.04 ! frazil ice thickness |
---|
167 | ztwogp = 2. * rau0 / ( grav * 0.3 * ( rau0 - rhoic ) ) ! reduced grav |
---|
168 | zsqcd = 1.0 / SQRT( 1.3 * zcai ) ! 1/SQRT(airdensity*drag) |
---|
169 | zgamafr = 0.03 |
---|
170 | |
---|
171 | DO jj = 2, jpjm1 |
---|
172 | DO ji = 2, jpim1 |
---|
173 | IF ( qlead(ji,jj) < 0._wp .AND. tau_icebfr(ji,jj) == 0._wp ) THEN ! activated if cooling and no landfast |
---|
174 | !------------- |
---|
175 | ! Wind stress |
---|
176 | !------------- |
---|
177 | ! C-grid wind stress components |
---|
178 | ztaux = ( utau_ice(ji-1,jj ) * umask(ji-1,jj ,1) & |
---|
179 | & + utau_ice(ji ,jj ) * umask(ji ,jj ,1) ) * 0.5_wp |
---|
180 | ztauy = ( vtau_ice(ji ,jj-1) * vmask(ji ,jj-1,1) & |
---|
181 | & + vtau_ice(ji ,jj ) * vmask(ji ,jj ,1) ) * 0.5_wp |
---|
182 | ! Square root of wind stress |
---|
183 | ztenagm = SQRT( SQRT( ztaux * ztaux + ztauy * ztauy ) ) |
---|
184 | |
---|
185 | !--------------------- |
---|
186 | ! Frazil ice velocity |
---|
187 | !--------------------- |
---|
188 | rswitch = MAX( 0._wp, SIGN( 1._wp , ztenagm - epsi10 ) ) |
---|
189 | zvfrx = rswitch * zgamafr * zsqcd * ztaux / MAX( ztenagm, epsi10 ) |
---|
190 | zvfry = rswitch * zgamafr * zsqcd * ztauy / MAX( ztenagm, epsi10 ) |
---|
191 | |
---|
192 | !------------------- |
---|
193 | ! Pack ice velocity |
---|
194 | !------------------- |
---|
195 | ! C-grid ice velocity |
---|
196 | zvgx = ( u_ice(ji-1,jj ) * umask(ji-1,jj ,1) + u_ice(ji,jj) * umask(ji,jj,1) ) * 0.5_wp |
---|
197 | zvgy = ( v_ice(ji ,jj-1) * vmask(ji ,jj-1,1) + v_ice(ji,jj) * vmask(ji,jj,1) ) * 0.5_wp |
---|
198 | |
---|
199 | !----------------------------------- |
---|
200 | ! Relative frazil/pack ice velocity |
---|
201 | !----------------------------------- |
---|
202 | ! absolute relative velocity |
---|
203 | rswitch = MAX( 0._wp, SIGN( 1._wp , at_i(ji,jj) - epsi10 ) ) |
---|
204 | zvrel2 = MAX( ( zvfrx - zvgx ) * ( zvfrx - zvgx ) & |
---|
205 | & + ( zvfry - zvgy ) * ( zvfry - zvgy ) , 0.15 * 0.15 ) * rswitch |
---|
206 | zvrel(ji,jj) = SQRT( zvrel2 ) |
---|
207 | |
---|
208 | !--------------------- |
---|
209 | ! Iterative procedure |
---|
210 | !--------------------- |
---|
211 | hicol(ji,jj) = zhicrit + ( zhicrit + 0.1 ) & |
---|
212 | & / ( ( zhicrit + 0.1 ) * ( zhicrit + 0.1 ) - zhicrit * zhicrit ) * ztwogp * zvrel2 |
---|
213 | |
---|
214 | iter = 1 |
---|
215 | DO WHILE ( iter < 20 ) |
---|
216 | zf = ( hicol(ji,jj) - zhicrit ) * ( hicol(ji,jj) * hicol(ji,jj) - zhicrit * zhicrit ) - & |
---|
217 | & hicol(ji,jj) * zhicrit * ztwogp * zvrel2 |
---|
218 | zfp = ( hicol(ji,jj) - zhicrit ) * ( 3.0 * hicol(ji,jj) + zhicrit ) - zhicrit * ztwogp * zvrel2 |
---|
219 | |
---|
220 | hicol(ji,jj) = hicol(ji,jj) - zf / MAX( zfp, epsi20 ) |
---|
221 | iter = iter + 1 |
---|
222 | END DO |
---|
223 | |
---|
224 | ENDIF ! end of selection of pixels where ice forms |
---|
225 | |
---|
226 | END DO |
---|
227 | END DO |
---|
228 | ! |
---|
229 | CALL lbc_lnk( zvrel, 'T', 1. ) |
---|
230 | CALL lbc_lnk( hicol, 'T', 1. ) |
---|
231 | |
---|
232 | ENDIF ! End of computation of frazil ice collection thickness |
---|
233 | |
---|
234 | !------------------------------------------------------------------------------! |
---|
235 | ! 4) Identify grid points where new ice forms |
---|
236 | !------------------------------------------------------------------------------! |
---|
237 | |
---|
238 | !------------------------------------- |
---|
239 | ! Select points for new ice formation |
---|
240 | !------------------------------------- |
---|
241 | ! This occurs if open water energy budget is negative (cooling) and there is no landfast ice |
---|
242 | nbpac = 0 |
---|
243 | npac(:) = 0 |
---|
244 | ! |
---|
245 | DO jj = 1, jpj |
---|
246 | DO ji = 1, jpi |
---|
247 | IF ( qlead(ji,jj) < 0._wp .AND. tau_icebfr(ji,jj) == 0._wp ) THEN |
---|
248 | nbpac = nbpac + 1 |
---|
249 | npac( nbpac ) = (jj - 1) * jpi + ji |
---|
250 | ENDIF |
---|
251 | END DO |
---|
252 | END DO |
---|
253 | |
---|
254 | ! debug point to follow |
---|
255 | jiindex_1d = 0 |
---|
256 | IF( ln_limctl ) THEN |
---|
257 | DO ji = mi0(iiceprt), mi1(iiceprt) |
---|
258 | DO jj = mj0(jiceprt), mj1(jiceprt) |
---|
259 | IF ( qlead(ji,jj) < 0._wp ) THEN |
---|
260 | jiindex_1d = (jj - 1) * jpi + ji |
---|
261 | ENDIF |
---|
262 | END DO |
---|
263 | END DO |
---|
264 | ENDIF |
---|
265 | |
---|
266 | IF( ln_limctl ) WRITE(numout,*) 'lim_thd_lac : nbpac = ', nbpac |
---|
267 | |
---|
268 | !------------------------------ |
---|
269 | ! Move from 2-D to 1-D vectors |
---|
270 | !------------------------------ |
---|
271 | ! If ocean gains heat do nothing. Otherwise compute new ice formation |
---|
272 | |
---|
273 | IF ( nbpac > 0 ) THEN |
---|
274 | |
---|
275 | CALL tab_2d_1d( nbpac, zat_i_1d (1:nbpac) , at_i , jpi, jpj, npac(1:nbpac) ) |
---|
276 | DO jl = 1, jpl |
---|
277 | CALL tab_2d_1d( nbpac, za_i_1d (1:nbpac,jl), a_i (:,:,jl), jpi, jpj, npac(1:nbpac) ) |
---|
278 | CALL tab_2d_1d( nbpac, zv_i_1d (1:nbpac,jl), v_i (:,:,jl), jpi, jpj, npac(1:nbpac) ) |
---|
279 | CALL tab_2d_1d( nbpac, zsmv_i_1d(1:nbpac,jl), smv_i(:,:,jl), jpi, jpj, npac(1:nbpac) ) |
---|
280 | DO jk = 1, nlay_i |
---|
281 | CALL tab_2d_1d( nbpac, ze_i_1d(1:nbpac,jk,jl), e_i(:,:,jk,jl) , jpi, jpj, npac(1:nbpac) ) |
---|
282 | END DO |
---|
283 | END DO |
---|
284 | |
---|
285 | CALL tab_2d_1d( nbpac, qlead_1d (1:nbpac) , qlead , jpi, jpj, npac(1:nbpac) ) |
---|
286 | CALL tab_2d_1d( nbpac, t_bo_1d (1:nbpac) , t_bo , jpi, jpj, npac(1:nbpac) ) |
---|
287 | CALL tab_2d_1d( nbpac, sfx_opw_1d(1:nbpac) , sfx_opw , jpi, jpj, npac(1:nbpac) ) |
---|
288 | CALL tab_2d_1d( nbpac, wfx_opw_1d(1:nbpac) , wfx_opw , jpi, jpj, npac(1:nbpac) ) |
---|
289 | CALL tab_2d_1d( nbpac, hicol_1d (1:nbpac) , hicol , jpi, jpj, npac(1:nbpac) ) |
---|
290 | CALL tab_2d_1d( nbpac, zvrel_1d (1:nbpac) , zvrel , jpi, jpj, npac(1:nbpac) ) |
---|
291 | |
---|
292 | CALL tab_2d_1d( nbpac, hfx_thd_1d(1:nbpac) , hfx_thd , jpi, jpj, npac(1:nbpac) ) |
---|
293 | CALL tab_2d_1d( nbpac, hfx_opw_1d(1:nbpac) , hfx_opw , jpi, jpj, npac(1:nbpac) ) |
---|
294 | CALL tab_2d_1d( nbpac, rn_amax_1d(1:nbpac) , rn_amax_2d, jpi, jpj, npac(1:nbpac) ) |
---|
295 | |
---|
296 | !------------------------------------------------------------------------------! |
---|
297 | ! 5) Compute thickness, salinity, enthalpy, age, area and volume of new ice |
---|
298 | !------------------------------------------------------------------------------! |
---|
299 | |
---|
300 | !----------------------------------------- |
---|
301 | ! Keep old ice areas and volume in memory |
---|
302 | !----------------------------------------- |
---|
303 | zv_b(1:nbpac,:) = zv_i_1d(1:nbpac,:) |
---|
304 | za_b(1:nbpac,:) = za_i_1d(1:nbpac,:) |
---|
305 | |
---|
306 | !---------------------- |
---|
307 | ! Thickness of new ice |
---|
308 | !---------------------- |
---|
309 | zh_newice(1:nbpac) = hicol_1d(1:nbpac) |
---|
310 | |
---|
311 | !---------------------- |
---|
312 | ! Salinity of new ice |
---|
313 | !---------------------- |
---|
314 | SELECT CASE ( nn_icesal ) |
---|
315 | CASE ( 1 ) ! Sice = constant |
---|
316 | zs_newice(1:nbpac) = rn_icesal |
---|
317 | CASE ( 2 ) ! Sice = F(z,t) [Vancoppenolle et al (2005)] |
---|
318 | DO ji = 1, nbpac |
---|
319 | ii = MOD( npac(ji) - 1 , jpi ) + 1 |
---|
320 | ij = ( npac(ji) - 1 ) / jpi + 1 |
---|
321 | zs_newice(ji) = MIN( 4.606 + 0.91 / zh_newice(ji) , rn_simax , 0.5 * sss_m(ii,ij) ) |
---|
322 | END DO |
---|
323 | CASE ( 3 ) ! Sice = F(z) [multiyear ice] |
---|
324 | zs_newice(1:nbpac) = 2.3 |
---|
325 | END SELECT |
---|
326 | |
---|
327 | !------------------------- |
---|
328 | ! Heat content of new ice |
---|
329 | !------------------------- |
---|
330 | ! We assume that new ice is formed at the seawater freezing point |
---|
331 | DO ji = 1, nbpac |
---|
332 | ztmelts = - tmut * zs_newice(ji) + rt0 ! Melting point (K) |
---|
333 | ze_newice(ji) = rhoic * ( cpic * ( ztmelts - t_bo_1d(ji) ) & |
---|
334 | & + lfus * ( 1.0 - ( ztmelts - rt0 ) / MIN( t_bo_1d(ji) - rt0, -epsi10 ) ) & |
---|
335 | & - rcp * ( ztmelts - rt0 ) ) |
---|
336 | END DO |
---|
337 | |
---|
338 | !---------------- |
---|
339 | ! Age of new ice |
---|
340 | !---------------- |
---|
341 | DO ji = 1, nbpac |
---|
342 | zo_newice(ji) = 0._wp |
---|
343 | END DO |
---|
344 | |
---|
345 | !------------------- |
---|
346 | ! Volume of new ice |
---|
347 | !------------------- |
---|
348 | DO ji = 1, nbpac |
---|
349 | |
---|
350 | zEi = - ze_newice(ji) * r1_rhoic ! specific enthalpy of forming ice [J/kg] |
---|
351 | |
---|
352 | zEw = rcp * ( t_bo_1d(ji) - rt0 ) ! specific enthalpy of seawater at t_bo_1d [J/kg] |
---|
353 | ! clem: we suppose we are already at the freezing point (condition qlead<0 is satisfyied) |
---|
354 | |
---|
355 | zdE = zEi - zEw ! specific enthalpy difference [J/kg] |
---|
356 | |
---|
357 | zfmdt = - qlead_1d(ji) / zdE ! Fm.dt [kg/m2] (<0) |
---|
358 | ! clem: we use qlead instead of zqld (limthd) because we suppose we are at the freezing point |
---|
359 | zv_newice(ji) = - zfmdt * r1_rhoic |
---|
360 | |
---|
361 | zQm = zfmdt * zEw ! heat to the ocean >0 associated with mass flux |
---|
362 | |
---|
363 | ! Contribution to heat flux to the ocean [W.m-2], >0 |
---|
364 | hfx_thd_1d(ji) = hfx_thd_1d(ji) + zfmdt * zEw * r1_rdtice |
---|
365 | ! Total heat flux used in this process [W.m-2] |
---|
366 | hfx_opw_1d(ji) = hfx_opw_1d(ji) - zfmdt * zdE * r1_rdtice |
---|
367 | ! mass flux |
---|
368 | wfx_opw_1d(ji) = wfx_opw_1d(ji) - zv_newice(ji) * rhoic * r1_rdtice |
---|
369 | ! salt flux |
---|
370 | sfx_opw_1d(ji) = sfx_opw_1d(ji) - zv_newice(ji) * rhoic * zs_newice(ji) * r1_rdtice |
---|
371 | END DO |
---|
372 | |
---|
373 | zv_frazb(:) = 0._wp |
---|
374 | IF( ln_frazil ) THEN |
---|
375 | ! A fraction zfrazb of frazil ice is accreted at the ice bottom |
---|
376 | DO ji = 1, nbpac |
---|
377 | rswitch = 1._wp - MAX( 0._wp, SIGN( 1._wp , - zat_i_1d(ji) ) ) |
---|
378 | zfrazb = rswitch * ( TANH( rn_Cfrazb * ( zvrel_1d(ji) - rn_vfrazb ) ) + 1.0 ) * 0.5 * rn_maxfrazb |
---|
379 | zv_frazb(ji) = zfrazb * zv_newice(ji) |
---|
380 | zv_newice(ji) = ( 1.0 - zfrazb ) * zv_newice(ji) |
---|
381 | END DO |
---|
382 | END IF |
---|
383 | |
---|
384 | !----------------- |
---|
385 | ! Area of new ice |
---|
386 | !----------------- |
---|
387 | DO ji = 1, nbpac |
---|
388 | za_newice(ji) = zv_newice(ji) / zh_newice(ji) |
---|
389 | END DO |
---|
390 | |
---|
391 | !------------------------------------------------------------------------------! |
---|
392 | ! 6) Redistribute new ice area and volume into ice categories ! |
---|
393 | !------------------------------------------------------------------------------! |
---|
394 | |
---|
395 | !------------------------ |
---|
396 | ! 6.1) lateral ice growth |
---|
397 | !------------------------ |
---|
398 | ! If lateral ice growth gives an ice concentration gt 1, then |
---|
399 | ! we keep the excessive volume in memory and attribute it later to bottom accretion |
---|
400 | DO ji = 1, nbpac |
---|
401 | IF ( za_newice(ji) > ( rn_amax_1d(ji) - zat_i_1d(ji) ) ) THEN |
---|
402 | zda_res(ji) = za_newice(ji) - ( rn_amax_1d(ji) - zat_i_1d(ji) ) |
---|
403 | zdv_res(ji) = zda_res (ji) * zh_newice(ji) |
---|
404 | za_newice(ji) = za_newice(ji) - zda_res (ji) |
---|
405 | zv_newice(ji) = zv_newice(ji) - zdv_res (ji) |
---|
406 | ELSE |
---|
407 | zda_res(ji) = 0._wp |
---|
408 | zdv_res(ji) = 0._wp |
---|
409 | ENDIF |
---|
410 | END DO |
---|
411 | |
---|
412 | ! find which category to fill |
---|
413 | zat_i_1d(:) = 0._wp |
---|
414 | DO jl = 1, jpl |
---|
415 | DO ji = 1, nbpac |
---|
416 | IF( zh_newice(ji) > hi_max(jl-1) .AND. zh_newice(ji) <= hi_max(jl) ) THEN |
---|
417 | za_i_1d (ji,jl) = za_i_1d (ji,jl) + za_newice(ji) |
---|
418 | zv_i_1d (ji,jl) = zv_i_1d (ji,jl) + zv_newice(ji) |
---|
419 | jcat (ji) = jl |
---|
420 | ENDIF |
---|
421 | zat_i_1d(ji) = zat_i_1d(ji) + za_i_1d (ji,jl) |
---|
422 | END DO |
---|
423 | END DO |
---|
424 | |
---|
425 | ! Heat content |
---|
426 | DO ji = 1, nbpac |
---|
427 | jl = jcat(ji) ! categroy in which new ice is put |
---|
428 | zswinew (ji) = MAX( 0._wp , SIGN( 1._wp , - za_b(ji,jl) ) ) ! 0 if old ice |
---|
429 | END DO |
---|
430 | |
---|
431 | DO jk = 1, nlay_i |
---|
432 | DO ji = 1, nbpac |
---|
433 | jl = jcat(ji) |
---|
434 | rswitch = MAX( 0._wp, SIGN( 1._wp , zv_i_1d(ji,jl) - epsi20 ) ) |
---|
435 | ze_i_1d(ji,jk,jl) = zswinew(ji) * ze_newice(ji) + & |
---|
436 | & ( 1.0 - zswinew(ji) ) * ( ze_newice(ji) * zv_newice(ji) + ze_i_1d(ji,jk,jl) * zv_b(ji,jl) ) & |
---|
437 | & * rswitch / MAX( zv_i_1d(ji,jl), epsi20 ) |
---|
438 | END DO |
---|
439 | END DO |
---|
440 | |
---|
441 | !------------------------------------------------ |
---|
442 | ! 6.2) bottom ice growth + ice enthalpy remapping |
---|
443 | !------------------------------------------------ |
---|
444 | DO jl = 1, jpl |
---|
445 | |
---|
446 | ! for remapping |
---|
447 | h_i_old (1:nbpac,0:nlay_i+1) = 0._wp |
---|
448 | qh_i_old(1:nbpac,0:nlay_i+1) = 0._wp |
---|
449 | DO jk = 1, nlay_i |
---|
450 | DO ji = 1, nbpac |
---|
451 | h_i_old (ji,jk) = zv_i_1d(ji,jl) * r1_nlay_i |
---|
452 | qh_i_old(ji,jk) = ze_i_1d(ji,jk,jl) * h_i_old(ji,jk) |
---|
453 | END DO |
---|
454 | END DO |
---|
455 | |
---|
456 | ! new volumes including lateral/bottom accretion + residual |
---|
457 | DO ji = 1, nbpac |
---|
458 | rswitch = MAX( 0._wp, SIGN( 1._wp , zat_i_1d(ji) - epsi20 ) ) |
---|
459 | zv_newfra = rswitch * ( zdv_res(ji) + zv_frazb(ji) ) * za_i_1d(ji,jl) / MAX( zat_i_1d(ji) , epsi20 ) |
---|
460 | za_i_1d(ji,jl) = rswitch * za_i_1d(ji,jl) |
---|
461 | zv_i_1d(ji,jl) = zv_i_1d(ji,jl) + zv_newfra |
---|
462 | ! for remapping |
---|
463 | h_i_old (ji,nlay_i+1) = zv_newfra |
---|
464 | qh_i_old(ji,nlay_i+1) = ze_newice(ji) * zv_newfra |
---|
465 | ENDDO |
---|
466 | ! --- Ice enthalpy remapping --- ! |
---|
467 | CALL lim_thd_ent( 1, nbpac, ze_i_1d(1:nbpac,:,jl) ) |
---|
468 | ENDDO |
---|
469 | |
---|
470 | !----------------- |
---|
471 | ! Update salinity |
---|
472 | !----------------- |
---|
473 | DO jl = 1, jpl |
---|
474 | DO ji = 1, nbpac |
---|
475 | zdv = zv_i_1d(ji,jl) - zv_b(ji,jl) |
---|
476 | zsmv_i_1d(ji,jl) = zsmv_i_1d(ji,jl) + zdv * zs_newice(ji) |
---|
477 | END DO |
---|
478 | END DO |
---|
479 | |
---|
480 | !------------------------------------------------------------------------------! |
---|
481 | ! 7) Change 2D vectors to 1D vectors |
---|
482 | !------------------------------------------------------------------------------! |
---|
483 | DO jl = 1, jpl |
---|
484 | CALL tab_1d_2d( nbpac, a_i (:,:,jl), npac(1:nbpac), za_i_1d (1:nbpac,jl), jpi, jpj ) |
---|
485 | CALL tab_1d_2d( nbpac, v_i (:,:,jl), npac(1:nbpac), zv_i_1d (1:nbpac,jl), jpi, jpj ) |
---|
486 | CALL tab_1d_2d( nbpac, smv_i (:,:,jl), npac(1:nbpac), zsmv_i_1d(1:nbpac,jl) , jpi, jpj ) |
---|
487 | DO jk = 1, nlay_i |
---|
488 | CALL tab_1d_2d( nbpac, e_i(:,:,jk,jl), npac(1:nbpac), ze_i_1d(1:nbpac,jk,jl), jpi, jpj ) |
---|
489 | END DO |
---|
490 | END DO |
---|
491 | CALL tab_1d_2d( nbpac, sfx_opw, npac(1:nbpac), sfx_opw_1d(1:nbpac), jpi, jpj ) |
---|
492 | CALL tab_1d_2d( nbpac, wfx_opw, npac(1:nbpac), wfx_opw_1d(1:nbpac), jpi, jpj ) |
---|
493 | |
---|
494 | CALL tab_1d_2d( nbpac, hfx_thd, npac(1:nbpac), hfx_thd_1d(1:nbpac), jpi, jpj ) |
---|
495 | CALL tab_1d_2d( nbpac, hfx_opw, npac(1:nbpac), hfx_opw_1d(1:nbpac), jpi, jpj ) |
---|
496 | ! |
---|
497 | ENDIF ! nbpac > 0 |
---|
498 | |
---|
499 | !------------------------------------------------------------------------------! |
---|
500 | ! 8) Change units for e_i |
---|
501 | !------------------------------------------------------------------------------! |
---|
502 | DO jl = 1, jpl |
---|
503 | DO jk = 1, nlay_i |
---|
504 | DO jj = 1, jpj |
---|
505 | DO ji = 1, jpi |
---|
506 | ! heat content in J/m2 |
---|
507 | e_i(ji,jj,jk,jl) = e_i(ji,jj,jk,jl) * v_i(ji,jj,jl) * r1_nlay_i |
---|
508 | END DO |
---|
509 | END DO |
---|
510 | END DO |
---|
511 | END DO |
---|
512 | |
---|
513 | ! |
---|
514 | CALL wrk_dealloc( jpij, jcat ) ! integer |
---|
515 | CALL wrk_dealloc( jpij, zswinew, zv_newice, za_newice, zh_newice, ze_newice, zs_newice, zo_newice ) |
---|
516 | CALL wrk_dealloc( jpij, zdv_res, zda_res, zat_i_1d, zv_frazb, zvrel_1d ) |
---|
517 | CALL wrk_dealloc( jpij,jpl, zv_b, za_b, za_i_1d, zv_i_1d, zsmv_i_1d ) |
---|
518 | CALL wrk_dealloc( jpij,nlay_i,jpl, ze_i_1d ) |
---|
519 | CALL wrk_dealloc( jpi,jpj, zvrel ) |
---|
520 | ! |
---|
521 | END SUBROUTINE lim_thd_lac |
---|
522 | |
---|
523 | #else |
---|
524 | !!---------------------------------------------------------------------- |
---|
525 | !! Default option NO LIM3 sea-ice model |
---|
526 | !!---------------------------------------------------------------------- |
---|
527 | CONTAINS |
---|
528 | SUBROUTINE lim_thd_lac ! Empty routine |
---|
529 | END SUBROUTINE lim_thd_lac |
---|
530 | #endif |
---|
531 | |
---|
532 | !!====================================================================== |
---|
533 | END MODULE limthd_lac |
---|