1 | \documentclass[NEMO_book]{subfiles} |
---|
2 | \begin{document} |
---|
3 | % ================================================================ |
---|
4 | % Chapter ——— Ocean Dynamics (DYN) |
---|
5 | % ================================================================ |
---|
6 | \chapter{Ocean Dynamics (DYN)} |
---|
7 | \label{DYN} |
---|
8 | \minitoc |
---|
9 | |
---|
10 | %\vspace{2.cm} |
---|
11 | $\ $\newline %force an empty line |
---|
12 | |
---|
13 | Using the representation described in Chapter \ref{DOM}, several semi-discrete |
---|
14 | space forms of the dynamical equations are available depending on the vertical |
---|
15 | coordinate used and on the conservation properties of the vorticity term. In all |
---|
16 | the equations presented here, the masking has been omitted for simplicity. |
---|
17 | One must be aware that all the quantities are masked fields and that each time an |
---|
18 | average or difference operator is used, the resulting field is multiplied by a mask. |
---|
19 | |
---|
20 | The prognostic ocean dynamics equation can be summarized as follows: |
---|
21 | \begin{equation*} |
---|
22 | \text{NXT} = \dbinom {\text{VOR} + \text{KEG} + \text {ZAD} } |
---|
23 | {\text{COR} + \text{ADV} } |
---|
24 | + \text{HPG} + \text{SPG} + \text{LDF} + \text{ZDF} |
---|
25 | \end{equation*} |
---|
26 | NXT stands for next, referring to the time-stepping. The first group of terms on |
---|
27 | the rhs of this equation corresponds to the Coriolis and advection |
---|
28 | terms that are decomposed into either a vorticity part (VOR), a kinetic energy part (KEG) |
---|
29 | and a vertical advection part (ZAD) in the vector invariant formulation, or a Coriolis |
---|
30 | and advection part (COR+ADV) in the flux formulation. The terms following these |
---|
31 | are the pressure gradient contributions (HPG, Hydrostatic Pressure Gradient, |
---|
32 | and SPG, Surface Pressure Gradient); and contributions from lateral diffusion |
---|
33 | (LDF) and vertical diffusion (ZDF), which are added to the rhs in the \mdl{dynldf} |
---|
34 | and \mdl{dynzdf} modules. The vertical diffusion term includes the surface and |
---|
35 | bottom stresses. The external forcings and parameterisations require complex |
---|
36 | inputs (surface wind stress calculation using bulk formulae, estimation of mixing |
---|
37 | coefficients) that are carried out in modules SBC, LDF and ZDF and are described |
---|
38 | in Chapters \ref{SBC}, \ref{LDF} and \ref{ZDF}, respectively. |
---|
39 | |
---|
40 | In the present chapter we also describe the diagnostic equations used to compute |
---|
41 | the horizontal divergence, curl of the velocities (\emph{divcur} module) and |
---|
42 | the vertical velocity (\emph{wzvmod} module). |
---|
43 | |
---|
44 | The different options available to the user are managed by namelist variables. |
---|
45 | For term \textit{ttt} in the momentum equations, the logical namelist variables are \textit{ln\_dynttt\_xxx}, |
---|
46 | where \textit{xxx} is a 3 or 4 letter acronym corresponding to each optional scheme. |
---|
47 | If a CPP key is used for this term its name is \textbf{key\_ttt}. The corresponding |
---|
48 | code can be found in the \textit{dynttt\_xxx} module in the DYN directory, and it is |
---|
49 | usually computed in the \textit{dyn\_ttt\_xxx} subroutine. |
---|
50 | |
---|
51 | The user has the option of extracting and outputting each tendency term from the |
---|
52 | 3D momentum equations (\key{trddyn} defined), as described in |
---|
53 | Chap.\ref{MISC}. Furthermore, the tendency terms associated with the 2D |
---|
54 | barotropic vorticity balance (when \key{trdvor} is defined) can be derived from the |
---|
55 | 3D terms. |
---|
56 | %%% |
---|
57 | \gmcomment{STEVEN: not quite sure I've got the sense of the last sentence. does |
---|
58 | MISC correspond to "extracting tendency terms" or "vorticity balance"?} |
---|
59 | |
---|
60 | $\ $\newline % force a new ligne |
---|
61 | |
---|
62 | % ================================================================ |
---|
63 | % Sea Surface Height evolution & Diagnostics variables |
---|
64 | % ================================================================ |
---|
65 | \section{Sea surface height and diagnostic variables ($\eta$, $\zeta$, $\chi$, $w$)} |
---|
66 | \label{DYN_divcur_wzv} |
---|
67 | |
---|
68 | %-------------------------------------------------------------------------------------------------------------- |
---|
69 | % Horizontal divergence and relative vorticity |
---|
70 | %-------------------------------------------------------------------------------------------------------------- |
---|
71 | \subsection [Horizontal divergence and relative vorticity (\textit{divcur})] |
---|
72 | {Horizontal divergence and relative vorticity (\protect\mdl{divcur})} |
---|
73 | \label{DYN_divcur} |
---|
74 | |
---|
75 | The vorticity is defined at an $f$-point ($i.e.$ corner point) as follows: |
---|
76 | \begin{equation} \label{Eq_divcur_cur} |
---|
77 | \zeta =\frac{1}{e_{1f}\,e_{2f} }\left( {\;\delta _{i+1/2} \left[ {e_{2v}\;v} \right] |
---|
78 | -\delta _{j+1/2} \left[ {e_{1u}\;u} \right]\;} \right) |
---|
79 | \end{equation} |
---|
80 | |
---|
81 | The horizontal divergence is defined at a $T$-point. It is given by: |
---|
82 | \begin{equation} \label{Eq_divcur_div} |
---|
83 | \chi =\frac{1}{e_{1t}\,e_{2t}\,e_{3t} } |
---|
84 | \left( {\delta _i \left[ {e_{2u}\,e_{3u}\,u} \right] |
---|
85 | +\delta _j \left[ {e_{1v}\,e_{3v}\,v} \right]} \right) |
---|
86 | \end{equation} |
---|
87 | |
---|
88 | Note that although the vorticity has the same discrete expression in $z$- |
---|
89 | and $s$-coordinates, its physical meaning is not identical. $\zeta$ is a pseudo |
---|
90 | vorticity along $s$-surfaces (only pseudo because $(u,v)$ are still defined along |
---|
91 | geopotential surfaces, but are not necessarily defined at the same depth). |
---|
92 | |
---|
93 | The vorticity and divergence at the \textit{before} step are used in the computation |
---|
94 | of the horizontal diffusion of momentum. Note that because they have been |
---|
95 | calculated prior to the Asselin filtering of the \textit{before} velocities, the |
---|
96 | \textit{before} vorticity and divergence arrays must be included in the restart file |
---|
97 | to ensure perfect restartability. The vorticity and divergence at the \textit{now} |
---|
98 | time step are used for the computation of the nonlinear advection and of the |
---|
99 | vertical velocity respectively. |
---|
100 | |
---|
101 | %-------------------------------------------------------------------------------------------------------------- |
---|
102 | % Sea Surface Height evolution |
---|
103 | %-------------------------------------------------------------------------------------------------------------- |
---|
104 | \subsection [Sea surface height evolution and vertical velocity (\textit{sshwzv})] |
---|
105 | {Horizontal divergence and relative vorticity (\protect\mdl{sshwzv})} |
---|
106 | \label{DYN_sshwzv} |
---|
107 | |
---|
108 | The sea surface height is given by : |
---|
109 | \begin{equation} \label{Eq_dynspg_ssh} |
---|
110 | \begin{aligned} |
---|
111 | \frac{\partial \eta }{\partial t} |
---|
112 | &\equiv \frac{1}{e_{1t} e_{2t} }\sum\limits_k { \left\{ \delta _i \left[ {e_{2u}\,e_{3u}\;u} \right] |
---|
113 | +\delta _j \left[ {e_{1v}\,e_{3v}\;v} \right] \right\} } |
---|
114 | - \frac{\textit{emp}}{\rho _w } \\ |
---|
115 | &\equiv \sum\limits_k {\chi \ e_{3t}} - \frac{\textit{emp}}{\rho _w } |
---|
116 | \end{aligned} |
---|
117 | \end{equation} |
---|
118 | where \textit{emp} is the surface freshwater budget (evaporation minus precipitation), |
---|
119 | expressed in Kg/m$^2$/s (which is equal to mm/s), and $\rho _w$=1,035~Kg/m$^3$ |
---|
120 | is the reference density of sea water (Boussinesq approximation). If river runoff is |
---|
121 | expressed as a surface freshwater flux (see \S\ref{SBC}) then \textit{emp} can be |
---|
122 | written as the evaporation minus precipitation, minus the river runoff. |
---|
123 | The sea-surface height is evaluated using exactly the same time stepping scheme |
---|
124 | as the tracer equation \eqref{Eq_tra_nxt}: |
---|
125 | a leapfrog scheme in combination with an Asselin time filter, $i.e.$ the velocity appearing |
---|
126 | in \eqref{Eq_dynspg_ssh} is centred in time (\textit{now} velocity). |
---|
127 | This is of paramount importance. Replacing $T$ by the number $1$ in the tracer equation and summing |
---|
128 | over the water column must lead to the sea surface height equation otherwise tracer content |
---|
129 | will not be conserved \citep{Griffies_al_MWR01, Leclair_Madec_OM09}. |
---|
130 | |
---|
131 | The vertical velocity is computed by an upward integration of the horizontal |
---|
132 | divergence starting at the bottom, taking into account the change of the thickness of the levels : |
---|
133 | \begin{equation} \label{Eq_wzv} |
---|
134 | \left\{ \begin{aligned} |
---|
135 | &\left. w \right|_{k_b-1/2} \quad= 0 \qquad \text{where } k_b \text{ is the level just above the sea floor } \\ |
---|
136 | &\left. w \right|_{k+1/2} = \left. w \right|_{k-1/2} + \left. e_{3t} \right|_{k}\; \left. \chi \right|_k |
---|
137 | - \frac{1} {2 \rdt} \left( \left. e_{3t}^{t+1}\right|_{k} - \left. e_{3t}^{t-1}\right|_{k}\right) |
---|
138 | \end{aligned} \right. |
---|
139 | \end{equation} |
---|
140 | |
---|
141 | In the case of a non-linear free surface (\key{vvl}), the top vertical velocity is $-\textit{emp}/\rho_w$, |
---|
142 | as changes in the divergence of the barotropic transport are absorbed into the change |
---|
143 | of the level thicknesses, re-orientated downward. |
---|
144 | \gmcomment{not sure of this... to be modified with the change in emp setting} |
---|
145 | In the case of a linear free surface, the time derivative in \eqref{Eq_wzv} disappears. |
---|
146 | The upper boundary condition applies at a fixed level $z=0$. The top vertical velocity |
---|
147 | is thus equal to the divergence of the barotropic transport ($i.e.$ the first term in the |
---|
148 | right-hand-side of \eqref{Eq_dynspg_ssh}). |
---|
149 | |
---|
150 | Note also that whereas the vertical velocity has the same discrete |
---|
151 | expression in $z$- and $s$-coordinates, its physical meaning is not the same: |
---|
152 | in the second case, $w$ is the velocity normal to the $s$-surfaces. |
---|
153 | Note also that the $k$-axis is re-orientated downwards in the \textsc{fortran} code compared |
---|
154 | to the indexing used in the semi-discrete equations such as \eqref{Eq_wzv} |
---|
155 | (see \S\ref{DOM_Num_Index_vertical}). |
---|
156 | |
---|
157 | |
---|
158 | % ================================================================ |
---|
159 | % Coriolis and Advection terms: vector invariant form |
---|
160 | % ================================================================ |
---|
161 | \section{Coriolis and Advection: vector invariant form} |
---|
162 | \label{DYN_adv_cor_vect} |
---|
163 | %-----------------------------------------nam_dynadv---------------------------------------------------- |
---|
164 | \fortranfile{namelists/namdyn_adv} |
---|
165 | %------------------------------------------------------------------------------------------------------------- |
---|
166 | |
---|
167 | The vector invariant form of the momentum equations is the one most |
---|
168 | often used in applications of the \NEMO ocean model. The flux form option |
---|
169 | (see next section) has been present since version $2$. Options are defined |
---|
170 | through the \ngn{namdyn\_adv} namelist variables |
---|
171 | Coriolis and momentum advection terms are evaluated using a leapfrog |
---|
172 | scheme, $i.e.$ the velocity appearing in these expressions is centred in |
---|
173 | time (\textit{now} velocity). |
---|
174 | At the lateral boundaries either free slip, no slip or partial slip boundary |
---|
175 | conditions are applied following Chap.\ref{LBC}. |
---|
176 | |
---|
177 | % ------------------------------------------------------------------------------------------------------------- |
---|
178 | % Vorticity term |
---|
179 | % ------------------------------------------------------------------------------------------------------------- |
---|
180 | \subsection [Vorticity term (\textit{dynvor}) ] |
---|
181 | {Vorticity term (\protect\mdl{dynvor})} |
---|
182 | \label{DYN_vor} |
---|
183 | %------------------------------------------nam_dynvor---------------------------------------------------- |
---|
184 | \fortranfile{namelists/namdyn_vor} |
---|
185 | %------------------------------------------------------------------------------------------------------------- |
---|
186 | |
---|
187 | Options are defined through the \ngn{namdyn\_vor} namelist variables. |
---|
188 | Four discretisations of the vorticity term (\textit{ln\_dynvor\_xxx}=true) are available: |
---|
189 | conserving potential enstrophy of horizontally non-divergent flow (ENS scheme) ; |
---|
190 | conserving horizontal kinetic energy (ENE scheme) ; conserving potential enstrophy for |
---|
191 | the relative vorticity term and horizontal kinetic energy for the planetary vorticity |
---|
192 | term (MIX scheme) ; or conserving both the potential enstrophy of horizontally non-divergent |
---|
193 | flow and horizontal kinetic energy (EEN scheme) (see Appendix~\ref{Apdx_C_vorEEN}). In the |
---|
194 | case of ENS, ENE or MIX schemes the land sea mask may be slightly modified to ensure the |
---|
195 | consistency of vorticity term with analytical equations (\textit{ln\_dynvor\_con}=true). |
---|
196 | The vorticity terms are all computed in dedicated routines that can be found in |
---|
197 | the \mdl{dynvor} module. |
---|
198 | |
---|
199 | %------------------------------------------------------------- |
---|
200 | % enstrophy conserving scheme |
---|
201 | %------------------------------------------------------------- |
---|
202 | \subsubsection{Enstrophy conserving scheme (\protect\np{ln\_dynvor\_ens}=true)} |
---|
203 | \label{DYN_vor_ens} |
---|
204 | |
---|
205 | In the enstrophy conserving case (ENS scheme), the discrete formulation of the |
---|
206 | vorticity term provides a global conservation of the enstrophy |
---|
207 | ($ [ (\zeta +f ) / e_{3f} ]^2 $ in $s$-coordinates) for a horizontally non-divergent |
---|
208 | flow ($i.e.$ $\chi$=$0$), but does not conserve the total kinetic energy. It is given by: |
---|
209 | \begin{equation} \label{Eq_dynvor_ens} |
---|
210 | \left\{ |
---|
211 | \begin{aligned} |
---|
212 | {+\frac{1}{e_{1u} } } & {\overline {\left( { \frac{\zeta +f}{e_{3f} }} \right)} }^{\,i} |
---|
213 | & {\overline{\overline {\left( {e_{1v}\,e_{3v}\;v} \right)}} }^{\,i, j+1/2} \\ |
---|
214 | {- \frac{1}{e_{2v} } } & {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)} }^{\,j} |
---|
215 | & {\overline{\overline {\left( {e_{2u}\,e_{3u}\;u} \right)}} }^{\,i+1/2, j} |
---|
216 | \end{aligned} |
---|
217 | \right. |
---|
218 | \end{equation} |
---|
219 | |
---|
220 | %------------------------------------------------------------- |
---|
221 | % energy conserving scheme |
---|
222 | %------------------------------------------------------------- |
---|
223 | \subsubsection{Energy conserving scheme (\protect\np{ln\_dynvor\_ene}=true)} |
---|
224 | \label{DYN_vor_ene} |
---|
225 | |
---|
226 | The kinetic energy conserving scheme (ENE scheme) conserves the global |
---|
227 | kinetic energy but not the global enstrophy. It is given by: |
---|
228 | \begin{equation} \label{Eq_dynvor_ene} |
---|
229 | \left\{ \begin{aligned} |
---|
230 | {+\frac{1}{e_{1u}}\; {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right) |
---|
231 | \; \overline {\left( {e_{1v}\,e_{3v}\;v} \right)} ^{\,i+1/2}} }^{\,j} } \\ |
---|
232 | {- \frac{1}{e_{2v}}\; {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right) |
---|
233 | \; \overline {\left( {e_{2u}\,e_{3u}\;u} \right)} ^{\,j+1/2}} }^{\,i} } |
---|
234 | \end{aligned} \right. |
---|
235 | \end{equation} |
---|
236 | |
---|
237 | %------------------------------------------------------------- |
---|
238 | % mix energy/enstrophy conserving scheme |
---|
239 | %------------------------------------------------------------- |
---|
240 | \subsubsection{Mixed energy/enstrophy conserving scheme (\protect\np{ln\_dynvor\_mix}=true) } |
---|
241 | \label{DYN_vor_mix} |
---|
242 | |
---|
243 | For the mixed energy/enstrophy conserving scheme (MIX scheme), a mixture of the |
---|
244 | two previous schemes is used. It consists of the ENS scheme (\ref{Eq_dynvor_ens}) |
---|
245 | for the relative vorticity term, and of the ENE scheme (\ref{Eq_dynvor_ene}) applied |
---|
246 | to the planetary vorticity term. |
---|
247 | \begin{equation} \label{Eq_dynvor_mix} |
---|
248 | \left\{ { \begin{aligned} |
---|
249 | {+\frac{1}{e_{1u} }\; {\overline {\left( {\frac{\zeta }{e_{3f} }} \right)} }^{\,i} |
---|
250 | \; {\overline{\overline {\left( {e_{1v}\,e_{3v}\;v} \right)}} }^{\,i,j+1/2} -\frac{1}{e_{1u} } |
---|
251 | \; {\overline {\left( {\frac{f}{e_{3f} }} \right) |
---|
252 | \;\overline {\left( {e_{1v}\,e_{3v}\;v} \right)} ^{\,i+1/2}} }^{\,j} } \\ |
---|
253 | {-\frac{1}{e_{2v} }\; {\overline {\left( {\frac{\zeta }{e_{3f} }} \right)} }^j |
---|
254 | \; {\overline{\overline {\left( {e_{2u}\,e_{3u}\;u} \right)}} }^{\,i+1/2,j} +\frac{1}{e_{2v} } |
---|
255 | \; {\overline {\left( {\frac{f}{e_{3f} }} \right) |
---|
256 | \;\overline {\left( {e_{2u}\,e_{3u}\;u} \right)} ^{\,j+1/2}} }^{\,i} } \hfill |
---|
257 | \end{aligned} } \right. |
---|
258 | \end{equation} |
---|
259 | |
---|
260 | %------------------------------------------------------------- |
---|
261 | % energy and enstrophy conserving scheme |
---|
262 | %------------------------------------------------------------- |
---|
263 | \subsubsection{Energy and enstrophy conserving scheme (\protect\np{ln\_dynvor\_een}=true) } |
---|
264 | \label{DYN_vor_een} |
---|
265 | |
---|
266 | In both the ENS and ENE schemes, it is apparent that the combination of $i$ and $j$ |
---|
267 | averages of the velocity allows for the presence of grid point oscillation structures |
---|
268 | that will be invisible to the operator. These structures are \textit{computational modes} |
---|
269 | that will be at least partly damped by the momentum diffusion operator ($i.e.$ the |
---|
270 | subgrid-scale advection), but not by the resolved advection term. The ENS and ENE schemes |
---|
271 | therefore do not contribute to dump any grid point noise in the horizontal velocity field. |
---|
272 | Such noise would result in more noise in the vertical velocity field, an undesirable feature. |
---|
273 | This is a well-known characteristic of $C$-grid discretization where $u$ and $v$ are located |
---|
274 | at different grid points, a price worth paying to avoid a double averaging in the pressure |
---|
275 | gradient term as in the $B$-grid. |
---|
276 | \gmcomment{ To circumvent this, Adcroft (ADD REF HERE) |
---|
277 | Nevertheless, this technique strongly distort the phase and group velocity of Rossby waves....} |
---|
278 | |
---|
279 | A very nice solution to the problem of double averaging was proposed by \citet{Arakawa_Hsu_MWR90}. |
---|
280 | The idea is to get rid of the double averaging by considering triad combinations of vorticity. |
---|
281 | It is noteworthy that this solution is conceptually quite similar to the one proposed by |
---|
282 | \citep{Griffies_al_JPO98} for the discretization of the iso-neutral diffusion operator (see App.\ref{Apdx_C}). |
---|
283 | |
---|
284 | The \citet{Arakawa_Hsu_MWR90} vorticity advection scheme for a single layer is modified |
---|
285 | for spherical coordinates as described by \citet{Arakawa_Lamb_MWR81} to obtain the EEN scheme. |
---|
286 | First consider the discrete expression of the potential vorticity, $q$, defined at an $f$-point: |
---|
287 | \begin{equation} \label{Eq_pot_vor} |
---|
288 | q = \frac{\zeta +f} {e_{3f} } |
---|
289 | \end{equation} |
---|
290 | where the relative vorticity is defined by (\ref{Eq_divcur_cur}), the Coriolis parameter |
---|
291 | is given by $f=2 \,\Omega \;\sin \varphi _f $ and the layer thickness at $f$-points is: |
---|
292 | \begin{equation} \label{Eq_een_e3f} |
---|
293 | e_{3f} = \overline{\overline {e_{3t} }} ^{\,i+1/2,j+1/2} |
---|
294 | \end{equation} |
---|
295 | |
---|
296 | %>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |
---|
297 | \begin{figure}[!ht] \begin{center} |
---|
298 | \includegraphics[width=0.70\textwidth]{Fig_DYN_een_triad} |
---|
299 | \caption{ \protect\label{Fig_DYN_een_triad} |
---|
300 | Triads used in the energy and enstrophy conserving scheme (een) for |
---|
301 | $u$-component (upper panel) and $v$-component (lower panel).} |
---|
302 | \end{center} \end{figure} |
---|
303 | %>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |
---|
304 | |
---|
305 | A key point in \eqref{Eq_een_e3f} is how the averaging in the \textbf{i}- and \textbf{j}- directions is made. |
---|
306 | It uses the sum of masked t-point vertical scale factor divided either |
---|
307 | by the sum of the four t-point masks (\np{nn\_een\_e3f}~=~1), |
---|
308 | or just by $4$ (\np{nn\_een\_e3f}~=~true). |
---|
309 | The latter case preserves the continuity of $e_{3f}$ when one or more of the neighbouring $e_{3t}$ |
---|
310 | tends to zero and extends by continuity the value of $e_{3f}$ into the land areas. |
---|
311 | This case introduces a sub-grid-scale topography at f-points (with a systematic reduction of $e_{3f}$ |
---|
312 | when a model level intercept the bathymetry) that tends to reinforce the topostrophy of the flow |
---|
313 | ($i.e.$ the tendency of the flow to follow the isobaths) \citep{Penduff_al_OS07}. |
---|
314 | |
---|
315 | Next, the vorticity triads, $ {^i_j}\mathbb{Q}^{i_p}_{j_p}$ can be defined at a $T$-point as |
---|
316 | the following triad combinations of the neighbouring potential vorticities defined at f-points |
---|
317 | (Fig.~\ref{Fig_DYN_een_triad}): |
---|
318 | \begin{equation} \label{Q_triads} |
---|
319 | _i^j \mathbb{Q}^{i_p}_{j_p} |
---|
320 | = \frac{1}{12} \ \left( q^{i-i_p}_{j+j_p} + q^{i+j_p}_{j+i_p} + q^{i+i_p}_{j-j_p} \right) |
---|
321 | \end{equation} |
---|
322 | where the indices $i_p$ and $k_p$ take the values: $i_p = -1/2$ or $1/2$ and $j_p = -1/2$ or $1/2$. |
---|
323 | |
---|
324 | Finally, the vorticity terms are represented as: |
---|
325 | \begin{equation} \label{Eq_dynvor_een} |
---|
326 | \left\{ { |
---|
327 | \begin{aligned} |
---|
328 | +q\,e_3 \, v &\equiv +\frac{1}{e_{1u} } \sum_{\substack{i_p,\,k_p}} |
---|
329 | {^{i+1/2-i_p}_j} \mathbb{Q}^{i_p}_{j_p} \left( e_{1v}\,e_{3v} \;v \right)^{i+1/2-i_p}_{j+j_p} \\ |
---|
330 | - q\,e_3 \, u &\equiv -\frac{1}{e_{2v} } \sum_{\substack{i_p,\,k_p}} |
---|
331 | {^i_{j+1/2-j_p}} \mathbb{Q}^{i_p}_{j_p} \left( e_{2u}\,e_{3u} \;u \right)^{i+i_p}_{j+1/2-j_p} \\ |
---|
332 | \end{aligned} |
---|
333 | } \right. |
---|
334 | \end{equation} |
---|
335 | |
---|
336 | This EEN scheme in fact combines the conservation properties of the ENS and ENE schemes. |
---|
337 | It conserves both total energy and potential enstrophy in the limit of horizontally |
---|
338 | nondivergent flow ($i.e.$ $\chi$=$0$) (see Appendix~\ref{Apdx_C_vorEEN}). |
---|
339 | Applied to a realistic ocean configuration, it has been shown that it leads to a significant |
---|
340 | reduction of the noise in the vertical velocity field \citep{Le_Sommer_al_OM09}. |
---|
341 | Furthermore, used in combination with a partial steps representation of bottom topography, |
---|
342 | it improves the interaction between current and topography, leading to a larger |
---|
343 | topostrophy of the flow \citep{Barnier_al_OD06, Penduff_al_OS07}. |
---|
344 | |
---|
345 | %-------------------------------------------------------------------------------------------------------------- |
---|
346 | % Kinetic Energy Gradient term |
---|
347 | %-------------------------------------------------------------------------------------------------------------- |
---|
348 | \subsection [Kinetic Energy Gradient term (\textit{dynkeg})] |
---|
349 | {Kinetic Energy Gradient term (\protect\mdl{dynkeg})} |
---|
350 | \label{DYN_keg} |
---|
351 | |
---|
352 | As demonstrated in Appendix~\ref{Apdx_C}, there is a single discrete formulation |
---|
353 | of the kinetic energy gradient term that, together with the formulation chosen for |
---|
354 | the vertical advection (see below), conserves the total kinetic energy: |
---|
355 | \begin{equation} \label{Eq_dynkeg} |
---|
356 | \left\{ \begin{aligned} |
---|
357 | -\frac{1}{2 \; e_{1u} } & \ \delta _{i+1/2} \left[ {\overline {u^2}^{\,i} + \overline{v^2}^{\,j}} \right] \\ |
---|
358 | -\frac{1}{2 \; e_{2v} } & \ \delta _{j+1/2} \left[ {\overline {u^2}^{\,i} + \overline{v^2}^{\,j}} \right] |
---|
359 | \end{aligned} \right. |
---|
360 | \end{equation} |
---|
361 | |
---|
362 | %-------------------------------------------------------------------------------------------------------------- |
---|
363 | % Vertical advection term |
---|
364 | %-------------------------------------------------------------------------------------------------------------- |
---|
365 | \subsection [Vertical advection term (\textit{dynzad}) ] |
---|
366 | {Vertical advection term (\protect\mdl{dynzad}) } |
---|
367 | \label{DYN_zad} |
---|
368 | |
---|
369 | The discrete formulation of the vertical advection, together with the formulation |
---|
370 | chosen for the gradient of kinetic energy (KE) term, conserves the total kinetic |
---|
371 | energy. Indeed, the change of KE due to the vertical advection is exactly |
---|
372 | balanced by the change of KE due to the gradient of KE (see Appendix~\ref{Apdx_C}). |
---|
373 | \begin{equation} \label{Eq_dynzad} |
---|
374 | \left\{ \begin{aligned} |
---|
375 | -\frac{1} {e_{1u}\,e_{2u}\,e_{3u}} &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,i+1/2} \;\delta _{k+1/2} \left[ u \right]\ }^{\,k} \\ |
---|
376 | -\frac{1} {e_{1v}\,e_{2v}\,e_{3v}} &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,j+1/2} \;\delta _{k+1/2} \left[ u \right]\ }^{\,k} |
---|
377 | \end{aligned} \right. |
---|
378 | \end{equation} |
---|
379 | When \np{ln\_dynzad\_zts}~=~\textit{true}, a split-explicit time stepping with 5 sub-timesteps is used |
---|
380 | on the vertical advection term. |
---|
381 | This option can be useful when the value of the timestep is limited by vertical advection \citep{Lemarie_OM2015}. |
---|
382 | Note that in this case, a similar split-explicit time stepping should be used on |
---|
383 | vertical advection of tracer to ensure a better stability, |
---|
384 | an option which is only available with a TVD scheme (see \np{ln\_traadv\_tvd\_zts} in \S\ref{TRA_adv_tvd}). |
---|
385 | |
---|
386 | |
---|
387 | % ================================================================ |
---|
388 | % Coriolis and Advection : flux form |
---|
389 | % ================================================================ |
---|
390 | \section{Coriolis and Advection: flux form} |
---|
391 | \label{DYN_adv_cor_flux} |
---|
392 | %------------------------------------------nam_dynadv---------------------------------------------------- |
---|
393 | \fortranfile{namelists/namdyn_adv} |
---|
394 | %------------------------------------------------------------------------------------------------------------- |
---|
395 | |
---|
396 | Options are defined through the \ngn{namdyn\_adv} namelist variables. |
---|
397 | In the flux form (as in the vector invariant form), the Coriolis and momentum |
---|
398 | advection terms are evaluated using a leapfrog scheme, $i.e.$ the velocity |
---|
399 | appearing in their expressions is centred in time (\textit{now} velocity). At the |
---|
400 | lateral boundaries either free slip, no slip or partial slip boundary conditions |
---|
401 | are applied following Chap.\ref{LBC}. |
---|
402 | |
---|
403 | |
---|
404 | %-------------------------------------------------------------------------------------------------------------- |
---|
405 | % Coriolis plus curvature metric terms |
---|
406 | %-------------------------------------------------------------------------------------------------------------- |
---|
407 | \subsection [Coriolis plus curvature metric terms (\textit{dynvor}) ] |
---|
408 | {Coriolis plus curvature metric terms (\protect\mdl{dynvor}) } |
---|
409 | \label{DYN_cor_flux} |
---|
410 | |
---|
411 | In flux form, the vorticity term reduces to a Coriolis term in which the Coriolis |
---|
412 | parameter has been modified to account for the "metric" term. This altered |
---|
413 | Coriolis parameter is thus discretised at $f$-points. It is given by: |
---|
414 | \begin{multline} \label{Eq_dyncor_metric} |
---|
415 | f+\frac{1}{e_1 e_2 }\left( {v\frac{\partial e_2 }{\partial i} - u\frac{\partial e_1 }{\partial j}} \right) \\ |
---|
416 | \equiv f + \frac{1}{e_{1f} e_{2f} } \left( { \ \overline v ^{i+1/2}\delta _{i+1/2} \left[ {e_{2u} } \right] |
---|
417 | - \overline u ^{j+1/2}\delta _{j+1/2} \left[ {e_{1u} } \right] } \ \right) |
---|
418 | \end{multline} |
---|
419 | |
---|
420 | Any of the (\ref{Eq_dynvor_ens}), (\ref{Eq_dynvor_ene}) and (\ref{Eq_dynvor_een}) |
---|
421 | schemes can be used to compute the product of the Coriolis parameter and the |
---|
422 | vorticity. However, the energy-conserving scheme (\ref{Eq_dynvor_een}) has |
---|
423 | exclusively been used to date. This term is evaluated using a leapfrog scheme, |
---|
424 | $i.e.$ the velocity is centred in time (\textit{now} velocity). |
---|
425 | |
---|
426 | %-------------------------------------------------------------------------------------------------------------- |
---|
427 | % Flux form Advection term |
---|
428 | %-------------------------------------------------------------------------------------------------------------- |
---|
429 | \subsection [Flux form Advection term (\textit{dynadv}) ] |
---|
430 | {Flux form Advection term (\protect\mdl{dynadv}) } |
---|
431 | \label{DYN_adv_flux} |
---|
432 | |
---|
433 | The discrete expression of the advection term is given by : |
---|
434 | \begin{equation} \label{Eq_dynadv} |
---|
435 | \left\{ |
---|
436 | \begin{aligned} |
---|
437 | \frac{1}{e_{1u}\,e_{2u}\,e_{3u}} |
---|
438 | \left( \delta _{i+1/2} \left[ \overline{e_{2u}\,e_{3u}\;u }^{i } \ u_t \right] |
---|
439 | + \delta _{j } \left[ \overline{e_{1u}\,e_{3u}\;v }^{i+1/2} \ u_f \right] \right. \ \; \\ |
---|
440 | \left. + \delta _{k } \left[ \overline{e_{1w}\,e_{2w}\;w}^{i+1/2} \ u_{uw} \right] \right) \\ |
---|
441 | \\ |
---|
442 | \frac{1}{e_{1v}\,e_{2v}\,e_{3v}} |
---|
443 | \left( \delta _{i } \left[ \overline{e_{2u}\,e_{3u }\;u }^{j+1/2} \ v_f \right] |
---|
444 | + \delta _{j+1/2} \left[ \overline{e_{1u}\,e_{3u }\;v }^{i } \ v_t \right] \right. \ \, \, \\ |
---|
445 | \left. + \delta _{k } \left[ \overline{e_{1w}\,e_{2w}\;w}^{j+1/2} \ v_{vw} \right] \right) \\ |
---|
446 | \end{aligned} |
---|
447 | \right. |
---|
448 | \end{equation} |
---|
449 | |
---|
450 | Two advection schemes are available: a $2^{nd}$ order centered finite |
---|
451 | difference scheme, CEN2, or a $3^{rd}$ order upstream biased scheme, UBS. |
---|
452 | The latter is described in \citet{Shchepetkin_McWilliams_OM05}. The schemes are |
---|
453 | selected using the namelist logicals \np{ln\_dynadv\_cen2} and \np{ln\_dynadv\_ubs}. |
---|
454 | In flux form, the schemes differ by the choice of a space and time interpolation to |
---|
455 | define the value of $u$ and $v$ at the centre of each face of $u$- and $v$-cells, |
---|
456 | $i.e.$ at the $T$-, $f$-, and $uw$-points for $u$ and at the $f$-, $T$- and |
---|
457 | $vw$-points for $v$. |
---|
458 | |
---|
459 | %------------------------------------------------------------- |
---|
460 | % 2nd order centred scheme |
---|
461 | %------------------------------------------------------------- |
---|
462 | \subsubsection{$2^{nd}$ order centred scheme (cen2) (\protect\np{ln\_dynadv\_cen2}=true)} |
---|
463 | \label{DYN_adv_cen2} |
---|
464 | |
---|
465 | In the centered $2^{nd}$ order formulation, the velocity is evaluated as the |
---|
466 | mean of the two neighbouring points : |
---|
467 | \begin{equation} \label{Eq_dynadv_cen2} |
---|
468 | \left\{ \begin{aligned} |
---|
469 | u_T^{cen2} &=\overline u^{i } \quad & u_F^{cen2} &=\overline u^{j+1/2} \quad & u_{uw}^{cen2} &=\overline u^{k+1/2} \\ |
---|
470 | v_F^{cen2} &=\overline v ^{i+1/2} \quad & v_F^{cen2} &=\overline v^j \quad & v_{vw}^{cen2} &=\overline v ^{k+1/2} \\ |
---|
471 | \end{aligned} \right. |
---|
472 | \end{equation} |
---|
473 | |
---|
474 | The scheme is non diffusive (i.e. conserves the kinetic energy) but dispersive |
---|
475 | ($i.e.$ it may create false extrema). It is therefore notoriously noisy and must be |
---|
476 | used in conjunction with an explicit diffusion operator to produce a sensible solution. |
---|
477 | The associated time-stepping is performed using a leapfrog scheme in conjunction |
---|
478 | with an Asselin time-filter, so $u$ and $v$ are the \emph{now} velocities. |
---|
479 | |
---|
480 | %------------------------------------------------------------- |
---|
481 | % UBS scheme |
---|
482 | %------------------------------------------------------------- |
---|
483 | \subsubsection{Upstream Biased Scheme (UBS) (\protect\np{ln\_dynadv\_ubs}=true)} |
---|
484 | \label{DYN_adv_ubs} |
---|
485 | |
---|
486 | The UBS advection scheme is an upstream biased third order scheme based on |
---|
487 | an upstream-biased parabolic interpolation. For example, the evaluation of |
---|
488 | $u_T^{ubs} $ is done as follows: |
---|
489 | \begin{equation} \label{Eq_dynadv_ubs} |
---|
490 | u_T^{ubs} =\overline u ^i-\;\frac{1}{6} \begin{cases} |
---|
491 | u"_{i-1/2}& \text{if $\ \overline{e_{2u}\,e_{3u} \ u}^i \geqslant 0$ } \\ |
---|
492 | u"_{i+1/2}& \text{if $\ \overline{e_{2u}\,e_{3u} \ u}^i < 0$ } |
---|
493 | \end{cases} |
---|
494 | \end{equation} |
---|
495 | where $u"_{i+1/2} =\delta _{i+1/2} \left[ {\delta _i \left[ u \right]} \right]$. This results |
---|
496 | in a dissipatively dominant ($i.e.$ hyper-diffusive) truncation error \citep{Shchepetkin_McWilliams_OM05}. |
---|
497 | The overall performance of the advection scheme is similar to that reported in |
---|
498 | \citet{Farrow1995}. It is a relatively good compromise between accuracy and |
---|
499 | smoothness. It is not a \emph{positive} scheme, meaning that false extrema are |
---|
500 | permitted. But the amplitudes of the false extrema are significantly reduced over |
---|
501 | those in the centred second order method. As the scheme already includes |
---|
502 | a diffusion component, it can be used without explicit lateral diffusion on momentum |
---|
503 | ($i.e.$ \np{ln\_dynldf\_lap}=\np{ln\_dynldf\_bilap}=false), and it is recommended to do so. |
---|
504 | |
---|
505 | The UBS scheme is not used in all directions. In the vertical, the centred $2^{nd}$ |
---|
506 | order evaluation of the advection is preferred, $i.e.$ $u_{uw}^{ubs}$ and |
---|
507 | $u_{vw}^{ubs}$ in \eqref{Eq_dynadv_cen2} are used. UBS is diffusive and is |
---|
508 | associated with vertical mixing of momentum. \gmcomment{ gm pursue the |
---|
509 | sentence:Since vertical mixing of momentum is a source term of the TKE equation... } |
---|
510 | |
---|
511 | For stability reasons, the first term in (\ref{Eq_dynadv_ubs}), which corresponds |
---|
512 | to a second order centred scheme, is evaluated using the \textit{now} velocity |
---|
513 | (centred in time), while the second term, which is the diffusion part of the scheme, |
---|
514 | is evaluated using the \textit{before} velocity (forward in time). This is discussed |
---|
515 | by \citet{Webb_al_JAOT98} in the context of the Quick advection scheme. |
---|
516 | |
---|
517 | Note that the UBS and QUICK (Quadratic Upstream Interpolation for Convective Kinematics) |
---|
518 | schemes only differ by one coefficient. Replacing $1/6$ by $1/8$ in |
---|
519 | (\ref{Eq_dynadv_ubs}) leads to the QUICK advection scheme \citep{Webb_al_JAOT98}. |
---|
520 | This option is not available through a namelist parameter, since the $1/6$ coefficient |
---|
521 | is hard coded. Nevertheless it is quite easy to make the substitution in the |
---|
522 | \mdl{dynadv\_ubs} module and obtain a QUICK scheme. |
---|
523 | |
---|
524 | Note also that in the current version of \mdl{dynadv\_ubs}, there is also the |
---|
525 | possibility of using a $4^{th}$ order evaluation of the advective velocity as in |
---|
526 | ROMS. This is an error and should be suppressed soon. |
---|
527 | %%% |
---|
528 | \gmcomment{action : this have to be done} |
---|
529 | %%% |
---|
530 | |
---|
531 | % ================================================================ |
---|
532 | % Hydrostatic pressure gradient term |
---|
533 | % ================================================================ |
---|
534 | \section [Hydrostatic pressure gradient (\textit{dynhpg})] |
---|
535 | {Hydrostatic pressure gradient (\protect\mdl{dynhpg})} |
---|
536 | \label{DYN_hpg} |
---|
537 | %------------------------------------------nam_dynhpg--------------------------------------------------- |
---|
538 | \fortranfile{namelists/namdyn_hpg} |
---|
539 | %------------------------------------------------------------------------------------------------------------- |
---|
540 | |
---|
541 | Options are defined through the \ngn{namdyn\_hpg} namelist variables. |
---|
542 | The key distinction between the different algorithms used for the hydrostatic |
---|
543 | pressure gradient is the vertical coordinate used, since HPG is a \emph{horizontal} |
---|
544 | pressure gradient, $i.e.$ computed along geopotential surfaces. As a result, any |
---|
545 | tilt of the surface of the computational levels will require a specific treatment to |
---|
546 | compute the hydrostatic pressure gradient. |
---|
547 | |
---|
548 | The hydrostatic pressure gradient term is evaluated either using a leapfrog scheme, |
---|
549 | $i.e.$ the density appearing in its expression is centred in time (\emph{now} $\rho$), or |
---|
550 | a semi-implcit scheme. At the lateral boundaries either free slip, no slip or partial slip |
---|
551 | boundary conditions are applied. |
---|
552 | |
---|
553 | %-------------------------------------------------------------------------------------------------------------- |
---|
554 | % z-coordinate with full step |
---|
555 | %-------------------------------------------------------------------------------------------------------------- |
---|
556 | \subsection [$z$-coordinate with full step (\protect\np{ln\_dynhpg\_zco}) ] |
---|
557 | {$z$-coordinate with full step (\protect\np{ln\_dynhpg\_zco}=true)} |
---|
558 | \label{DYN_hpg_zco} |
---|
559 | |
---|
560 | The hydrostatic pressure can be obtained by integrating the hydrostatic equation |
---|
561 | vertically from the surface. However, the pressure is large at great depth while its |
---|
562 | horizontal gradient is several orders of magnitude smaller. This may lead to large |
---|
563 | truncation errors in the pressure gradient terms. Thus, the two horizontal components |
---|
564 | of the hydrostatic pressure gradient are computed directly as follows: |
---|
565 | |
---|
566 | for $k=km$ (surface layer, $jk=1$ in the code) |
---|
567 | \begin{equation} \label{Eq_dynhpg_zco_surf} |
---|
568 | \left\{ \begin{aligned} |
---|
569 | \left. \delta _{i+1/2} \left[ p^h \right] \right|_{k=km} |
---|
570 | &= \frac{1}{2} g \ \left. \delta _{i+1/2} \left[ e_{3w} \ \rho \right] \right|_{k=km} \\ |
---|
571 | \left. \delta _{j+1/2} \left[ p^h \right] \right|_{k=km} |
---|
572 | &= \frac{1}{2} g \ \left. \delta _{j+1/2} \left[ e_{3w} \ \rho \right] \right|_{k=km} \\ |
---|
573 | \end{aligned} \right. |
---|
574 | \end{equation} |
---|
575 | |
---|
576 | for $1<k<km$ (interior layer) |
---|
577 | \begin{equation} \label{Eq_dynhpg_zco} |
---|
578 | \left\{ \begin{aligned} |
---|
579 | \left. \delta _{i+1/2} \left[ p^h \right] \right|_{k} |
---|
580 | &= \left. \delta _{i+1/2} \left[ p^h \right] \right|_{k-1} |
---|
581 | + \frac{1}{2}\;g\; \left. \delta _{i+1/2} \left[ e_{3w} \ \overline {\rho}^{k+1/2} \right] \right|_{k} \\ |
---|
582 | \left. \delta _{j+1/2} \left[ p^h \right] \right|_{k} |
---|
583 | &= \left. \delta _{j+1/2} \left[ p^h \right] \right|_{k-1} |
---|
584 | + \frac{1}{2}\;g\; \left. \delta _{j+1/2} \left[ e_{3w} \ \overline {\rho}^{k+1/2} \right] \right|_{k} \\ |
---|
585 | \end{aligned} \right. |
---|
586 | \end{equation} |
---|
587 | |
---|
588 | Note that the $1/2$ factor in (\ref{Eq_dynhpg_zco_surf}) is adequate because of |
---|
589 | the definition of $e_{3w}$ as the vertical derivative of the scale factor at the surface |
---|
590 | level ($z=0$). Note also that in case of variable volume level (\key{vvl} defined), the |
---|
591 | surface pressure gradient is included in \eqref{Eq_dynhpg_zco_surf} and \eqref{Eq_dynhpg_zco} |
---|
592 | through the space and time variations of the vertical scale factor $e_{3w}$. |
---|
593 | |
---|
594 | %-------------------------------------------------------------------------------------------------------------- |
---|
595 | % z-coordinate with partial step |
---|
596 | %-------------------------------------------------------------------------------------------------------------- |
---|
597 | \subsection [$z$-coordinate with partial step (\protect\np{ln\_dynhpg\_zps})] |
---|
598 | {$z$-coordinate with partial step (\protect\np{ln\_dynhpg\_zps}=true)} |
---|
599 | \label{DYN_hpg_zps} |
---|
600 | |
---|
601 | With partial bottom cells, tracers in horizontally adjacent cells generally live at |
---|
602 | different depths. Before taking horizontal gradients between these tracer points, |
---|
603 | a linear interpolation is used to approximate the deeper tracer as if it actually lived |
---|
604 | at the depth of the shallower tracer point. |
---|
605 | |
---|
606 | Apart from this modification, the horizontal hydrostatic pressure gradient evaluated |
---|
607 | in the $z$-coordinate with partial step is exactly as in the pure $z$-coordinate case. |
---|
608 | As explained in detail in section \S\ref{TRA_zpshde}, the nonlinearity of pressure |
---|
609 | effects in the equation of state is such that it is better to interpolate temperature and |
---|
610 | salinity vertically before computing the density. Horizontal gradients of temperature |
---|
611 | and salinity are needed for the TRA modules, which is the reason why the horizontal |
---|
612 | gradients of density at the deepest model level are computed in module \mdl{zpsdhe} |
---|
613 | located in the TRA directory and described in \S\ref{TRA_zpshde}. |
---|
614 | |
---|
615 | %-------------------------------------------------------------------------------------------------------------- |
---|
616 | % s- and s-z-coordinates |
---|
617 | %-------------------------------------------------------------------------------------------------------------- |
---|
618 | \subsection{$s$- and $z$-$s$-coordinates} |
---|
619 | \label{DYN_hpg_sco} |
---|
620 | |
---|
621 | Pressure gradient formulations in an $s$-coordinate have been the subject of a vast |
---|
622 | number of papers ($e.g.$, \citet{Song1998, Shchepetkin_McWilliams_OM05}). |
---|
623 | A number of different pressure gradient options are coded but the ROMS-like, density Jacobian with |
---|
624 | cubic polynomial method is currently disabled whilst known bugs are under investigation. |
---|
625 | |
---|
626 | $\bullet$ Traditional coding (see for example \citet{Madec_al_JPO96}: (\np{ln\_dynhpg\_sco}=true) |
---|
627 | \begin{equation} \label{Eq_dynhpg_sco} |
---|
628 | \left\{ \begin{aligned} |
---|
629 | - \frac{1} {\rho_o \, e_{1u}} \; \delta _{i+1/2} \left[ p^h \right] |
---|
630 | + \frac{g\; \overline {\rho}^{i+1/2}} {\rho_o \, e_{1u}} \; \delta _{i+1/2} \left[ z_t \right] \\ |
---|
631 | - \frac{1} {\rho_o \, e_{2v}} \; \delta _{j+1/2} \left[ p^h \right] |
---|
632 | + \frac{g\; \overline {\rho}^{j+1/2}} {\rho_o \, e_{2v}} \; \delta _{j+1/2} \left[ z_t \right] \\ |
---|
633 | \end{aligned} \right. |
---|
634 | \end{equation} |
---|
635 | |
---|
636 | Where the first term is the pressure gradient along coordinates, computed as in |
---|
637 | \eqref{Eq_dynhpg_zco_surf} - \eqref{Eq_dynhpg_zco}, and $z_T$ is the depth of |
---|
638 | the $T$-point evaluated from the sum of the vertical scale factors at the $w$-point |
---|
639 | ($e_{3w}$). |
---|
640 | |
---|
641 | $\bullet$ Traditional coding with adaptation for ice shelf cavities (\np{ln\_dynhpg\_isf}=true). |
---|
642 | This scheme need the activation of ice shelf cavities (\np{ln\_isfcav}=true). |
---|
643 | |
---|
644 | $\bullet$ Pressure Jacobian scheme (prj) (a research paper in preparation) (\np{ln\_dynhpg\_prj}=true) |
---|
645 | |
---|
646 | $\bullet$ Density Jacobian with cubic polynomial scheme (DJC) \citep{Shchepetkin_McWilliams_OM05} |
---|
647 | (\np{ln\_dynhpg\_djc}=true) (currently disabled; under development) |
---|
648 | |
---|
649 | Note that expression \eqref{Eq_dynhpg_sco} is commonly used when the variable volume formulation is |
---|
650 | activated (\key{vvl}) because in that case, even with a flat bottom, the coordinate surfaces are not |
---|
651 | horizontal but follow the free surface \citep{Levier2007}. The pressure jacobian scheme |
---|
652 | (\np{ln\_dynhpg\_prj}=true) is available as an improved option to \np{ln\_dynhpg\_sco}=true when |
---|
653 | \key{vvl} is active. The pressure Jacobian scheme uses a constrained cubic spline to reconstruct |
---|
654 | the density profile across the water column. This method maintains the monotonicity between the |
---|
655 | density nodes The pressure can be calculated by analytical integration of the density profile and a |
---|
656 | pressure Jacobian method is used to solve the horizontal pressure gradient. This method can provide |
---|
657 | a more accurate calculation of the horizontal pressure gradient than the standard scheme. |
---|
658 | |
---|
659 | \subsection{Ice shelf cavity} |
---|
660 | \label{DYN_hpg_isf} |
---|
661 | Beneath an ice shelf, the total pressure gradient is the sum of the pressure gradient due to the ice shelf load and |
---|
662 | the pressure gradient due to the ocean load. If cavity opened (\np{ln\_isfcav}~=~true) these 2 terms can be |
---|
663 | calculated by setting \np{ln\_dynhpg\_isf}~=~true. No other scheme are working with the ice shelf.\\ |
---|
664 | |
---|
665 | $\bullet$ The main hypothesis to compute the ice shelf load is that the ice shelf is in an isostatic equilibrium. |
---|
666 | The top pressure is computed integrating from surface to the base of the ice shelf a reference density profile |
---|
667 | (prescribed as density of a water at 34.4 PSU and -1.9\degC) and corresponds to the water replaced by the ice shelf. |
---|
668 | This top pressure is constant over time. A detailed description of this method is described in \citet{Losch2008}.\\ |
---|
669 | |
---|
670 | $\bullet$ The ocean load is computed using the expression \eqref{Eq_dynhpg_sco} described in \ref{DYN_hpg_sco}. |
---|
671 | |
---|
672 | %-------------------------------------------------------------------------------------------------------------- |
---|
673 | % Time-scheme |
---|
674 | %-------------------------------------------------------------------------------------------------------------- |
---|
675 | \subsection [Time-scheme (\protect\np{ln\_dynhpg\_imp}) ] |
---|
676 | {Time-scheme (\protect\np{ln\_dynhpg\_imp}= true/false)} |
---|
677 | \label{DYN_hpg_imp} |
---|
678 | |
---|
679 | The default time differencing scheme used for the horizontal pressure gradient is |
---|
680 | a leapfrog scheme and therefore the density used in all discrete expressions given |
---|
681 | above is the \textit{now} density, computed from the \textit{now} temperature and |
---|
682 | salinity. In some specific cases (usually high resolution simulations over an ocean |
---|
683 | domain which includes weakly stratified regions) the physical phenomenon that |
---|
684 | controls the time-step is internal gravity waves (IGWs). A semi-implicit scheme for |
---|
685 | doubling the stability limit associated with IGWs can be used \citep{Brown_Campana_MWR78, |
---|
686 | Maltrud1998}. It involves the evaluation of the hydrostatic pressure gradient as an |
---|
687 | average over the three time levels $t-\rdt$, $t$, and $t+\rdt$ ($i.e.$ |
---|
688 | \textit{before}, \textit{now} and \textit{after} time-steps), rather than at the central |
---|
689 | time level $t$ only, as in the standard leapfrog scheme. |
---|
690 | |
---|
691 | $\bullet$ leapfrog scheme (\np{ln\_dynhpg\_imp}=true): |
---|
692 | |
---|
693 | \begin{equation} \label{Eq_dynhpg_lf} |
---|
694 | \frac{u^{t+\rdt}-u^{t-\rdt}}{2\rdt} = \;\cdots \; |
---|
695 | -\frac{1}{\rho _o \,e_{1u} }\delta _{i+1/2} \left[ {p_h^t } \right] |
---|
696 | \end{equation} |
---|
697 | |
---|
698 | $\bullet$ semi-implicit scheme (\np{ln\_dynhpg\_imp}=true): |
---|
699 | \begin{equation} \label{Eq_dynhpg_imp} |
---|
700 | \frac{u^{t+\rdt}-u^{t-\rdt}}{2\rdt} = \;\cdots \; |
---|
701 | -\frac{1}{4\,\rho _o \,e_{1u} } \delta_{i+1/2} \left[ p_h^{t+\rdt} +2\,p_h^t +p_h^{t-\rdt} \right] |
---|
702 | \end{equation} |
---|
703 | |
---|
704 | The semi-implicit time scheme \eqref{Eq_dynhpg_imp} is made possible without |
---|
705 | significant additional computation since the density can be updated to time level |
---|
706 | $t+\rdt$ before computing the horizontal hydrostatic pressure gradient. It can |
---|
707 | be easily shown that the stability limit associated with the hydrostatic pressure |
---|
708 | gradient doubles using \eqref{Eq_dynhpg_imp} compared to that using the |
---|
709 | standard leapfrog scheme \eqref{Eq_dynhpg_lf}. Note that \eqref{Eq_dynhpg_imp} |
---|
710 | is equivalent to applying a time filter to the pressure gradient to eliminate high |
---|
711 | frequency IGWs. Obviously, when using \eqref{Eq_dynhpg_imp}, the doubling of |
---|
712 | the time-step is achievable only if no other factors control the time-step, such as |
---|
713 | the stability limits associated with advection or diffusion. |
---|
714 | |
---|
715 | In practice, the semi-implicit scheme is used when \np{ln\_dynhpg\_imp}=true. |
---|
716 | In this case, we choose to apply the time filter to temperature and salinity used in |
---|
717 | the equation of state, instead of applying it to the hydrostatic pressure or to the |
---|
718 | density, so that no additional storage array has to be defined. The density used to |
---|
719 | compute the hydrostatic pressure gradient (whatever the formulation) is evaluated |
---|
720 | as follows: |
---|
721 | \begin{equation} \label{Eq_rho_flt} |
---|
722 | \rho^t = \rho( \widetilde{T},\widetilde {S},z_t) |
---|
723 | \quad \text{with} \quad |
---|
724 | \widetilde{X} = 1 / 4 \left( X^{t+\rdt} +2 \,X^t + X^{t-\rdt} \right) |
---|
725 | \end{equation} |
---|
726 | |
---|
727 | Note that in the semi-implicit case, it is necessary to save the filtered density, an |
---|
728 | extra three-dimensional field, in the restart file to restart the model with exact |
---|
729 | reproducibility. This option is controlled by \np{nn\_dynhpg\_rst}, a namelist parameter. |
---|
730 | |
---|
731 | % ================================================================ |
---|
732 | % Surface Pressure Gradient |
---|
733 | % ================================================================ |
---|
734 | \section [Surface pressure gradient (\textit{dynspg}) ] |
---|
735 | {Surface pressure gradient (\protect\mdl{dynspg})} |
---|
736 | \label{DYN_spg} |
---|
737 | %-----------------------------------------nam_dynspg---------------------------------------------------- |
---|
738 | \fortranfile{namelists/namdyn_spg} |
---|
739 | %------------------------------------------------------------------------------------------------------------ |
---|
740 | |
---|
741 | $\ $\newline %force an empty line |
---|
742 | |
---|
743 | Options are defined through the \ngn{namdyn\_spg} namelist variables. |
---|
744 | The surface pressure gradient term is related to the representation of the free surface (\S\ref{PE_hor_pg}). |
---|
745 | The main distinction is between the fixed volume case (linear free surface) and the variable volume case |
---|
746 | (nonlinear free surface, \key{vvl} is defined). In the linear free surface case (\S\ref{PE_free_surface}) |
---|
747 | the vertical scale factors $e_{3}$ are fixed in time, while they are time-dependent in the nonlinear case |
---|
748 | (\S\ref{PE_free_surface}). |
---|
749 | With both linear and nonlinear free surface, external gravity waves are allowed in the equations, |
---|
750 | which imposes a very small time step when an explicit time stepping is used. |
---|
751 | Two methods are proposed to allow a longer time step for the three-dimensional equations: |
---|
752 | the filtered free surface, which is a modification of the continuous equations (see \eqref{Eq_PE_flt}), |
---|
753 | and the split-explicit free surface described below. |
---|
754 | The extra term introduced in the filtered method is calculated implicitly, |
---|
755 | so that the update of the next velocities is done in module \mdl{dynspg\_flt} and not in \mdl{dynnxt}. |
---|
756 | |
---|
757 | |
---|
758 | The form of the surface pressure gradient term depends on how the user wants to handle |
---|
759 | the fast external gravity waves that are a solution of the analytical equation (\S\ref{PE_hor_pg}). |
---|
760 | Three formulations are available, all controlled by a CPP key (ln\_dynspg\_xxx): |
---|
761 | an explicit formulation which requires a small time step ; |
---|
762 | a filtered free surface formulation which allows a larger time step by adding a filtering |
---|
763 | term into the momentum equation ; |
---|
764 | and a split-explicit free surface formulation, described below, which also allows a larger time step. |
---|
765 | |
---|
766 | The extra term introduced in the filtered method is calculated |
---|
767 | implicitly, so that a solver is used to compute it. As a consequence the update of the $next$ |
---|
768 | velocities is done in module \mdl{dynspg\_flt} and not in \mdl{dynnxt}. |
---|
769 | |
---|
770 | |
---|
771 | %-------------------------------------------------------------------------------------------------------------- |
---|
772 | % Explicit free surface formulation |
---|
773 | %-------------------------------------------------------------------------------------------------------------- |
---|
774 | \subsection{Explicit free surface (\protect\key{dynspg\_exp})} |
---|
775 | \label{DYN_spg_exp} |
---|
776 | |
---|
777 | In the explicit free surface formulation (\key{dynspg\_exp} defined), the model time step |
---|
778 | is chosen to be small enough to resolve the external gravity waves (typically a few tens of seconds). |
---|
779 | The surface pressure gradient, evaluated using a leap-frog scheme ($i.e.$ centered in time), |
---|
780 | is thus simply given by : |
---|
781 | \begin{equation} \label{Eq_dynspg_exp} |
---|
782 | \left\{ \begin{aligned} |
---|
783 | - \frac{1}{e_{1u}\,\rho_o} \; \delta _{i+1/2} \left[ \,\rho \,\eta\, \right] \\ |
---|
784 | - \frac{1}{e_{2v}\,\rho_o} \; \delta _{j+1/2} \left[ \,\rho \,\eta\, \right] |
---|
785 | \end{aligned} \right. |
---|
786 | \end{equation} |
---|
787 | |
---|
788 | Note that in the non-linear free surface case ($i.e.$ \key{vvl} defined), the surface pressure |
---|
789 | gradient is already included in the momentum tendency through the level thickness variation |
---|
790 | allowed in the computation of the hydrostatic pressure gradient. Thus, nothing is done in the \mdl{dynspg\_exp} module. |
---|
791 | |
---|
792 | %-------------------------------------------------------------------------------------------------------------- |
---|
793 | % Split-explict free surface formulation |
---|
794 | %-------------------------------------------------------------------------------------------------------------- |
---|
795 | \subsection{Split-Explicit free surface (\protect\key{dynspg\_ts})} |
---|
796 | \label{DYN_spg_ts} |
---|
797 | %------------------------------------------namsplit----------------------------------------------------------- |
---|
798 | %\fortranfile{namelists/namsplit} |
---|
799 | %------------------------------------------------------------------------------------------------------------- |
---|
800 | |
---|
801 | The split-explicit free surface formulation used in \NEMO (\key{dynspg\_ts} defined), |
---|
802 | also called the time-splitting formulation, follows the one |
---|
803 | proposed by \citet{Shchepetkin_McWilliams_OM05}. The general idea is to solve the free surface |
---|
804 | equation and the associated barotropic velocity equations with a smaller time |
---|
805 | step than $\rdt$, the time step used for the three dimensional prognostic |
---|
806 | variables (Fig.~\ref{Fig_DYN_dynspg_ts}). |
---|
807 | The size of the small time step, $\rdt_e$ (the external mode or barotropic time step) |
---|
808 | is provided through the \np{nn\_baro} namelist parameter as: |
---|
809 | $\rdt_e = \rdt / nn\_baro$. This parameter can be optionally defined automatically (\np{ln\_bt\_nn\_auto}=true) |
---|
810 | considering that the stability of the barotropic system is essentially controled by external waves propagation. |
---|
811 | Maximum Courant number is in that case time independent, and easily computed online from the input bathymetry. |
---|
812 | Therefore, $\rdt_e$ is adjusted so that the Maximum allowed Courant number is smaller than \np{rn\_bt\_cmax}. |
---|
813 | |
---|
814 | %%% |
---|
815 | The barotropic mode solves the following equations: |
---|
816 | \begin{subequations} \label{Eq_BT} |
---|
817 | \begin{equation} \label{Eq_BT_dyn} |
---|
818 | \frac{\partial {\rm \overline{{\bf U}}_h} }{\partial t}= |
---|
819 | -f\;{\rm {\bf k}}\times {\rm \overline{{\bf U}}_h} |
---|
820 | -g\nabla _h \eta -\frac{c_b^{\textbf U}}{H+\eta} \rm {\overline{{\bf U}}_h} + \rm {\overline{\bf G}} |
---|
821 | \end{equation} |
---|
822 | |
---|
823 | \begin{equation} \label{Eq_BT_ssh} |
---|
824 | \frac{\partial \eta }{\partial t}=-\nabla \cdot \left[ {\left( {H+\eta } \right) \; {\rm{\bf \overline{U}}}_h \,} \right]+P-E |
---|
825 | \end{equation} |
---|
826 | \end{subequations} |
---|
827 | where $\rm {\overline{\bf G}}$ is a forcing term held constant, containing coupling term between modes, surface atmospheric forcing as well as slowly varying barotropic terms not explicitly computed to gain efficiency. The third term on the right hand side of \eqref{Eq_BT_dyn} represents the bottom stress (see section \S\ref{ZDF_bfr}), explicitly accounted for at each barotropic iteration. Temporal discretization of the system above follows a three-time step Generalized Forward Backward algorithm detailed in \citet{Shchepetkin_McWilliams_OM05}. AB3-AM4 coefficients used in \NEMO follow the second-order accurate, "multi-purpose" stability compromise as defined in \citet{Shchepetkin_McWilliams_Bk08} (see their figure 12, lower left). |
---|
828 | |
---|
829 | %> > > > > > > > > > > > > > > > > > > > > > > > > > > > |
---|
830 | \begin{figure}[!t] \begin{center} |
---|
831 | \includegraphics[width=0.7\textwidth]{Fig_DYN_dynspg_ts} |
---|
832 | \caption{ \protect\label{Fig_DYN_dynspg_ts} |
---|
833 | Schematic of the split-explicit time stepping scheme for the external |
---|
834 | and internal modes. Time increases to the right. In this particular exemple, |
---|
835 | a boxcar averaging window over $nn\_baro$ barotropic time steps is used ($nn\_bt\_flt=1$) and $nn\_baro=5$. |
---|
836 | Internal mode time steps (which are also the model time steps) are denoted |
---|
837 | by $t-\rdt$, $t$ and $t+\rdt$. Variables with $k$ superscript refer to instantaneous barotropic variables, |
---|
838 | $< >$ and $<< >>$ operator refer to time filtered variables using respectively primary (red vertical bars) and secondary weights (blue vertical bars). |
---|
839 | The former are used to obtain time filtered quantities at $t+\rdt$ while the latter are used to obtain time averaged |
---|
840 | transports to advect tracers. |
---|
841 | a) Forward time integration: \protect\np{ln\_bt\_fw}=true, \protect\np{ln\_bt\_av}=true. |
---|
842 | b) Centred time integration: \protect\np{ln\_bt\_fw}=false, \protect\np{ln\_bt\_av}=true. |
---|
843 | c) Forward time integration with no time filtering (POM-like scheme): \protect\np{ln\_bt\_fw}=true, \protect\np{ln\_bt\_av}=false. } |
---|
844 | \end{center} \end{figure} |
---|
845 | %> > > > > > > > > > > > > > > > > > > > > > > > > > > > |
---|
846 | |
---|
847 | In the default case (\np{ln\_bt\_fw}=true), the external mode is integrated |
---|
848 | between \textit{now} and \textit{after} baroclinic time-steps (Fig.~\ref{Fig_DYN_dynspg_ts}a). To avoid aliasing of fast barotropic motions into three dimensional equations, time filtering is eventually applied on barotropic |
---|
849 | quantities (\np{ln\_bt\_av}=true). In that case, the integration is extended slightly beyond \textit{after} time step to provide time filtered quantities. |
---|
850 | These are used for the subsequent initialization of the barotropic mode in the following baroclinic step. |
---|
851 | Since external mode equations written at baroclinic time steps finally follow a forward time stepping scheme, |
---|
852 | asselin filtering is not applied to barotropic quantities. \\ |
---|
853 | Alternatively, one can choose to integrate barotropic equations starting |
---|
854 | from \textit{before} time step (\np{ln\_bt\_fw}=false). Although more computationaly expensive ( \np{nn\_baro} additional iterations are indeed necessary), the baroclinic to barotropic forcing term given at \textit{now} time step |
---|
855 | become centred in the middle of the integration window. It can easily be shown that this property |
---|
856 | removes part of splitting errors between modes, which increases the overall numerical robustness. |
---|
857 | %references to Patrick Marsaleix' work here. Also work done by SHOM group. |
---|
858 | |
---|
859 | %%% |
---|
860 | |
---|
861 | As far as tracer conservation is concerned, barotropic velocities used to advect tracers must also be updated |
---|
862 | at \textit{now} time step. This implies to change the traditional order of computations in \NEMO: most of momentum |
---|
863 | trends (including the barotropic mode calculation) updated first, tracers' after. This \textit{de facto} makes semi-implicit hydrostatic |
---|
864 | pressure gradient (see section \S\ref{DYN_hpg_imp}) and time splitting not compatible. |
---|
865 | Advective barotropic velocities are obtained by using a secondary set of filtering weights, uniquely defined from the filter |
---|
866 | coefficients used for the time averaging (\citet{Shchepetkin_McWilliams_OM05}). Consistency between the time averaged continuity equation and the time stepping of tracers is here the key to obtain exact conservation. |
---|
867 | |
---|
868 | %%% |
---|
869 | |
---|
870 | One can eventually choose to feedback instantaneous values by not using any time filter (\np{ln\_bt\_av}=false). |
---|
871 | In that case, external mode equations are continuous in time, ie they are not re-initialized when starting a new |
---|
872 | sub-stepping sequence. This is the method used so far in the POM model, the stability being maintained by refreshing at (almost) |
---|
873 | each barotropic time step advection and horizontal diffusion terms. Since the latter terms have not been added in \NEMO for |
---|
874 | computational efficiency, removing time filtering is not recommended except for debugging purposes. |
---|
875 | This may be used for instance to appreciate the damping effect of the standard formulation on external gravity waves in idealized or weakly non-linear cases. Although the damping is lower than for the filtered free surface, it is still significant as shown by \citet{Levier2007} in the case of an analytical barotropic Kelvin wave. |
---|
876 | |
---|
877 | %>>>>>=============== |
---|
878 | \gmcomment{ %%% copy from griffies Book |
---|
879 | |
---|
880 | \textbf{title: Time stepping the barotropic system } |
---|
881 | |
---|
882 | Assume knowledge of the full velocity and tracer fields at baroclinic time $\tau$. Hence, |
---|
883 | we can update the surface height and vertically integrated velocity with a leap-frog |
---|
884 | scheme using the small barotropic time step $\rdt$. We have |
---|
885 | |
---|
886 | \begin{equation} \label{DYN_spg_ts_eta} |
---|
887 | \eta^{(b)}(\tau,t_{n+1}) - \eta^{(b)}(\tau,t_{n+1}) (\tau,t_{n-1}) |
---|
888 | = 2 \rdt \left[-\nabla \cdot \textbf{U}^{(b)}(\tau,t_n) + \text{EMP}_w(\tau) \right] |
---|
889 | \end{equation} |
---|
890 | \begin{multline} \label{DYN_spg_ts_u} |
---|
891 | \textbf{U}^{(b)}(\tau,t_{n+1}) - \textbf{U}^{(b)}(\tau,t_{n-1}) \\ |
---|
892 | = 2\rdt \left[ - f \textbf{k} \times \textbf{U}^{(b)}(\tau,t_{n}) |
---|
893 | - H(\tau) \nabla p_s^{(b)}(\tau,t_{n}) +\textbf{M}(\tau) \right] |
---|
894 | \end{multline} |
---|
895 | \ |
---|
896 | |
---|
897 | In these equations, araised (b) denotes values of surface height and vertically integrated velocity updated with the barotropic time steps. The $\tau$ time label on $\eta^{(b)}$ |
---|
898 | and $U^{(b)}$ denotes the baroclinic time at which the vertically integrated forcing $\textbf{M}(\tau)$ (note that this forcing includes the surface freshwater forcing), the tracer fields, the freshwater flux $\text{EMP}_w(\tau)$, and total depth of the ocean $H(\tau)$ are held for the duration of the barotropic time stepping over a single cycle. This is also the time |
---|
899 | that sets the barotropic time steps via |
---|
900 | \begin{equation} \label{DYN_spg_ts_t} |
---|
901 | t_n=\tau+n\rdt |
---|
902 | \end{equation} |
---|
903 | with $n$ an integer. The density scaled surface pressure is evaluated via |
---|
904 | \begin{equation} \label{DYN_spg_ts_ps} |
---|
905 | p_s^{(b)}(\tau,t_{n}) = \begin{cases} |
---|
906 | g \;\eta_s^{(b)}(\tau,t_{n}) \;\rho(\tau)_{k=1}) / \rho_o & \text{non-linear case} \\ |
---|
907 | g \;\eta_s^{(b)}(\tau,t_{n}) & \text{linear case} |
---|
908 | \end{cases} |
---|
909 | \end{equation} |
---|
910 | To get started, we assume the following initial conditions |
---|
911 | \begin{equation} \label{DYN_spg_ts_eta} |
---|
912 | \begin{split} |
---|
913 | \eta^{(b)}(\tau,t_{n=0}) &= \overline{\eta^{(b)}(\tau)} |
---|
914 | \\ |
---|
915 | \eta^{(b)}(\tau,t_{n=1}) &= \eta^{(b)}(\tau,t_{n=0}) + \rdt \ \text{RHS}_{n=0} |
---|
916 | \end{split} |
---|
917 | \end{equation} |
---|
918 | with |
---|
919 | \begin{equation} \label{DYN_spg_ts_etaF} |
---|
920 | \overline{\eta^{(b)}(\tau)} = \frac{1}{N+1} \sum\limits_{n=0}^N \eta^{(b)}(\tau-\rdt,t_{n}) |
---|
921 | \end{equation} |
---|
922 | the time averaged surface height taken from the previous barotropic cycle. Likewise, |
---|
923 | \begin{equation} \label{DYN_spg_ts_u} |
---|
924 | \textbf{U}^{(b)}(\tau,t_{n=0}) = \overline{\textbf{U}^{(b)}(\tau)} \\ |
---|
925 | \\ |
---|
926 | \textbf{U}(\tau,t_{n=1}) = \textbf{U}^{(b)}(\tau,t_{n=0}) + \rdt \ \text{RHS}_{n=0} |
---|
927 | \end{equation} |
---|
928 | with |
---|
929 | \begin{equation} \label{DYN_spg_ts_u} |
---|
930 | \overline{\textbf{U}^{(b)}(\tau)} |
---|
931 | = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau-\rdt,t_{n}) |
---|
932 | \end{equation} |
---|
933 | the time averaged vertically integrated transport. Notably, there is no Robert-Asselin time filter used in the barotropic portion of the integration. |
---|
934 | |
---|
935 | Upon reaching $t_{n=N} = \tau + 2\rdt \tau$ , the vertically integrated velocity is time averaged to produce the updated vertically integrated velocity at baroclinic time $\tau + \rdt \tau$ |
---|
936 | \begin{equation} \label{DYN_spg_ts_u} |
---|
937 | \textbf{U}(\tau+\rdt) = \overline{\textbf{U}^{(b)}(\tau+\rdt)} |
---|
938 | = \frac{1}{N+1} \sum\limits_{n=0}^N\textbf{U}^{(b)}(\tau,t_{n}) |
---|
939 | \end{equation} |
---|
940 | The surface height on the new baroclinic time step is then determined via a baroclinic leap-frog using the following form |
---|
941 | |
---|
942 | \begin{equation} \label{DYN_spg_ts_ssh} |
---|
943 | \eta(\tau+\Delta) - \eta^{F}(\tau-\Delta) = 2\rdt \ \left[ - \nabla \cdot \textbf{U}(\tau) + \text{EMP}_w \right] |
---|
944 | \end{equation} |
---|
945 | |
---|
946 | The use of this "big-leap-frog" scheme for the surface height ensures compatibility between the mass/volume budgets and the tracer budgets. More discussion of this point is provided in Chapter 10 (see in particular Section 10.2). |
---|
947 | |
---|
948 | In general, some form of time filter is needed to maintain integrity of the surface |
---|
949 | height field due to the leap-frog splitting mode in equation \ref{DYN_spg_ts_ssh}. We |
---|
950 | have tried various forms of such filtering, with the following method discussed in |
---|
951 | \cite{Griffies_al_MWR01} chosen due to its stability and reasonably good maintenance of |
---|
952 | tracer conservation properties (see Section ??) |
---|
953 | |
---|
954 | \begin{equation} \label{DYN_spg_ts_sshf} |
---|
955 | \eta^{F}(\tau-\Delta) = \overline{\eta^{(b)}(\tau)} |
---|
956 | \end{equation} |
---|
957 | Another approach tried was |
---|
958 | |
---|
959 | \begin{equation} \label{DYN_spg_ts_sshf2} |
---|
960 | \eta^{F}(\tau-\Delta) = \eta(\tau) |
---|
961 | + (\alpha/2) \left[\overline{\eta^{(b)}}(\tau+\rdt) |
---|
962 | + \overline{\eta^{(b)}}(\tau-\rdt) -2 \;\eta(\tau) \right] |
---|
963 | \end{equation} |
---|
964 | |
---|
965 | which is useful since it isolates all the time filtering aspects into the term multiplied |
---|
966 | by $\alpha$. This isolation allows for an easy check that tracer conservation is exact when |
---|
967 | eliminating tracer and surface height time filtering (see Section ?? for more complete discussion). However, in the general case with a non-zero $\alpha$, the filter \ref{DYN_spg_ts_sshf} was found to be more conservative, and so is recommended. |
---|
968 | |
---|
969 | } %%end gm comment (copy of griffies book) |
---|
970 | |
---|
971 | %>>>>>=============== |
---|
972 | |
---|
973 | |
---|
974 | %-------------------------------------------------------------------------------------------------------------- |
---|
975 | % Filtered free surface formulation |
---|
976 | %-------------------------------------------------------------------------------------------------------------- |
---|
977 | \subsection{Filtered free surface (\protect\key{dynspg\_flt})} |
---|
978 | \label{DYN_spg_fltp} |
---|
979 | |
---|
980 | The filtered formulation follows the \citet{Roullet_Madec_JGR00} implementation. |
---|
981 | The extra term introduced in the equations (see \S\ref{PE_free_surface}) is solved implicitly. |
---|
982 | The elliptic solvers available in the code are documented in \S\ref{MISC}. |
---|
983 | |
---|
984 | %% gm %%======>>>> given here the discrete eqs provided to the solver |
---|
985 | \gmcomment{ %%% copy from chap-model basics |
---|
986 | \begin{equation} \label{Eq_spg_flt} |
---|
987 | \frac{\partial {\rm {\bf U}}_h }{\partial t}= {\rm {\bf M}} |
---|
988 | - g \nabla \left( \tilde{\rho} \ \eta \right) |
---|
989 | - g \ T_c \nabla \left( \widetilde{\rho} \ \partial_t \eta \right) |
---|
990 | \end{equation} |
---|
991 | where $T_c$, is a parameter with dimensions of time which characterizes the force, |
---|
992 | $\widetilde{\rho} = \rho / \rho_o$ is the dimensionless density, and $\rm {\bf M}$ |
---|
993 | represents the collected contributions of the Coriolis, hydrostatic pressure gradient, |
---|
994 | non-linear and viscous terms in \eqref{Eq_PE_dyn}. |
---|
995 | } %end gmcomment |
---|
996 | |
---|
997 | Note that in the linear free surface formulation (\key{vvl} not defined), the ocean depth |
---|
998 | is time-independent and so is the matrix to be inverted. It is computed once and for all and applies to all ocean time steps. |
---|
999 | |
---|
1000 | % ================================================================ |
---|
1001 | % Lateral diffusion term |
---|
1002 | % ================================================================ |
---|
1003 | \section [Lateral diffusion term (\textit{dynldf})] |
---|
1004 | {Lateral diffusion term (\protect\mdl{dynldf})} |
---|
1005 | \label{DYN_ldf} |
---|
1006 | %------------------------------------------nam_dynldf---------------------------------------------------- |
---|
1007 | \fortranfile{namelists/namdyn_ldf} |
---|
1008 | %------------------------------------------------------------------------------------------------------------- |
---|
1009 | |
---|
1010 | Options are defined through the \ngn{namdyn\_ldf} namelist variables. |
---|
1011 | The options available for lateral diffusion are to use either laplacian |
---|
1012 | (rotated or not) or biharmonic operators. The coefficients may be constant |
---|
1013 | or spatially variable; the description of the coefficients is found in the chapter |
---|
1014 | on lateral physics (Chap.\ref{LDF}). The lateral diffusion of momentum is |
---|
1015 | evaluated using a forward scheme, $i.e.$ the velocity appearing in its expression |
---|
1016 | is the \textit{before} velocity in time, except for the pure vertical component |
---|
1017 | that appears when a tensor of rotation is used. This latter term is solved |
---|
1018 | implicitly together with the vertical diffusion term (see \S\ref{STP}) |
---|
1019 | |
---|
1020 | At the lateral boundaries either free slip, no slip or partial slip boundary |
---|
1021 | conditions are applied according to the user's choice (see Chap.\ref{LBC}). |
---|
1022 | |
---|
1023 | \gmcomment{ |
---|
1024 | Hyperviscous operators are frequently used in the simulation of turbulent flows to control |
---|
1025 | the dissipation of unresolved small scale features. |
---|
1026 | Their primary role is to provide strong dissipation at the smallest scale supported by the grid |
---|
1027 | while minimizing the impact on the larger scale features. |
---|
1028 | Hyperviscous operators are thus designed to be more scale selective than the traditional, |
---|
1029 | physically motivated Laplace operator. |
---|
1030 | In finite difference methods, the biharmonic operator is frequently the method of choice to achieve |
---|
1031 | this scale selective dissipation since its damping time ($i.e.$ its spin down time) |
---|
1032 | scale like $\lambda^{-4}$ for disturbances of wavelength $\lambda$ |
---|
1033 | (so that short waves damped more rapidelly than long ones), |
---|
1034 | whereas the Laplace operator damping time scales only like $\lambda^{-2}$. |
---|
1035 | } |
---|
1036 | |
---|
1037 | % ================================================================ |
---|
1038 | \subsection [Iso-level laplacian operator (\protect\np{ln\_dynldf\_lap}) ] |
---|
1039 | {Iso-level laplacian operator (\protect\np{ln\_dynldf\_lap}=true)} |
---|
1040 | \label{DYN_ldf_lap} |
---|
1041 | |
---|
1042 | For lateral iso-level diffusion, the discrete operator is: |
---|
1043 | \begin{equation} \label{Eq_dynldf_lap} |
---|
1044 | \left\{ \begin{aligned} |
---|
1045 | D_u^{l{\rm {\bf U}}} =\frac{1}{e_{1u} }\delta _{i+1/2} \left[ {A_T^{lm} |
---|
1046 | \;\chi } \right]-\frac{1}{e_{2u} {\kern 1pt}e_{3u} }\delta _j \left[ |
---|
1047 | {A_f^{lm} \;e_{3f} \zeta } \right] \\ |
---|
1048 | \\ |
---|
1049 | D_v^{l{\rm {\bf U}}} =\frac{1}{e_{2v} }\delta _{j+1/2} \left[ {A_T^{lm} |
---|
1050 | \;\chi } \right]+\frac{1}{e_{1v} {\kern 1pt}e_{3v} }\delta _i \left[ |
---|
1051 | {A_f^{lm} \;e_{3f} \zeta } \right] \\ |
---|
1052 | \end{aligned} \right. |
---|
1053 | \end{equation} |
---|
1054 | |
---|
1055 | As explained in \S\ref{PE_ldf}, this formulation (as the gradient of a divergence |
---|
1056 | and curl of the vorticity) preserves symmetry and ensures a complete |
---|
1057 | separation between the vorticity and divergence parts of the momentum diffusion. |
---|
1058 | |
---|
1059 | %-------------------------------------------------------------------------------------------------------------- |
---|
1060 | % Rotated laplacian operator |
---|
1061 | %-------------------------------------------------------------------------------------------------------------- |
---|
1062 | \subsection [Rotated laplacian operator (\protect\np{ln\_dynldf\_iso}) ] |
---|
1063 | {Rotated laplacian operator (\protect\np{ln\_dynldf\_iso}=true)} |
---|
1064 | \label{DYN_ldf_iso} |
---|
1065 | |
---|
1066 | A rotation of the lateral momentum diffusion operator is needed in several cases: |
---|
1067 | for iso-neutral diffusion in the $z$-coordinate (\np{ln\_dynldf\_iso}=true) and for |
---|
1068 | either iso-neutral (\np{ln\_dynldf\_iso}=true) or geopotential |
---|
1069 | (\np{ln\_dynldf\_hor}=true) diffusion in the $s$-coordinate. In the partial step |
---|
1070 | case, coordinates are horizontal except at the deepest level and no |
---|
1071 | rotation is performed when \np{ln\_dynldf\_hor}=true. The diffusion operator |
---|
1072 | is defined simply as the divergence of down gradient momentum fluxes on each |
---|
1073 | momentum component. It must be emphasized that this formulation ignores |
---|
1074 | constraints on the stress tensor such as symmetry. The resulting discrete |
---|
1075 | representation is: |
---|
1076 | \begin{equation} \label{Eq_dyn_ldf_iso} |
---|
1077 | \begin{split} |
---|
1078 | D_u^{l\textbf{U}} &= \frac{1}{e_{1u} \, e_{2u} \, e_{3u} } \\ |
---|
1079 | & \left\{\quad {\delta _{i+1/2} \left[ {A_T^{lm} \left( |
---|
1080 | {\frac{e_{2t} \; e_{3t} }{e_{1t} } \,\delta _{i}[u] |
---|
1081 | -e_{2t} \; r_{1t} \,\overline{\overline {\delta _{k+1/2}[u]}}^{\,i,\,k}} |
---|
1082 | \right)} \right]} \right. |
---|
1083 | \\ |
---|
1084 | & \qquad +\ \delta_j \left[ {A_f^{lm} \left( {\frac{e_{1f}\,e_{3f} }{e_{2f} |
---|
1085 | }\,\delta _{j+1/2} [u] - e_{1f}\, r_{2f} |
---|
1086 | \,\overline{\overline {\delta _{k+1/2} [u]}} ^{\,j+1/2,\,k}} |
---|
1087 | \right)} \right] |
---|
1088 | \\ |
---|
1089 | &\qquad +\ \delta_k \left[ {A_{uw}^{lm} \left( {-e_{2u} \, r_{1uw} \,\overline{\overline |
---|
1090 | {\delta_{i+1/2} [u]}}^{\,i+1/2,\,k+1/2} } |
---|
1091 | \right.} \right. |
---|
1092 | \\ |
---|
1093 | & \ \qquad \qquad \qquad \quad\ |
---|
1094 | - e_{1u} \, r_{2uw} \,\overline{\overline {\delta_{j+1/2} [u]}} ^{\,j,\,k+1/2} |
---|
1095 | \\ |
---|
1096 | & \left. {\left. { \ \qquad \qquad \qquad \ \ \ \left. {\ |
---|
1097 | +\frac{e_{1u}\, e_{2u} }{e_{3uw} }\,\left( {r_{1uw}^2+r_{2uw}^2} |
---|
1098 | \right)\,\delta_{k+1/2} [u]} \right)} \right]\;\;\;} \right\} |
---|
1099 | \\ |
---|
1100 | \\ |
---|
1101 | D_v^{l\textbf{V}} &= \frac{1}{e_{1v} \, e_{2v} \, e_{3v} } \\ |
---|
1102 | & \left\{\quad {\delta _{i+1/2} \left[ {A_f^{lm} \left( |
---|
1103 | {\frac{e_{2f} \; e_{3f} }{e_{1f} } \,\delta _{i+1/2}[v] |
---|
1104 | -e_{2f} \; r_{1f} \,\overline{\overline {\delta _{k+1/2}[v]}}^{\,i+1/2,\,k}} |
---|
1105 | \right)} \right]} \right. |
---|
1106 | \\ |
---|
1107 | & \qquad +\ \delta_j \left[ {A_T^{lm} \left( {\frac{e_{1t}\,e_{3t} }{e_{2t} |
---|
1108 | }\,\delta _{j} [v] - e_{1t}\, r_{2t} |
---|
1109 | \,\overline{\overline {\delta _{k+1/2} [v]}} ^{\,j,\,k}} |
---|
1110 | \right)} \right] |
---|
1111 | \\ |
---|
1112 | & \qquad +\ \delta_k \left[ {A_{vw}^{lm} \left( {-e_{2v} \, r_{1vw} \,\overline{\overline |
---|
1113 | {\delta_{i+1/2} [v]}}^{\,i+1/2,\,k+1/2} }\right.} \right. |
---|
1114 | \\ |
---|
1115 | & \ \qquad \qquad \qquad \quad\ |
---|
1116 | - e_{1v} \, r_{2vw} \,\overline{\overline {\delta_{j+1/2} [v]}} ^{\,j+1/2,\,k+1/2} |
---|
1117 | \\ |
---|
1118 | & \left. {\left. { \ \qquad \qquad \qquad \ \ \ \left. {\ |
---|
1119 | +\frac{e_{1v}\, e_{2v} }{e_{3vw} }\,\left( {r_{1vw}^2+r_{2vw}^2} |
---|
1120 | \right)\,\delta_{k+1/2} [v]} \right)} \right]\;\;\;} \right\} |
---|
1121 | \end{split} |
---|
1122 | \end{equation} |
---|
1123 | where $r_1$ and $r_2$ are the slopes between the surface along which the |
---|
1124 | diffusion operator acts and the surface of computation ($z$- or $s$-surfaces). |
---|
1125 | The way these slopes are evaluated is given in the lateral physics chapter |
---|
1126 | (Chap.\ref{LDF}). |
---|
1127 | |
---|
1128 | %-------------------------------------------------------------------------------------------------------------- |
---|
1129 | % Iso-level bilaplacian operator |
---|
1130 | %-------------------------------------------------------------------------------------------------------------- |
---|
1131 | \subsection [Iso-level bilaplacian operator (\protect\np{ln\_dynldf\_bilap})] |
---|
1132 | {Iso-level bilaplacian operator (\protect\np{ln\_dynldf\_bilap}=true)} |
---|
1133 | \label{DYN_ldf_bilap} |
---|
1134 | |
---|
1135 | The lateral fourth order operator formulation on momentum is obtained by |
---|
1136 | applying \eqref{Eq_dynldf_lap} twice. It requires an additional assumption on |
---|
1137 | boundary conditions: the first derivative term normal to the coast depends on |
---|
1138 | the free or no-slip lateral boundary conditions chosen, while the third |
---|
1139 | derivative terms normal to the coast are set to zero (see Chap.\ref{LBC}). |
---|
1140 | %%% |
---|
1141 | \gmcomment{add a remark on the the change in the position of the coefficient} |
---|
1142 | %%% |
---|
1143 | |
---|
1144 | % ================================================================ |
---|
1145 | % Vertical diffusion term |
---|
1146 | % ================================================================ |
---|
1147 | \section [Vertical diffusion term (\protect\mdl{dynzdf})] |
---|
1148 | {Vertical diffusion term (\protect\mdl{dynzdf})} |
---|
1149 | \label{DYN_zdf} |
---|
1150 | %----------------------------------------------namzdf------------------------------------------------------ |
---|
1151 | \fortranfile{namelists/namzdf} |
---|
1152 | %------------------------------------------------------------------------------------------------------------- |
---|
1153 | |
---|
1154 | Options are defined through the \ngn{namzdf} namelist variables. |
---|
1155 | The large vertical diffusion coefficient found in the surface mixed layer together |
---|
1156 | with high vertical resolution implies that in the case of explicit time stepping there |
---|
1157 | would be too restrictive a constraint on the time step. Two time stepping schemes |
---|
1158 | can be used for the vertical diffusion term : $(a)$ a forward time differencing |
---|
1159 | scheme (\np{ln\_zdfexp}=true) using a time splitting technique |
---|
1160 | (\np{nn\_zdfexp} $>$ 1) or $(b)$ a backward (or implicit) time differencing scheme |
---|
1161 | (\np{ln\_zdfexp}=false) (see \S\ref{STP}). Note that namelist variables |
---|
1162 | \np{ln\_zdfexp} and \np{nn\_zdfexp} apply to both tracers and dynamics. |
---|
1163 | |
---|
1164 | The formulation of the vertical subgrid scale physics is the same whatever |
---|
1165 | the vertical coordinate is. The vertical diffusion operators given by |
---|
1166 | \eqref{Eq_PE_zdf} take the following semi-discrete space form: |
---|
1167 | \begin{equation} \label{Eq_dynzdf} |
---|
1168 | \left\{ \begin{aligned} |
---|
1169 | D_u^{vm} &\equiv \frac{1}{e_{3u}} \ \delta _k \left[ \frac{A_{uw}^{vm} }{e_{3uw} } |
---|
1170 | \ \delta _{k+1/2} [\,u\,] \right] \\ |
---|
1171 | \\ |
---|
1172 | D_v^{vm} &\equiv \frac{1}{e_{3v}} \ \delta _k \left[ \frac{A_{vw}^{vm} }{e_{3vw} } |
---|
1173 | \ \delta _{k+1/2} [\,v\,] \right] |
---|
1174 | \end{aligned} \right. |
---|
1175 | \end{equation} |
---|
1176 | where $A_{uw}^{vm} $ and $A_{vw}^{vm} $ are the vertical eddy viscosity and |
---|
1177 | diffusivity coefficients. The way these coefficients are evaluated |
---|
1178 | depends on the vertical physics used (see \S\ref{ZDF}). |
---|
1179 | |
---|
1180 | The surface boundary condition on momentum is the stress exerted by |
---|
1181 | the wind. At the surface, the momentum fluxes are prescribed as the boundary |
---|
1182 | condition on the vertical turbulent momentum fluxes, |
---|
1183 | \begin{equation} \label{Eq_dynzdf_sbc} |
---|
1184 | \left.{\left( {\frac{A^{vm} }{e_3 }\ \frac{\partial \textbf{U}_h}{\partial k}} \right)} \right|_{z=1} |
---|
1185 | = \frac{1}{\rho _o} \binom{\tau _u}{\tau _v } |
---|
1186 | \end{equation} |
---|
1187 | where $\left( \tau _u ,\tau _v \right)$ are the two components of the wind stress |
---|
1188 | vector in the (\textbf{i},\textbf{j}) coordinate system. The high mixing coefficients |
---|
1189 | in the surface mixed layer ensure that the surface wind stress is distributed in |
---|
1190 | the vertical over the mixed layer depth. If the vertical mixing coefficient |
---|
1191 | is small (when no mixed layer scheme is used) the surface stress enters only |
---|
1192 | the top model level, as a body force. The surface wind stress is calculated |
---|
1193 | in the surface module routines (SBC, see Chap.\ref{SBC}) |
---|
1194 | |
---|
1195 | The turbulent flux of momentum at the bottom of the ocean is specified through |
---|
1196 | a bottom friction parameterisation (see \S\ref{ZDF_bfr}) |
---|
1197 | |
---|
1198 | % ================================================================ |
---|
1199 | % External Forcing |
---|
1200 | % ================================================================ |
---|
1201 | \section{External Forcings} |
---|
1202 | \label{DYN_forcing} |
---|
1203 | |
---|
1204 | Besides the surface and bottom stresses (see the above section) which are |
---|
1205 | introduced as boundary conditions on the vertical mixing, three other forcings |
---|
1206 | may enter the dynamical equations by affecting the surface pressure gradient. |
---|
1207 | |
---|
1208 | (1) When \np{ln\_apr\_dyn}~=~true (see \S\ref{SBC_apr}), the atmospheric pressure is taken |
---|
1209 | into account when computing the surface pressure gradient. |
---|
1210 | |
---|
1211 | (2) When \np{ln\_tide\_pot}~=~true and \np{ln\_tide}~=~true (see \S\ref{SBC_tide}), |
---|
1212 | the tidal potential is taken into account when computing the surface pressure gradient. |
---|
1213 | |
---|
1214 | (3) When \np{nn\_ice\_embd}~=~2 and LIM or CICE is used ($i.e.$ when the sea-ice is embedded in the ocean), |
---|
1215 | the snow-ice mass is taken into account when computing the surface pressure gradient. |
---|
1216 | |
---|
1217 | |
---|
1218 | \gmcomment{ missing : the lateral boundary condition !!! another external forcing |
---|
1219 | } |
---|
1220 | |
---|
1221 | % ================================================================ |
---|
1222 | % Time evolution term |
---|
1223 | % ================================================================ |
---|
1224 | \section [Time evolution term (\textit{dynnxt})] |
---|
1225 | {Time evolution term (\protect\mdl{dynnxt})} |
---|
1226 | \label{DYN_nxt} |
---|
1227 | |
---|
1228 | %----------------------------------------------namdom---------------------------------------------------- |
---|
1229 | \fortranfile{namelists/namdom} |
---|
1230 | %------------------------------------------------------------------------------------------------------------- |
---|
1231 | |
---|
1232 | Options are defined through the \ngn{namdom} namelist variables. |
---|
1233 | The general framework for dynamics time stepping is a leap-frog scheme, |
---|
1234 | $i.e.$ a three level centred time scheme associated with an Asselin time filter |
---|
1235 | (cf. Chap.\ref{STP}). The scheme is applied to the velocity, except when using |
---|
1236 | the flux form of momentum advection (cf. \S\ref{DYN_adv_cor_flux}) in the variable |
---|
1237 | volume case (\key{vvl} defined), where it has to be applied to the thickness |
---|
1238 | weighted velocity (see \S\ref{Apdx_A_momentum}) |
---|
1239 | |
---|
1240 | $\bullet$ vector invariant form or linear free surface (\np{ln\_dynhpg\_vec}=true ; \key{vvl} not defined): |
---|
1241 | \begin{equation} \label{Eq_dynnxt_vec} |
---|
1242 | \left\{ \begin{aligned} |
---|
1243 | &u^{t+\rdt} = u_f^{t-\rdt} + 2\rdt \ \text{RHS}_u^t \\ |
---|
1244 | &u_f^t \;\quad = u^t+\gamma \,\left[ {u_f^{t-\rdt} -2u^t+u^{t+\rdt}} \right] |
---|
1245 | \end{aligned} \right. |
---|
1246 | \end{equation} |
---|
1247 | |
---|
1248 | $\bullet$ flux form and nonlinear free surface (\np{ln\_dynhpg\_vec}=false ; \key{vvl} defined): |
---|
1249 | \begin{equation} \label{Eq_dynnxt_flux} |
---|
1250 | \left\{ \begin{aligned} |
---|
1251 | &\left(e_{3u}\,u\right)^{t+\rdt} = \left(e_{3u}\,u\right)_f^{t-\rdt} + 2\rdt \; e_{3u} \;\text{RHS}_u^t \\ |
---|
1252 | &\left(e_{3u}\,u\right)_f^t \;\quad = \left(e_{3u}\,u\right)^t |
---|
1253 | +\gamma \,\left[ {\left(e_{3u}\,u\right)_f^{t-\rdt} -2\left(e_{3u}\,u\right)^t+\left(e_{3u}\,u\right)^{t+\rdt}} \right] |
---|
1254 | \end{aligned} \right. |
---|
1255 | \end{equation} |
---|
1256 | where RHS is the right hand side of the momentum equation, the subscript $f$ |
---|
1257 | denotes filtered values and $\gamma$ is the Asselin coefficient. $\gamma$ is |
---|
1258 | initialized as \np{nn\_atfp} (namelist parameter). Its default value is \np{nn\_atfp} = $10^{-3}$. |
---|
1259 | In both cases, the modified Asselin filter is not applied since perfect conservation |
---|
1260 | is not an issue for the momentum equations. |
---|
1261 | |
---|
1262 | Note that with the filtered free surface, the update of the \textit{after} velocities |
---|
1263 | is done in the \mdl{dynsp\_flt} module, and only array swapping |
---|
1264 | and Asselin filtering is done in \mdl{dynnxt}. |
---|
1265 | |
---|
1266 | % ================================================================ |
---|
1267 | \end{document} |
---|