1 | MODULE limvar |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE limvar *** |
---|
4 | !! Different sets of ice model variables |
---|
5 | !! how to switch from one to another |
---|
6 | !! |
---|
7 | !! There are three sets of variables |
---|
8 | !! VGLO : global variables of the model |
---|
9 | !! - v_i (jpi,jpj,jpl) |
---|
10 | !! - v_s (jpi,jpj,jpl) |
---|
11 | !! - a_i (jpi,jpj,jpl) |
---|
12 | !! - t_s (jpi,jpj,jpl) |
---|
13 | !! - e_i (jpi,jpj,nlay_i,jpl) |
---|
14 | !! - smv_i(jpi,jpj,jpl) |
---|
15 | !! - oa_i (jpi,jpj,jpl) |
---|
16 | !! VEQV : equivalent variables sometimes used in the model |
---|
17 | !! - ht_i(jpi,jpj,jpl) |
---|
18 | !! - ht_s(jpi,jpj,jpl) |
---|
19 | !! - t_i (jpi,jpj,nlay_i,jpl) |
---|
20 | !! ... |
---|
21 | !! VAGG : aggregate variables, averaged/summed over all |
---|
22 | !! thickness categories |
---|
23 | !! - vt_i(jpi,jpj) |
---|
24 | !! - vt_s(jpi,jpj) |
---|
25 | !! - at_i(jpi,jpj) |
---|
26 | !! - et_s(jpi,jpj) !total snow heat content |
---|
27 | !! - et_i(jpi,jpj) !total ice thermal content |
---|
28 | !! - smt_i(jpi,jpj) !mean ice salinity |
---|
29 | !! - tm_i (jpi,jpj) !mean ice temperature |
---|
30 | !!====================================================================== |
---|
31 | !! History : - ! 2006-01 (M. Vancoppenolle) Original code |
---|
32 | !! 3.4 ! 2011-02 (G. Madec) dynamical allocation |
---|
33 | !!---------------------------------------------------------------------- |
---|
34 | #if defined key_lim3 |
---|
35 | !!---------------------------------------------------------------------- |
---|
36 | !! 'key_lim3' LIM3 sea-ice model |
---|
37 | !!---------------------------------------------------------------------- |
---|
38 | USE par_oce ! ocean parameters |
---|
39 | USE phycst ! physical constants (ocean directory) |
---|
40 | USE sbc_oce ! Surface boundary condition: ocean fields |
---|
41 | USE ice ! ice variables |
---|
42 | USE thd_ice ! ice variables (thermodynamics) |
---|
43 | USE in_out_manager ! I/O manager |
---|
44 | USE lib_mpp ! MPP library |
---|
45 | USE wrk_nemo ! work arrays |
---|
46 | USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) |
---|
47 | |
---|
48 | IMPLICIT NONE |
---|
49 | PRIVATE |
---|
50 | |
---|
51 | PUBLIC lim_var_agg |
---|
52 | PUBLIC lim_var_glo2eqv |
---|
53 | PUBLIC lim_var_eqv2glo |
---|
54 | PUBLIC lim_var_salprof |
---|
55 | PUBLIC lim_var_bv |
---|
56 | PUBLIC lim_var_salprof1d |
---|
57 | PUBLIC lim_var_zapsmall |
---|
58 | PUBLIC lim_var_itd |
---|
59 | |
---|
60 | !!---------------------------------------------------------------------- |
---|
61 | !! NEMO/LIM3 3.5 , UCL - NEMO Consortium (2011) |
---|
62 | !! $Id$ |
---|
63 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
64 | !!---------------------------------------------------------------------- |
---|
65 | CONTAINS |
---|
66 | |
---|
67 | SUBROUTINE lim_var_agg( kn ) |
---|
68 | !!------------------------------------------------------------------ |
---|
69 | !! *** ROUTINE lim_var_agg *** |
---|
70 | !! |
---|
71 | !! ** Purpose : aggregates ice-thickness-category variables to all-ice variables |
---|
72 | !! i.e. it turns VGLO into VAGG |
---|
73 | !! ** Method : |
---|
74 | !! |
---|
75 | !! ** Arguments : n = 1, at_i vt_i only |
---|
76 | !! n = 2 everything |
---|
77 | !! |
---|
78 | !! note : you could add an argument when you need only at_i, vt_i |
---|
79 | !! and when you need everything |
---|
80 | !!------------------------------------------------------------------ |
---|
81 | INTEGER, INTENT( in ) :: kn ! =1 at_i & vt only ; = what is needed |
---|
82 | ! |
---|
83 | INTEGER :: ji, jj, jk, jl ! dummy loop indices |
---|
84 | !!------------------------------------------------------------------ |
---|
85 | |
---|
86 | ! integrated values |
---|
87 | vt_i (:,:) = SUM( v_i, dim=3 ) |
---|
88 | vt_s (:,:) = SUM( v_s, dim=3 ) |
---|
89 | at_i (:,:) = SUM( a_i, dim=3 ) |
---|
90 | et_s(:,:) = SUM( SUM( e_s(:,:,:,:), dim=4 ), dim=3 ) |
---|
91 | et_i(:,:) = SUM( SUM( e_i(:,:,:,:), dim=4 ), dim=3 ) |
---|
92 | |
---|
93 | ! open water fraction |
---|
94 | DO jj = 1, jpj |
---|
95 | DO ji = 1, jpi |
---|
96 | ato_i(ji,jj) = MAX( 1._wp - at_i(ji,jj), 0._wp ) |
---|
97 | END DO |
---|
98 | END DO |
---|
99 | |
---|
100 | IF( kn > 1 ) THEN |
---|
101 | |
---|
102 | ! mean ice/snow thickness |
---|
103 | DO jj = 1, jpj |
---|
104 | DO ji = 1, jpi |
---|
105 | rswitch = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi10 ) ) |
---|
106 | htm_i(ji,jj) = vt_i(ji,jj) / MAX( at_i(ji,jj) , epsi10 ) * rswitch |
---|
107 | htm_s(ji,jj) = vt_s(ji,jj) / MAX( at_i(ji,jj) , epsi10 ) * rswitch |
---|
108 | ENDDO |
---|
109 | ENDDO |
---|
110 | |
---|
111 | ! mean temperature (K), salinity and age |
---|
112 | smt_i(:,:) = 0._wp |
---|
113 | tm_i(:,:) = 0._wp |
---|
114 | tm_su(:,:) = 0._wp |
---|
115 | om_i (:,:) = 0._wp |
---|
116 | DO jl = 1, jpl |
---|
117 | |
---|
118 | DO jj = 1, jpj |
---|
119 | DO ji = 1, jpi |
---|
120 | rswitch = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi10 ) ) |
---|
121 | tm_su(ji,jj) = tm_su(ji,jj) + rswitch * ( t_su(ji,jj,jl) - rt0 ) * a_i(ji,jj,jl) / MAX( at_i(ji,jj) , epsi10 ) |
---|
122 | om_i (ji,jj) = om_i (ji,jj) + rswitch * oa_i(ji,jj,jl) / MAX( at_i(ji,jj) , epsi10 ) |
---|
123 | END DO |
---|
124 | END DO |
---|
125 | |
---|
126 | DO jk = 1, nlay_i |
---|
127 | DO jj = 1, jpj |
---|
128 | DO ji = 1, jpi |
---|
129 | rswitch = MAX( 0._wp , SIGN( 1._wp , vt_i(ji,jj) - epsi10 ) ) |
---|
130 | tm_i(ji,jj) = tm_i(ji,jj) + r1_nlay_i * rswitch * ( t_i(ji,jj,jk,jl) - rt0 ) * v_i(ji,jj,jl) & |
---|
131 | & / MAX( vt_i(ji,jj) , epsi10 ) |
---|
132 | smt_i(ji,jj) = smt_i(ji,jj) + r1_nlay_i * rswitch * s_i(ji,jj,jk,jl) * v_i(ji,jj,jl) & |
---|
133 | & / MAX( vt_i(ji,jj) , epsi10 ) |
---|
134 | END DO |
---|
135 | END DO |
---|
136 | END DO |
---|
137 | END DO |
---|
138 | tm_i = tm_i + rt0 |
---|
139 | tm_su = tm_su + rt0 |
---|
140 | ! |
---|
141 | ENDIF |
---|
142 | ! |
---|
143 | END SUBROUTINE lim_var_agg |
---|
144 | |
---|
145 | |
---|
146 | SUBROUTINE lim_var_glo2eqv |
---|
147 | !!------------------------------------------------------------------ |
---|
148 | !! *** ROUTINE lim_var_glo2eqv *** |
---|
149 | !! |
---|
150 | !! ** Purpose : computes equivalent variables as function of global variables |
---|
151 | !! i.e. it turns VGLO into VEQV |
---|
152 | !!------------------------------------------------------------------ |
---|
153 | INTEGER :: ji, jj, jk, jl ! dummy loop indices |
---|
154 | REAL(wp) :: zq_i, zaaa, zbbb, zccc, zdiscrim ! local scalars |
---|
155 | REAL(wp) :: ztmelts, zq_s, zfac1, zfac2 ! - - |
---|
156 | !!------------------------------------------------------------------ |
---|
157 | |
---|
158 | !------------------------------------------------------- |
---|
159 | ! Ice thickness, snow thickness, ice salinity, ice age |
---|
160 | !------------------------------------------------------- |
---|
161 | DO jl = 1, jpl |
---|
162 | DO jj = 1, jpj |
---|
163 | DO ji = 1, jpi |
---|
164 | rswitch = MAX( 0._wp , SIGN( 1._wp, a_i(ji,jj,jl) - epsi20 ) ) !0 if no ice and 1 if yes |
---|
165 | ht_i(ji,jj,jl) = v_i (ji,jj,jl) / MAX( a_i(ji,jj,jl) , epsi20 ) * rswitch |
---|
166 | END DO |
---|
167 | END DO |
---|
168 | END DO |
---|
169 | ! Force the upper limit of ht_i to always be < hi_max (99 m). |
---|
170 | DO jj = 1, jpj |
---|
171 | DO ji = 1, jpi |
---|
172 | rswitch = MAX( 0._wp , SIGN( 1._wp, ht_i(ji,jj,jpl) - epsi20 ) ) |
---|
173 | ht_i(ji,jj,jpl) = MIN( ht_i(ji,jj,jpl) , hi_max(jpl) ) |
---|
174 | a_i (ji,jj,jpl) = v_i(ji,jj,jpl) / MAX( ht_i(ji,jj,jpl) , epsi20 ) * rswitch |
---|
175 | END DO |
---|
176 | END DO |
---|
177 | |
---|
178 | DO jl = 1, jpl |
---|
179 | DO jj = 1, jpj |
---|
180 | DO ji = 1, jpi |
---|
181 | rswitch = MAX( 0._wp , SIGN( 1._wp, a_i(ji,jj,jl) - epsi20 ) ) !0 if no ice and 1 if yes |
---|
182 | ht_s(ji,jj,jl) = v_s (ji,jj,jl) / MAX( a_i(ji,jj,jl) , epsi20 ) * rswitch |
---|
183 | o_i(ji,jj,jl) = oa_i(ji,jj,jl) / MAX( a_i(ji,jj,jl) , epsi20 ) * rswitch |
---|
184 | END DO |
---|
185 | END DO |
---|
186 | END DO |
---|
187 | |
---|
188 | IF( nn_icesal == 2 )THEN |
---|
189 | DO jl = 1, jpl |
---|
190 | DO jj = 1, jpj |
---|
191 | DO ji = 1, jpi |
---|
192 | rswitch = MAX( 0._wp , SIGN( 1._wp, v_i(ji,jj,jl) - epsi20 ) ) !0 if no ice and 1 if yes |
---|
193 | sm_i(ji,jj,jl) = smv_i(ji,jj,jl) / MAX( v_i(ji,jj,jl) , epsi20 ) * rswitch |
---|
194 | ! ! bounding salinity |
---|
195 | sm_i(ji,jj,jl) = MAX( sm_i(ji,jj,jl), rn_simin ) |
---|
196 | END DO |
---|
197 | END DO |
---|
198 | END DO |
---|
199 | ENDIF |
---|
200 | |
---|
201 | CALL lim_var_salprof ! salinity profile |
---|
202 | |
---|
203 | !------------------- |
---|
204 | ! Ice temperatures |
---|
205 | !------------------- |
---|
206 | DO jl = 1, jpl |
---|
207 | DO jk = 1, nlay_i |
---|
208 | DO jj = 1, jpj |
---|
209 | DO ji = 1, jpi |
---|
210 | ! ! Energy of melting q(S,T) [J.m-3] |
---|
211 | rswitch = MAX( 0.0 , SIGN( 1.0 , v_i(ji,jj,jl) - epsi20 ) ) ! rswitch = 0 if no ice and 1 if yes |
---|
212 | zq_i = rswitch * e_i(ji,jj,jk,jl) / MAX( v_i(ji,jj,jl) , epsi20 ) * REAL(nlay_i,wp) |
---|
213 | ztmelts = -tmut * s_i(ji,jj,jk,jl) + rt0 ! Ice layer melt temperature |
---|
214 | ! |
---|
215 | zaaa = cpic ! Conversion q(S,T) -> T (second order equation) |
---|
216 | zbbb = ( rcp - cpic ) * ( ztmelts - rt0 ) + zq_i * r1_rhoic - lfus |
---|
217 | zccc = lfus * (ztmelts-rt0) |
---|
218 | zdiscrim = SQRT( MAX(zbbb*zbbb - 4._wp*zaaa*zccc , 0._wp) ) |
---|
219 | t_i(ji,jj,jk,jl) = rt0 + rswitch *( - zbbb - zdiscrim ) / ( 2.0 *zaaa ) |
---|
220 | t_i(ji,jj,jk,jl) = MIN( ztmelts, MAX( rt0 - 100._wp, t_i(ji,jj,jk,jl) ) ) ! -100 < t_i < ztmelts |
---|
221 | END DO |
---|
222 | END DO |
---|
223 | END DO |
---|
224 | END DO |
---|
225 | |
---|
226 | !-------------------- |
---|
227 | ! Snow temperatures |
---|
228 | !-------------------- |
---|
229 | zfac1 = 1._wp / ( rhosn * cpic ) |
---|
230 | zfac2 = lfus / cpic |
---|
231 | DO jl = 1, jpl |
---|
232 | DO jk = 1, nlay_s |
---|
233 | DO jj = 1, jpj |
---|
234 | DO ji = 1, jpi |
---|
235 | !Energy of melting q(S,T) [J.m-3] |
---|
236 | rswitch = MAX( 0._wp , SIGN( 1._wp , v_s(ji,jj,jl) - epsi20 ) ) ! rswitch = 0 if no ice and 1 if yes |
---|
237 | zq_s = rswitch * e_s(ji,jj,jk,jl) / MAX( v_s(ji,jj,jl) , epsi20 ) * REAL(nlay_s,wp) |
---|
238 | ! |
---|
239 | t_s(ji,jj,jk,jl) = rt0 + rswitch * ( - zfac1 * zq_s + zfac2 ) |
---|
240 | t_s(ji,jj,jk,jl) = MIN( rt0, MAX( rt0 - 100._wp , t_s(ji,jj,jk,jl) ) ) ! -100 < t_s < rt0 |
---|
241 | END DO |
---|
242 | END DO |
---|
243 | END DO |
---|
244 | END DO |
---|
245 | |
---|
246 | ! integrated values |
---|
247 | vt_i (:,:) = SUM( v_i, dim=3 ) |
---|
248 | vt_s (:,:) = SUM( v_s, dim=3 ) |
---|
249 | at_i (:,:) = SUM( a_i, dim=3 ) |
---|
250 | |
---|
251 | ! |
---|
252 | END SUBROUTINE lim_var_glo2eqv |
---|
253 | |
---|
254 | |
---|
255 | SUBROUTINE lim_var_eqv2glo |
---|
256 | !!------------------------------------------------------------------ |
---|
257 | !! *** ROUTINE lim_var_eqv2glo *** |
---|
258 | !! |
---|
259 | !! ** Purpose : computes global variables as function of equivalent variables |
---|
260 | !! i.e. it turns VEQV into VGLO |
---|
261 | !! ** Method : |
---|
262 | !! |
---|
263 | !! ** History : (01-2006) Martin Vancoppenolle, UCL-ASTR |
---|
264 | !!------------------------------------------------------------------ |
---|
265 | ! |
---|
266 | v_i(:,:,:) = ht_i(:,:,:) * a_i(:,:,:) |
---|
267 | v_s(:,:,:) = ht_s(:,:,:) * a_i(:,:,:) |
---|
268 | smv_i(:,:,:) = sm_i(:,:,:) * v_i(:,:,:) |
---|
269 | ! |
---|
270 | END SUBROUTINE lim_var_eqv2glo |
---|
271 | |
---|
272 | |
---|
273 | SUBROUTINE lim_var_salprof |
---|
274 | !!------------------------------------------------------------------ |
---|
275 | !! *** ROUTINE lim_var_salprof *** |
---|
276 | !! |
---|
277 | !! ** Purpose : computes salinity profile in function of bulk salinity |
---|
278 | !! |
---|
279 | !! ** Method : If bulk salinity greater than zsi1, |
---|
280 | !! the profile is assumed to be constant (S_inf) |
---|
281 | !! If bulk salinity lower than zsi0, |
---|
282 | !! the profile is linear with 0 at the surface (S_zero) |
---|
283 | !! If it is between zsi0 and zsi1, it is a |
---|
284 | !! alpha-weighted linear combination of s_inf and s_zero |
---|
285 | !! |
---|
286 | !! ** References : Vancoppenolle et al., 2007 |
---|
287 | !!------------------------------------------------------------------ |
---|
288 | INTEGER :: ji, jj, jk, jl ! dummy loop index |
---|
289 | REAL(wp) :: zfac0, zfac1, zsal |
---|
290 | REAL(wp) :: zswi0, zswi01, zargtemp , zs_zero |
---|
291 | REAL(wp), POINTER, DIMENSION(:,:,:) :: z_slope_s, zalpha |
---|
292 | REAL(wp), PARAMETER :: zsi0 = 3.5_wp |
---|
293 | REAL(wp), PARAMETER :: zsi1 = 4.5_wp |
---|
294 | !!------------------------------------------------------------------ |
---|
295 | |
---|
296 | CALL wrk_alloc( jpi, jpj, jpl, z_slope_s, zalpha ) |
---|
297 | |
---|
298 | !--------------------------------------- |
---|
299 | ! Vertically constant, constant in time |
---|
300 | !--------------------------------------- |
---|
301 | IF( nn_icesal == 1 ) THEN |
---|
302 | s_i (:,:,:,:) = rn_icesal |
---|
303 | sm_i(:,:,:) = rn_icesal |
---|
304 | ENDIF |
---|
305 | |
---|
306 | !----------------------------------- |
---|
307 | ! Salinity profile, varying in time |
---|
308 | !----------------------------------- |
---|
309 | IF( nn_icesal == 2 ) THEN |
---|
310 | ! |
---|
311 | DO jk = 1, nlay_i |
---|
312 | s_i(:,:,jk,:) = sm_i(:,:,:) |
---|
313 | END DO |
---|
314 | ! |
---|
315 | DO jl = 1, jpl ! Slope of the linear profile |
---|
316 | DO jj = 1, jpj |
---|
317 | DO ji = 1, jpi |
---|
318 | rswitch = MAX( 0._wp , SIGN( 1._wp , ht_i(ji,jj,jl) - epsi20 ) ) |
---|
319 | z_slope_s(ji,jj,jl) = rswitch * 2._wp * sm_i(ji,jj,jl) / MAX( epsi20 , ht_i(ji,jj,jl) ) |
---|
320 | END DO |
---|
321 | END DO |
---|
322 | END DO |
---|
323 | ! |
---|
324 | zfac0 = 1._wp / ( zsi0 - zsi1 ) ! Weighting factor between zs_zero and zs_inf |
---|
325 | zfac1 = zsi1 / ( zsi1 - zsi0 ) |
---|
326 | ! |
---|
327 | zalpha(:,:,:) = 0._wp |
---|
328 | DO jl = 1, jpl |
---|
329 | DO jj = 1, jpj |
---|
330 | DO ji = 1, jpi |
---|
331 | ! zswi0 = 1 if sm_i le zsi0 and 0 otherwise |
---|
332 | zswi0 = MAX( 0._wp , SIGN( 1._wp , zsi0 - sm_i(ji,jj,jl) ) ) |
---|
333 | ! zswi01 = 1 if sm_i is between zsi0 and zsi1 and 0 othws |
---|
334 | zswi01 = ( 1._wp - zswi0 ) * MAX( 0._wp , SIGN( 1._wp , zsi1 - sm_i(ji,jj,jl) ) ) |
---|
335 | ! If 2.sm_i GE sss_m then rswitch = 1 |
---|
336 | ! this is to force a constant salinity profile in the Baltic Sea |
---|
337 | rswitch = MAX( 0._wp , SIGN( 1._wp , 2._wp * sm_i(ji,jj,jl) - sss_m(ji,jj) ) ) |
---|
338 | zalpha(ji,jj,jl) = zswi0 + zswi01 * ( sm_i(ji,jj,jl) * zfac0 + zfac1 ) |
---|
339 | zalpha(ji,jj,jl) = zalpha(ji,jj,jl) * ( 1._wp - rswitch ) |
---|
340 | END DO |
---|
341 | END DO |
---|
342 | END DO |
---|
343 | |
---|
344 | ! Computation of the profile |
---|
345 | DO jl = 1, jpl |
---|
346 | DO jk = 1, nlay_i |
---|
347 | DO jj = 1, jpj |
---|
348 | DO ji = 1, jpi |
---|
349 | ! ! linear profile with 0 at the surface |
---|
350 | zs_zero = z_slope_s(ji,jj,jl) * ( REAL(jk,wp) - 0.5_wp ) * ht_i(ji,jj,jl) * r1_nlay_i |
---|
351 | ! ! weighting the profile |
---|
352 | s_i(ji,jj,jk,jl) = zalpha(ji,jj,jl) * zs_zero + ( 1._wp - zalpha(ji,jj,jl) ) * sm_i(ji,jj,jl) |
---|
353 | ! ! bounding salinity |
---|
354 | s_i(ji,jj,jk,jl) = MIN( rn_simax, MAX( s_i(ji,jj,jk,jl), rn_simin ) ) |
---|
355 | END DO |
---|
356 | END DO |
---|
357 | END DO |
---|
358 | END DO |
---|
359 | ! |
---|
360 | ENDIF ! nn_icesal |
---|
361 | |
---|
362 | !------------------------------------------------------- |
---|
363 | ! Vertically varying salinity profile, constant in time |
---|
364 | !------------------------------------------------------- |
---|
365 | |
---|
366 | IF( nn_icesal == 3 ) THEN ! Schwarzacher (1959) multiyear salinity profile (mean = 2.30) |
---|
367 | ! |
---|
368 | sm_i(:,:,:) = 2.30_wp |
---|
369 | ! |
---|
370 | DO jl = 1, jpl |
---|
371 | DO jk = 1, nlay_i |
---|
372 | zargtemp = ( REAL(jk,wp) - 0.5_wp ) * r1_nlay_i |
---|
373 | zsal = 1.6_wp * ( 1._wp - COS( rpi * zargtemp**(0.407_wp/(0.573_wp+zargtemp)) ) ) |
---|
374 | s_i(:,:,jk,jl) = zsal |
---|
375 | END DO |
---|
376 | END DO |
---|
377 | ! |
---|
378 | ENDIF ! nn_icesal |
---|
379 | ! |
---|
380 | CALL wrk_dealloc( jpi, jpj, jpl, z_slope_s, zalpha ) |
---|
381 | ! |
---|
382 | END SUBROUTINE lim_var_salprof |
---|
383 | |
---|
384 | |
---|
385 | SUBROUTINE lim_var_bv |
---|
386 | !!------------------------------------------------------------------ |
---|
387 | !! *** ROUTINE lim_var_bv *** |
---|
388 | !! |
---|
389 | !! ** Purpose : computes mean brine volume (%) in sea ice |
---|
390 | !! |
---|
391 | !! ** Method : e = - 0.054 * S (ppt) / T (C) |
---|
392 | !! |
---|
393 | !! References : Vancoppenolle et al., JGR, 2007 |
---|
394 | !!------------------------------------------------------------------ |
---|
395 | INTEGER :: ji, jj, jk, jl ! dummy loop indices |
---|
396 | !!------------------------------------------------------------------ |
---|
397 | ! |
---|
398 | bvm_i(:,:) = 0._wp |
---|
399 | bv_i (:,:,:) = 0._wp |
---|
400 | DO jl = 1, jpl |
---|
401 | DO jk = 1, nlay_i |
---|
402 | DO jj = 1, jpj |
---|
403 | DO ji = 1, jpi |
---|
404 | rswitch = ( 1._wp - MAX( 0._wp , SIGN( 1._wp , (t_i(ji,jj,jk,jl) - rt0) + epsi10 ) ) ) |
---|
405 | bv_i(ji,jj,jl) = bv_i(ji,jj,jl) - rswitch * tmut * s_i(ji,jj,jk,jl) * r1_nlay_i & |
---|
406 | & / MIN( t_i(ji,jj,jk,jl) - rt0, - epsi10 ) |
---|
407 | END DO |
---|
408 | END DO |
---|
409 | END DO |
---|
410 | |
---|
411 | DO jj = 1, jpj |
---|
412 | DO ji = 1, jpi |
---|
413 | rswitch = MAX( 0._wp , SIGN( 1._wp , vt_i(ji,jj) - epsi10 ) ) |
---|
414 | bvm_i(ji,jj) = bvm_i(ji,jj) + rswitch * bv_i(ji,jj,jl) * v_i(ji,jj,jl) / MAX( vt_i(ji,jj), epsi10 ) |
---|
415 | END DO |
---|
416 | END DO |
---|
417 | END DO |
---|
418 | ! |
---|
419 | END SUBROUTINE lim_var_bv |
---|
420 | |
---|
421 | |
---|
422 | SUBROUTINE lim_var_salprof1d( kideb, kiut ) |
---|
423 | !!------------------------------------------------------------------- |
---|
424 | !! *** ROUTINE lim_thd_salprof1d *** |
---|
425 | !! |
---|
426 | !! ** Purpose : 1d computation of the sea ice salinity profile |
---|
427 | !! Works with 1d vectors and is used by thermodynamic modules |
---|
428 | !!------------------------------------------------------------------- |
---|
429 | INTEGER, INTENT(in) :: kideb, kiut ! thickness category index |
---|
430 | ! |
---|
431 | INTEGER :: ji, jk ! dummy loop indices |
---|
432 | INTEGER :: ii, ij ! local integers |
---|
433 | REAL(wp) :: zfac0, zfac1, zargtemp, zsal ! local scalars |
---|
434 | REAL(wp) :: zalpha, zswi0, zswi01, zs_zero ! - - |
---|
435 | ! |
---|
436 | REAL(wp), POINTER, DIMENSION(:) :: z_slope_s |
---|
437 | REAL(wp), PARAMETER :: zsi0 = 3.5_wp |
---|
438 | REAL(wp), PARAMETER :: zsi1 = 4.5_wp |
---|
439 | !!--------------------------------------------------------------------- |
---|
440 | |
---|
441 | CALL wrk_alloc( jpij, z_slope_s ) |
---|
442 | |
---|
443 | !--------------------------------------- |
---|
444 | ! Vertically constant, constant in time |
---|
445 | !--------------------------------------- |
---|
446 | IF( nn_icesal == 1 ) s_i_1d(:,:) = rn_icesal |
---|
447 | |
---|
448 | !------------------------------------------------------ |
---|
449 | ! Vertically varying salinity profile, varying in time |
---|
450 | !------------------------------------------------------ |
---|
451 | |
---|
452 | IF( nn_icesal == 2 ) THEN |
---|
453 | ! |
---|
454 | DO ji = kideb, kiut ! Slope of the linear profile zs_zero |
---|
455 | rswitch = MAX( 0._wp , SIGN( 1._wp , ht_i_1d(ji) - epsi20 ) ) |
---|
456 | z_slope_s(ji) = rswitch * 2._wp * sm_i_1d(ji) / MAX( epsi20 , ht_i_1d(ji) ) |
---|
457 | END DO |
---|
458 | |
---|
459 | ! Weighting factor between zs_zero and zs_inf |
---|
460 | !--------------------------------------------- |
---|
461 | zfac0 = 1._wp / ( zsi0 - zsi1 ) |
---|
462 | zfac1 = zsi1 / ( zsi1 - zsi0 ) |
---|
463 | DO jk = 1, nlay_i |
---|
464 | DO ji = kideb, kiut |
---|
465 | ii = MOD( npb(ji) - 1 , jpi ) + 1 |
---|
466 | ij = ( npb(ji) - 1 ) / jpi + 1 |
---|
467 | ! zswi0 = 1 if sm_i le zsi0 and 0 otherwise |
---|
468 | zswi0 = MAX( 0._wp , SIGN( 1._wp , zsi0 - sm_i_1d(ji) ) ) |
---|
469 | ! zswi01 = 1 if sm_i is between zsi0 and zsi1 and 0 othws |
---|
470 | zswi01 = ( 1._wp - zswi0 ) * MAX( 0._wp , SIGN( 1._wp , zsi1 - sm_i_1d(ji) ) ) |
---|
471 | ! if 2.sm_i GE sss_m then rswitch = 1 |
---|
472 | ! this is to force a constant salinity profile in the Baltic Sea |
---|
473 | rswitch = MAX( 0._wp , SIGN( 1._wp , 2._wp * sm_i_1d(ji) - sss_m(ii,ij) ) ) |
---|
474 | ! |
---|
475 | zalpha = ( zswi0 + zswi01 * ( sm_i_1d(ji) * zfac0 + zfac1 ) ) * ( 1._wp - rswitch ) |
---|
476 | ! |
---|
477 | zs_zero = z_slope_s(ji) * ( REAL(jk,wp) - 0.5_wp ) * ht_i_1d(ji) * r1_nlay_i |
---|
478 | ! weighting the profile |
---|
479 | s_i_1d(ji,jk) = zalpha * zs_zero + ( 1._wp - zalpha ) * sm_i_1d(ji) |
---|
480 | ! bounding salinity |
---|
481 | s_i_1d(ji,jk) = MIN( rn_simax, MAX( s_i_1d(ji,jk), rn_simin ) ) |
---|
482 | END DO |
---|
483 | END DO |
---|
484 | |
---|
485 | ENDIF |
---|
486 | |
---|
487 | !------------------------------------------------------- |
---|
488 | ! Vertically varying salinity profile, constant in time |
---|
489 | !------------------------------------------------------- |
---|
490 | |
---|
491 | IF( nn_icesal == 3 ) THEN ! Schwarzacher (1959) multiyear salinity profile (mean = 2.30) |
---|
492 | ! |
---|
493 | sm_i_1d(:) = 2.30_wp |
---|
494 | ! |
---|
495 | DO jk = 1, nlay_i |
---|
496 | zargtemp = ( REAL(jk,wp) - 0.5_wp ) * r1_nlay_i |
---|
497 | zsal = 1.6_wp * ( 1._wp - COS( rpi * zargtemp**( 0.407_wp / ( 0.573_wp + zargtemp ) ) ) ) |
---|
498 | DO ji = kideb, kiut |
---|
499 | s_i_1d(ji,jk) = zsal |
---|
500 | END DO |
---|
501 | END DO |
---|
502 | ! |
---|
503 | ENDIF |
---|
504 | ! |
---|
505 | CALL wrk_dealloc( jpij, z_slope_s ) |
---|
506 | ! |
---|
507 | END SUBROUTINE lim_var_salprof1d |
---|
508 | |
---|
509 | SUBROUTINE lim_var_zapsmall |
---|
510 | !!------------------------------------------------------------------- |
---|
511 | !! *** ROUTINE lim_var_zapsmall *** |
---|
512 | !! |
---|
513 | !! ** Purpose : Remove too small sea ice areas and correct fluxes |
---|
514 | !! |
---|
515 | !! history : LIM3.5 - 01-2014 (C. Rousset) original code |
---|
516 | !!------------------------------------------------------------------- |
---|
517 | INTEGER :: ji, jj, jl, jk ! dummy loop indices |
---|
518 | REAL(wp) :: zsal, zvi, zvs, zei, zes |
---|
519 | !!------------------------------------------------------------------- |
---|
520 | at_i (:,:) = 0._wp |
---|
521 | DO jl = 1, jpl |
---|
522 | at_i(:,:) = at_i(:,:) + a_i(:,:,jl) |
---|
523 | END DO |
---|
524 | |
---|
525 | DO jl = 1, jpl |
---|
526 | |
---|
527 | !----------------------------------------------------------------- |
---|
528 | ! Zap ice energy and use ocean heat to melt ice |
---|
529 | !----------------------------------------------------------------- |
---|
530 | DO jk = 1, nlay_i |
---|
531 | DO jj = 1 , jpj |
---|
532 | DO ji = 1 , jpi |
---|
533 | rswitch = MAX( 0._wp , SIGN( 1._wp, a_i(ji,jj,jl) - epsi10 ) ) |
---|
534 | rswitch = MAX( 0._wp , SIGN( 1._wp, at_i(ji,jj ) - epsi10 ) ) * rswitch |
---|
535 | rswitch = MAX( 0._wp , SIGN( 1._wp, v_i(ji,jj,jl) - epsi10 ) ) * rswitch |
---|
536 | rswitch = MAX( 0._wp , SIGN( 1._wp, v_i(ji,jj,jl) * rswitch & |
---|
537 | & / MAX( a_i(ji,jj,jl), epsi10 ) - epsi10 ) ) * rswitch |
---|
538 | zei = e_i(ji,jj,jk,jl) |
---|
539 | e_i(ji,jj,jk,jl) = e_i(ji,jj,jk,jl) * rswitch |
---|
540 | t_i(ji,jj,jk,jl) = t_i(ji,jj,jk,jl) * rswitch + rt0 * ( 1._wp - rswitch ) |
---|
541 | ! update exchanges with ocean |
---|
542 | hfx_res(ji,jj) = hfx_res(ji,jj) + ( e_i(ji,jj,jk,jl) - zei ) * r1_rdtice ! W.m-2 <0 |
---|
543 | END DO |
---|
544 | END DO |
---|
545 | END DO |
---|
546 | |
---|
547 | DO jj = 1 , jpj |
---|
548 | DO ji = 1 , jpi |
---|
549 | rswitch = MAX( 0._wp , SIGN( 1._wp, a_i(ji,jj,jl) - epsi10 ) ) |
---|
550 | rswitch = MAX( 0._wp , SIGN( 1._wp, at_i(ji,jj ) - epsi10 ) ) * rswitch |
---|
551 | rswitch = MAX( 0._wp , SIGN( 1._wp, v_i(ji,jj,jl) - epsi10 ) ) * rswitch |
---|
552 | rswitch = MAX( 0._wp , SIGN( 1._wp, v_i(ji,jj,jl) * rswitch & |
---|
553 | & / MAX( a_i(ji,jj,jl), epsi10 ) - epsi10 ) ) * rswitch |
---|
554 | zsal = smv_i(ji,jj, jl) |
---|
555 | zvi = v_i (ji,jj, jl) |
---|
556 | zvs = v_s (ji,jj, jl) |
---|
557 | zes = e_s (ji,jj,1,jl) |
---|
558 | !----------------------------------------------------------------- |
---|
559 | ! Zap snow energy |
---|
560 | !----------------------------------------------------------------- |
---|
561 | t_s(ji,jj,1,jl) = t_s(ji,jj,1,jl) * rswitch + rt0 * ( 1._wp - rswitch ) |
---|
562 | e_s(ji,jj,1,jl) = e_s(ji,jj,1,jl) * rswitch |
---|
563 | |
---|
564 | !----------------------------------------------------------------- |
---|
565 | ! zap ice and snow volume, add water and salt to ocean |
---|
566 | !----------------------------------------------------------------- |
---|
567 | ato_i(ji,jj) = a_i (ji,jj,jl) * ( 1._wp - rswitch ) + ato_i(ji,jj) |
---|
568 | a_i (ji,jj,jl) = a_i (ji,jj,jl) * rswitch |
---|
569 | v_i (ji,jj,jl) = v_i (ji,jj,jl) * rswitch |
---|
570 | v_s (ji,jj,jl) = v_s (ji,jj,jl) * rswitch |
---|
571 | t_su (ji,jj,jl) = t_su (ji,jj,jl) * rswitch + t_bo(ji,jj) * ( 1._wp - rswitch ) |
---|
572 | oa_i (ji,jj,jl) = oa_i (ji,jj,jl) * rswitch |
---|
573 | smv_i(ji,jj,jl) = smv_i(ji,jj,jl) * rswitch |
---|
574 | |
---|
575 | ! update exchanges with ocean |
---|
576 | sfx_res(ji,jj) = sfx_res(ji,jj) - ( smv_i(ji,jj,jl) - zsal ) * rhoic * r1_rdtice |
---|
577 | wfx_res(ji,jj) = wfx_res(ji,jj) - ( v_i(ji,jj,jl) - zvi ) * rhoic * r1_rdtice |
---|
578 | wfx_snw(ji,jj) = wfx_snw(ji,jj) - ( v_s(ji,jj,jl) - zvs ) * rhosn * r1_rdtice |
---|
579 | hfx_res(ji,jj) = hfx_res(ji,jj) + ( e_s(ji,jj,1,jl) - zes ) * r1_rdtice ! W.m-2 <0 |
---|
580 | END DO |
---|
581 | END DO |
---|
582 | END DO |
---|
583 | |
---|
584 | ! to be sure that at_i is the sum of a_i(jl) |
---|
585 | at_i (:,:) = 0._wp |
---|
586 | DO jl = 1, jpl |
---|
587 | at_i(:,:) = at_i(:,:) + a_i(:,:,jl) |
---|
588 | END DO |
---|
589 | |
---|
590 | ! open water = 1 if at_i=0 |
---|
591 | DO jj = 1, jpj |
---|
592 | DO ji = 1, jpi |
---|
593 | rswitch = MAX( 0._wp , SIGN( 1._wp, - at_i(ji,jj) ) ) |
---|
594 | ato_i(ji,jj) = rswitch + (1._wp - rswitch ) * ato_i(ji,jj) |
---|
595 | END DO |
---|
596 | END DO |
---|
597 | |
---|
598 | ! |
---|
599 | END SUBROUTINE lim_var_zapsmall |
---|
600 | |
---|
601 | SUBROUTINE lim_var_itd( zhti, zhts, zai, zht_i, zht_s, za_i ) |
---|
602 | !!------------------------------------------------------------------ |
---|
603 | !! *** ROUTINE lim_var_itd *** |
---|
604 | !! |
---|
605 | !! ** Purpose : converting 1-cat ice to multiple ice categories |
---|
606 | !! |
---|
607 | !! ice thickness distribution follows a gaussian law |
---|
608 | !! around the concentration of the most likely ice thickness |
---|
609 | !! (similar as limistate.F90) |
---|
610 | !! |
---|
611 | !! ** Method: Iterative procedure |
---|
612 | !! |
---|
613 | !! 1) Try to fill the jpl ice categories (bounds hi_max(0:jpl)) with a gaussian |
---|
614 | !! |
---|
615 | !! 2) Check whether the distribution conserves area and volume, positivity and |
---|
616 | !! category boundaries |
---|
617 | !! |
---|
618 | !! 3) If not (input ice is too thin), the last category is empty and |
---|
619 | !! the number of categories is reduced (jpl-1) |
---|
620 | !! |
---|
621 | !! 4) Iterate until ok (SUM(itest(:) = 4) |
---|
622 | !! |
---|
623 | !! ** Arguments : zhti: 1-cat ice thickness |
---|
624 | !! zhts: 1-cat snow depth |
---|
625 | !! zai : 1-cat ice concentration |
---|
626 | !! |
---|
627 | !! ** Output : jpl-cat |
---|
628 | !! |
---|
629 | !! (Example of application: BDY forcings when input are cell averaged) |
---|
630 | !! |
---|
631 | !!------------------------------------------------------------------- |
---|
632 | !! History : LIM3.5 - 2012 (M. Vancoppenolle) Original code |
---|
633 | !! 2014 (C. Rousset) Rewriting |
---|
634 | !!------------------------------------------------------------------- |
---|
635 | !! Local variables |
---|
636 | INTEGER :: ji, jk, jl ! dummy loop indices |
---|
637 | INTEGER :: ijpij, i_fill, jl0 |
---|
638 | REAL(wp) :: zarg, zV, zconv, zdh, zdv |
---|
639 | REAL(wp), DIMENSION(:), INTENT(in) :: zhti, zhts, zai ! input ice/snow variables |
---|
640 | REAL(wp), DIMENSION(:,:), INTENT(inout) :: zht_i, zht_s, za_i ! output ice/snow variables |
---|
641 | INTEGER , POINTER, DIMENSION(:) :: itest |
---|
642 | |
---|
643 | Call wrk_alloc( 4, itest ) |
---|
644 | !-------------------------------------------------------------------- |
---|
645 | ! initialisation of variables |
---|
646 | !-------------------------------------------------------------------- |
---|
647 | ijpij = SIZE(zhti,1) |
---|
648 | zht_i(1:ijpij,1:jpl) = 0._wp |
---|
649 | zht_s(1:ijpij,1:jpl) = 0._wp |
---|
650 | za_i (1:ijpij,1:jpl) = 0._wp |
---|
651 | |
---|
652 | ! ---------------------------------------- |
---|
653 | ! distribution over the jpl ice categories |
---|
654 | ! ---------------------------------------- |
---|
655 | DO ji = 1, ijpij |
---|
656 | |
---|
657 | IF( zhti(ji) > 0._wp ) THEN |
---|
658 | |
---|
659 | ! find which category (jl0) the input ice thickness falls into |
---|
660 | jl0 = jpl |
---|
661 | DO jl = 1, jpl |
---|
662 | IF ( ( zhti(ji) >= hi_max(jl-1) ) .AND. ( zhti(ji) < hi_max(jl) ) ) THEN |
---|
663 | jl0 = jl |
---|
664 | CYCLE |
---|
665 | ENDIF |
---|
666 | END DO |
---|
667 | |
---|
668 | ! initialisation of tests |
---|
669 | itest(:) = 0 |
---|
670 | |
---|
671 | i_fill = jpl + 1 !==================================== |
---|
672 | DO WHILE ( ( SUM( itest(:) ) /= 4 ) .AND. ( i_fill >= 2 ) ) ! iterative loop on i_fill categories |
---|
673 | ! iteration !==================================== |
---|
674 | i_fill = i_fill - 1 |
---|
675 | |
---|
676 | ! initialisation of ice variables for each try |
---|
677 | zht_i(ji,1:jpl) = 0._wp |
---|
678 | za_i (ji,1:jpl) = 0._wp |
---|
679 | itest(:) = 0 |
---|
680 | |
---|
681 | ! *** case very thin ice: fill only category 1 |
---|
682 | IF ( i_fill == 1 ) THEN |
---|
683 | zht_i(ji,1) = zhti(ji) |
---|
684 | za_i (ji,1) = zai (ji) |
---|
685 | |
---|
686 | ! *** case ice is thicker: fill categories >1 |
---|
687 | ELSE |
---|
688 | |
---|
689 | ! Fill ice thicknesses in the (i_fill-1) cat by hmean |
---|
690 | DO jl = 1, i_fill - 1 |
---|
691 | zht_i(ji,jl) = hi_mean(jl) |
---|
692 | END DO |
---|
693 | |
---|
694 | ! Concentrations in the (i_fill-1) categories |
---|
695 | za_i(ji,jl0) = zai(ji) / SQRT(REAL(jpl)) |
---|
696 | DO jl = 1, i_fill - 1 |
---|
697 | IF ( jl /= jl0 ) THEN |
---|
698 | zarg = ( zht_i(ji,jl) - zhti(ji) ) / ( zhti(ji) * 0.5_wp ) |
---|
699 | za_i(ji,jl) = za_i (ji,jl0) * EXP(-zarg**2) |
---|
700 | ENDIF |
---|
701 | END DO |
---|
702 | |
---|
703 | ! Concentration in the last (i_fill) category |
---|
704 | za_i(ji,i_fill) = zai(ji) - SUM( za_i(ji,1:i_fill-1) ) |
---|
705 | |
---|
706 | ! Ice thickness in the last (i_fill) category |
---|
707 | zV = SUM( za_i(ji,1:i_fill-1) * zht_i(ji,1:i_fill-1) ) |
---|
708 | zht_i(ji,i_fill) = ( zhti(ji) * zai(ji) - zV ) / MAX( za_i(ji,i_fill), epsi10 ) |
---|
709 | |
---|
710 | ! clem: correction if concentration of upper cat is greater than lower cat |
---|
711 | ! (it should be a gaussian around jl0 but sometimes it is not) |
---|
712 | IF ( jl0 /= jpl ) THEN |
---|
713 | DO jl = jpl, jl0+1, -1 |
---|
714 | IF ( za_i(ji,jl) > za_i(ji,jl-1) ) THEN |
---|
715 | zdv = zht_i(ji,jl) * za_i(ji,jl) |
---|
716 | zht_i(ji,jl ) = 0._wp |
---|
717 | za_i (ji,jl ) = 0._wp |
---|
718 | za_i (ji,1:jl-1) = za_i(ji,1:jl-1) + zdv / MAX( REAL(jl-1) * zhti(ji), epsi10 ) |
---|
719 | END IF |
---|
720 | ENDDO |
---|
721 | ENDIF |
---|
722 | |
---|
723 | ENDIF ! case ice is thick or thin |
---|
724 | |
---|
725 | !--------------------- |
---|
726 | ! Compatibility tests |
---|
727 | !--------------------- |
---|
728 | ! Test 1: area conservation |
---|
729 | zconv = ABS( zai(ji) - SUM( za_i(ji,1:jpl) ) ) |
---|
730 | IF ( zconv < epsi06 ) itest(1) = 1 |
---|
731 | |
---|
732 | ! Test 2: volume conservation |
---|
733 | zconv = ABS( zhti(ji)*zai(ji) - SUM( za_i(ji,1:jpl)*zht_i(ji,1:jpl) ) ) |
---|
734 | IF ( zconv < epsi06 ) itest(2) = 1 |
---|
735 | |
---|
736 | ! Test 3: thickness of the last category is in-bounds ? |
---|
737 | IF ( zht_i(ji,i_fill) >= hi_max(i_fill-1) ) itest(3) = 1 |
---|
738 | |
---|
739 | ! Test 4: positivity of ice concentrations |
---|
740 | itest(4) = 1 |
---|
741 | DO jl = 1, i_fill |
---|
742 | IF ( za_i(ji,jl) < 0._wp ) itest(4) = 0 |
---|
743 | END DO |
---|
744 | ! !============================ |
---|
745 | END DO ! end iteration on categories |
---|
746 | ! !============================ |
---|
747 | ENDIF ! if zhti > 0 |
---|
748 | END DO ! i loop |
---|
749 | |
---|
750 | ! ------------------------------------------------ |
---|
751 | ! Adding Snow in each category where za_i is not 0 |
---|
752 | ! ------------------------------------------------ |
---|
753 | DO jl = 1, jpl |
---|
754 | DO ji = 1, ijpij |
---|
755 | IF( za_i(ji,jl) > 0._wp ) THEN |
---|
756 | zht_s(ji,jl) = zht_i(ji,jl) * ( zhts(ji) / zhti(ji) ) |
---|
757 | ! In case snow load is in excess that would lead to transformation from snow to ice |
---|
758 | ! Then, transfer the snow excess into the ice (different from limthd_dh) |
---|
759 | zdh = MAX( 0._wp, ( rhosn * zht_s(ji,jl) + ( rhoic - rau0 ) * zht_i(ji,jl) ) * r1_rau0 ) |
---|
760 | ! recompute ht_i, ht_s avoiding out of bounds values |
---|
761 | zht_i(ji,jl) = MIN( hi_max(jl), zht_i(ji,jl) + zdh ) |
---|
762 | zht_s(ji,jl) = MAX( 0._wp, zht_s(ji,jl) - zdh * rhoic * r1_rhosn ) |
---|
763 | ENDIF |
---|
764 | ENDDO |
---|
765 | ENDDO |
---|
766 | |
---|
767 | CALL wrk_dealloc( 4, itest ) |
---|
768 | ! |
---|
769 | END SUBROUTINE lim_var_itd |
---|
770 | |
---|
771 | |
---|
772 | #else |
---|
773 | !!---------------------------------------------------------------------- |
---|
774 | !! Default option Dummy module NO LIM3 sea-ice model |
---|
775 | !!---------------------------------------------------------------------- |
---|
776 | CONTAINS |
---|
777 | SUBROUTINE lim_var_agg ! Empty routines |
---|
778 | END SUBROUTINE lim_var_agg |
---|
779 | SUBROUTINE lim_var_glo2eqv ! Empty routines |
---|
780 | END SUBROUTINE lim_var_glo2eqv |
---|
781 | SUBROUTINE lim_var_eqv2glo ! Empty routines |
---|
782 | END SUBROUTINE lim_var_eqv2glo |
---|
783 | SUBROUTINE lim_var_salprof ! Empty routines |
---|
784 | END SUBROUTINE lim_var_salprof |
---|
785 | SUBROUTINE lim_var_bv ! Emtpy routines |
---|
786 | END SUBROUTINE lim_var_bv |
---|
787 | SUBROUTINE lim_var_salprof1d ! Emtpy routines |
---|
788 | END SUBROUTINE lim_var_salprof1d |
---|
789 | SUBROUTINE lim_var_zapsmall |
---|
790 | END SUBROUTINE lim_var_zapsmall |
---|
791 | SUBROUTINE lim_var_itd |
---|
792 | END SUBROUTINE lim_var_itd |
---|
793 | #endif |
---|
794 | |
---|
795 | !!====================================================================== |
---|
796 | END MODULE limvar |
---|