1 | MODULE agrif_lim3_interp |
---|
2 | !!===================================================================================== |
---|
3 | !! *** MODULE agrif_lim3_interp *** |
---|
4 | !! Nesting module : interp surface ice boundary condition from a parent grid |
---|
5 | !! Sea-Ice model : LIM 3.6 Sea ice model time-stepping |
---|
6 | !!===================================================================================== |
---|
7 | !! History : 2.0 ! 04-2008 (F. Dupont) initial version |
---|
8 | !! 3.4 ! 09-2012 (R. Benshila, C. Herbaut) update and EVP |
---|
9 | !! 3.6 ! 05-2016 (C. Rousset) Add LIM3 compatibility |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | #if defined key_agrif && defined key_lim3 |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! 'key_lim3' : LIM 3.6 sea-ice model |
---|
14 | !! 'key_agrif' : AGRIF library |
---|
15 | !!---------------------------------------------------------------------- |
---|
16 | !! agrif_interp_lim3 : interpolation of ice at "after" sea-ice time step |
---|
17 | !! agrif_interp_u_ice : atomic routine to interpolate u_ice |
---|
18 | !! agrif_interp_v_ice : atomic routine to interpolate v_ice |
---|
19 | !! agrif_interp_tra_ice : atomic routine to interpolate ice properties |
---|
20 | !!---------------------------------------------------------------------- |
---|
21 | USE par_oce |
---|
22 | USE dom_oce |
---|
23 | USE sbc_oce |
---|
24 | USE ice |
---|
25 | USE agrif_ice |
---|
26 | USE phycst , ONLY: rt0 |
---|
27 | |
---|
28 | IMPLICIT NONE |
---|
29 | PRIVATE |
---|
30 | |
---|
31 | PUBLIC agrif_interp_lim3 ! called by agrif_user.F90 |
---|
32 | |
---|
33 | !!---------------------------------------------------------------------- |
---|
34 | !! NEMO/NST 3.6 , NEMO Consortium (2016) |
---|
35 | !! $Id: agrif_lim3_interp.F90 6204 2016-01-04 13:47:06Z cetlod $ |
---|
36 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
37 | !!---------------------------------------------------------------------- |
---|
38 | |
---|
39 | CONTAINS |
---|
40 | |
---|
41 | SUBROUTINE agrif_interp_lim3( cd_type, kiter, kitermax ) |
---|
42 | !!----------------------------------------------------------------------- |
---|
43 | !! *** ROUTINE agrif_rhg_lim3 *** |
---|
44 | !! |
---|
45 | !! ** Method : simple call to atomic routines using stored values to |
---|
46 | !! fill the boundaries depending of the position of the point and |
---|
47 | !! computing factor for time interpolation |
---|
48 | !!----------------------------------------------------------------------- |
---|
49 | CHARACTER(len=1), INTENT(in ) :: cd_type |
---|
50 | INTEGER , INTENT(in ), OPTIONAL :: kiter, kitermax |
---|
51 | !! |
---|
52 | REAL(wp) :: zbeta ! local scalar |
---|
53 | !!----------------------------------------------------------------------- |
---|
54 | ! |
---|
55 | IF( Agrif_Root() .OR. nn_ice==0 ) RETURN ! do not interpolate if inside Parent domain or if child domain does not have ice |
---|
56 | ! |
---|
57 | SELECT CASE( cd_type ) |
---|
58 | CASE('U','V') |
---|
59 | IF( PRESENT( kiter ) ) THEN ! interpolation at the child sub-time step (only for ice rheology) |
---|
60 | zbeta = ( REAL(lim_nbstep) - REAL(kitermax - kiter) / REAL(kitermax) ) / & |
---|
61 | & ( Agrif_Rhot() * REAL(Agrif_Parent(nn_fsbc)) / REAL(nn_fsbc) ) |
---|
62 | ELSE ! interpolation at the child time step |
---|
63 | zbeta = REAL(lim_nbstep) / ( Agrif_Rhot() * REAL(Agrif_Parent(nn_fsbc)) / REAL(nn_fsbc) ) |
---|
64 | ENDIF |
---|
65 | CASE('T') |
---|
66 | zbeta = REAL(lim_nbstep) / ( Agrif_Rhot() * REAL(Agrif_Parent(nn_fsbc)) / REAL(nn_fsbc) ) |
---|
67 | END SELECT |
---|
68 | ! |
---|
69 | Agrif_SpecialValue = -9999. |
---|
70 | Agrif_UseSpecialValue = .TRUE. |
---|
71 | SELECT CASE( cd_type ) |
---|
72 | CASE('U') ; CALL Agrif_Bc_variable( u_ice_id , procname=interp_u_ice , calledweight=zbeta ) |
---|
73 | CASE('V') ; CALL Agrif_Bc_variable( v_ice_id , procname=interp_v_ice , calledweight=zbeta ) |
---|
74 | CASE('T') ; CALL Agrif_Bc_variable( tra_ice_id, procname=interp_tra_ice, calledweight=zbeta ) |
---|
75 | END SELECT |
---|
76 | Agrif_SpecialValue = 0._wp |
---|
77 | Agrif_UseSpecialValue = .FALSE. |
---|
78 | ! |
---|
79 | END SUBROUTINE agrif_interp_lim3 |
---|
80 | |
---|
81 | |
---|
82 | SUBROUTINE interp_u_ice( ptab, i1, i2, j1, j2, before ) |
---|
83 | !!----------------------------------------------------------------------- |
---|
84 | !! *** ROUTINE interp_u_ice *** |
---|
85 | !! |
---|
86 | !! i1 i2 j1 j2 are the index of the boundaries parent(when before) and child (when after) |
---|
87 | !! To solve issues when parent grid is "land" masked but not all the corresponding child |
---|
88 | !! grid points, put Agrif_SpecialValue WHERE the parent grid is masked. |
---|
89 | !! The child solution will be found in the 9(?) points around |
---|
90 | !!----------------------------------------------------------------------- |
---|
91 | INTEGER , INTENT(in ) :: i1, i2, j1, j2 |
---|
92 | REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab |
---|
93 | LOGICAL , INTENT(in ) :: before |
---|
94 | !! |
---|
95 | REAL(wp) :: zrhoy ! local scalar |
---|
96 | !!----------------------------------------------------------------------- |
---|
97 | ! |
---|
98 | IF( before ) THEN ! parent grid |
---|
99 | ptab(:,:) = e2u(i1:i2,j1:j2) * u_ice(i1:i2,j1:j2) |
---|
100 | WHERE( umask(i1:i2,j1:j2,1) == 0. ) ptab(i1:i2,j1:j2) = Agrif_SpecialValue |
---|
101 | ELSE ! child grid |
---|
102 | zrhoy = Agrif_Rhoy() |
---|
103 | u_ice(i1:i2,j1:j2) = ptab(i1:i2,j1:j2) / ( e2u(i1:i2,j1:j2) * zrhoy ) * umask(i1:i2,j1:j2,1) |
---|
104 | ENDIF |
---|
105 | ! |
---|
106 | END SUBROUTINE interp_u_ice |
---|
107 | |
---|
108 | |
---|
109 | SUBROUTINE interp_v_ice( ptab, i1, i2, j1, j2, before ) |
---|
110 | !!----------------------------------------------------------------------- |
---|
111 | !! *** ROUTINE interp_v_ice *** |
---|
112 | !! |
---|
113 | !! i1 i2 j1 j2 are the index of the boundaries parent(when before) and child (when after) |
---|
114 | !! To solve issues when parent grid is "land" masked but not all the corresponding child |
---|
115 | !! grid points, put Agrif_SpecialValue WHERE the parent grid is masked. |
---|
116 | !! The child solution will be found in the 9(?) points around |
---|
117 | !!----------------------------------------------------------------------- |
---|
118 | INTEGER , INTENT(in ) :: i1, i2, j1, j2 |
---|
119 | REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab |
---|
120 | LOGICAL , INTENT(in ) :: before |
---|
121 | !! |
---|
122 | REAL(wp) :: zrhox ! local scalar |
---|
123 | !!----------------------------------------------------------------------- |
---|
124 | ! |
---|
125 | IF( before ) THEN ! parent grid |
---|
126 | ptab(:,:) = e1v(i1:i2,j1:j2) * v_ice(i1:i2,j1:j2) |
---|
127 | WHERE( vmask(i1:i2,j1:j2,1) == 0. ) ptab(i1:i2,j1:j2) = Agrif_SpecialValue |
---|
128 | ELSE ! child grid |
---|
129 | zrhox = Agrif_Rhox() |
---|
130 | v_ice(i1:i2,j1:j2) = ptab(i1:i2,j1:j2) / ( e1v(i1:i2,j1:j2) * zrhox ) * vmask(i1:i2,j1:j2,1) |
---|
131 | ENDIF |
---|
132 | ! |
---|
133 | END SUBROUTINE interp_v_ice |
---|
134 | |
---|
135 | |
---|
136 | SUBROUTINE interp_tra_ice( ptab, i1, i2, j1, j2, k1, k2, before, nb, ndir ) |
---|
137 | !!----------------------------------------------------------------------- |
---|
138 | !! *** ROUTINE interp_tra_ice *** |
---|
139 | !! |
---|
140 | !! i1 i2 j1 j2 are the index of the boundaries parent(when before) and child (when after) |
---|
141 | !! To solve issues when parent grid is "land" masked but not all the corresponding child |
---|
142 | !! grid points, put Agrif_SpecialValue WHERE the parent grid is masked. |
---|
143 | !! The child solution will be found in the 9(?) points around |
---|
144 | !!----------------------------------------------------------------------- |
---|
145 | REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab |
---|
146 | INTEGER , INTENT(in ) :: i1, i2, j1, j2, k1, k2 |
---|
147 | LOGICAL , INTENT(in ) :: before |
---|
148 | INTEGER , INTENT(in ) :: nb, ndir |
---|
149 | !! |
---|
150 | INTEGER :: ji, jj, jk, jl, jm |
---|
151 | INTEGER :: imin, imax, jmin, jmax |
---|
152 | LOGICAL :: western_side, eastern_side, northern_side, southern_side |
---|
153 | REAL(wp) :: zrhox, z1, z2, z3, z4, z5, z6, z7 |
---|
154 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ztab |
---|
155 | !!----------------------------------------------------------------------- |
---|
156 | ! tracers are not multiplied by grid cell here => before: * e1e2t ; after: * r1_e1e2t / rhox / rhoy |
---|
157 | ! and it is ok since we conserve tracers (same as in the ocean). |
---|
158 | ALLOCATE( ztab(SIZE(a_i,1),SIZE(a_i,2),SIZE(ptab,3)) ) |
---|
159 | |
---|
160 | IF( before ) THEN ! parent grid |
---|
161 | jm = 1 |
---|
162 | DO jl = 1, jpl |
---|
163 | ptab(i1:i2,j1:j2,jm ) = a_i (i1:i2,j1:j2,jl) |
---|
164 | ptab(i1:i2,j1:j2,jm+1) = v_i (i1:i2,j1:j2,jl) |
---|
165 | ptab(i1:i2,j1:j2,jm+2) = v_s (i1:i2,j1:j2,jl) |
---|
166 | ptab(i1:i2,j1:j2,jm+3) = sv_i(i1:i2,j1:j2,jl) |
---|
167 | ptab(i1:i2,j1:j2,jm+4) = oa_i(i1:i2,j1:j2,jl) |
---|
168 | ptab(i1:i2,j1:j2,jm+5) = a_ip(i1:i2,j1:j2,jl) |
---|
169 | ptab(i1:i2,j1:j2,jm+6) = v_ip(i1:i2,j1:j2,jl) |
---|
170 | ptab(i1:i2,j1:j2,jm+7) = t_su(i1:i2,j1:j2,jl) |
---|
171 | jm = jm + 8 |
---|
172 | DO jk = 1, nlay_s |
---|
173 | ptab(i1:i2,j1:j2,jm) = e_s(i1:i2,j1:j2,jk,jl) ; jm = jm + 1 |
---|
174 | END DO |
---|
175 | DO jk = 1, nlay_i |
---|
176 | ptab(i1:i2,j1:j2,jm) = e_i(i1:i2,j1:j2,jk,jl) ; jm = jm + 1 |
---|
177 | END DO |
---|
178 | END DO |
---|
179 | |
---|
180 | DO jk = k1, k2 |
---|
181 | WHERE( tmask(i1:i2,j1:j2,1) == 0._wp ) ptab(i1:i2,j1:j2,jk) = Agrif_SpecialValue |
---|
182 | END DO |
---|
183 | ! |
---|
184 | ELSE ! child grid |
---|
185 | ! |
---|
186 | ! IF( nbghostcells > 1 ) THEN ! ==> The easiest interpolation is used |
---|
187 | ! |
---|
188 | jm = 1 |
---|
189 | DO jl = 1, jpl |
---|
190 | ! |
---|
191 | DO jj = j1, j2 |
---|
192 | DO ji = i1, i2 |
---|
193 | a_i (ji,jj,jl) = ptab(ji,jj,jm ) * tmask(ji,jj,1) |
---|
194 | v_i (ji,jj,jl) = ptab(ji,jj,jm+1) * tmask(ji,jj,1) |
---|
195 | v_s (ji,jj,jl) = ptab(ji,jj,jm+2) * tmask(ji,jj,1) |
---|
196 | sv_i(ji,jj,jl) = ptab(ji,jj,jm+3) * tmask(ji,jj,1) |
---|
197 | oa_i(ji,jj,jl) = ptab(ji,jj,jm+4) * tmask(ji,jj,1) |
---|
198 | a_ip(ji,jj,jl) = ptab(ji,jj,jm+5) * tmask(ji,jj,1) |
---|
199 | v_ip(ji,jj,jl) = ptab(ji,jj,jm+6) * tmask(ji,jj,1) |
---|
200 | t_su(ji,jj,jl) = ptab(ji,jj,jm+7) * tmask(ji,jj,1) |
---|
201 | END DO |
---|
202 | END DO |
---|
203 | jm = jm + 8 |
---|
204 | ! |
---|
205 | DO jk = 1, nlay_s |
---|
206 | e_s(i1:i2,j1:j2,jk,jl) = ptab(:,:,jm) * tmask(i1:i2,j1:j2,1) |
---|
207 | jm = jm + 1 |
---|
208 | END DO |
---|
209 | ! |
---|
210 | DO jk = 1, nlay_i |
---|
211 | e_i(i1:i2,j1:j2,jk,jl) = ptab(:,:,jm) * tmask(i1:i2,j1:j2,1) |
---|
212 | jm = jm + 1 |
---|
213 | END DO |
---|
214 | ! |
---|
215 | END DO |
---|
216 | ! |
---|
217 | !!==> clem: this interpolation does not work because it creates negative values, due |
---|
218 | ! to negative coefficients when mixing points (for ex. z7) |
---|
219 | !! |
---|
220 | ! ELSE ! ==> complex interpolation (only one ghost cell available) |
---|
221 | ! !! Use a more complex interpolation since we mix solutions over a couple of grid points |
---|
222 | ! !! it is advised to use it for fields modified by high order schemes (e.g. advection UM5...) |
---|
223 | ! !! clem: for some reason (I don't know why), the following lines do not work |
---|
224 | ! ! I think there is an issue with Agrif_SpecialValue here (not taken into account properly) |
---|
225 | ! ! record ztab |
---|
226 | ! jm = 1 |
---|
227 | ! DO jl = 1, jpl |
---|
228 | ! ztab(:,:,jm ) = a_i (:,:,jl) |
---|
229 | ! ztab(:,:,jm+1) = v_i (:,:,jl) |
---|
230 | ! ztab(:,:,jm+2) = v_s (:,:,jl) |
---|
231 | ! ztab(:,:,jm+3) = sv_i(:,:,jl) |
---|
232 | ! ztab(:,:,jm+4) = oa_i(:,:,jl) |
---|
233 | ! ztab(:,:,jm+5) = a_ip(:,:,jl) |
---|
234 | ! ztab(:,:,jm+6) = v_ip(:,:,jl) |
---|
235 | ! ztab(:,:,jm+7) = t_su(:,:,jl) |
---|
236 | ! jm = jm + 8 |
---|
237 | ! DO jk = 1, nlay_s |
---|
238 | ! ztab(:,:,jm) = e_s(:,:,jk,jl) |
---|
239 | ! jm = jm + 1 |
---|
240 | ! END DO |
---|
241 | ! DO jk = 1, nlay_i |
---|
242 | ! ztab(:,:,jm) = e_i(:,:,jk,jl) |
---|
243 | ! jm = jm + 1 |
---|
244 | ! END DO |
---|
245 | ! ! |
---|
246 | ! END DO |
---|
247 | ! ! |
---|
248 | ! ! borders of the domain |
---|
249 | ! western_side = (nb == 1).AND.(ndir == 1) ; eastern_side = (nb == 1).AND.(ndir == 2) |
---|
250 | ! southern_side = (nb == 2).AND.(ndir == 1) ; northern_side = (nb == 2).AND.(ndir == 2) |
---|
251 | ! ! |
---|
252 | ! ! spatial smoothing |
---|
253 | ! zrhox = Agrif_Rhox() |
---|
254 | ! z1 = ( zrhox - 1. ) * 0.5 |
---|
255 | ! z3 = ( zrhox - 1. ) / ( zrhox + 1. ) |
---|
256 | ! z6 = 2. * ( zrhox - 1. ) / ( zrhox + 1. ) |
---|
257 | ! z7 = - ( zrhox - 1. ) / ( zrhox + 3. ) |
---|
258 | ! z2 = 1. - z1 |
---|
259 | ! z4 = 1. - z3 |
---|
260 | ! z5 = 1. - z6 - z7 |
---|
261 | ! ! |
---|
262 | ! ! Remove corners |
---|
263 | ! imin = i1 ; imax = i2 ; jmin = j1 ; jmax = j2 |
---|
264 | ! IF( (nbondj == -1) .OR. (nbondj == 2) ) jmin = 3 |
---|
265 | ! IF( (nbondj == +1) .OR. (nbondj == 2) ) jmax = nlcj-2 |
---|
266 | ! IF( (nbondi == -1) .OR. (nbondi == 2) ) imin = 3 |
---|
267 | ! IF( (nbondi == +1) .OR. (nbondi == 2) ) imax = nlci-2 |
---|
268 | ! |
---|
269 | ! ! smoothed fields |
---|
270 | ! IF( eastern_side ) THEN |
---|
271 | ! ztab(nlci,j1:j2,:) = z1 * ptab(nlci,j1:j2,:) + z2 * ptab(nlci-1,j1:j2,:) |
---|
272 | ! DO jj = jmin, jmax |
---|
273 | ! rswitch = 0. |
---|
274 | ! IF( u_ice(nlci-2,jj) > 0._wp ) rswitch = 1. |
---|
275 | ! ztab(nlci-1,jj,:) = ( 1. - umask(nlci-2,jj,1) ) * ztab(nlci,jj,:) & |
---|
276 | ! & + umask(nlci-2,jj,1) * & |
---|
277 | ! & ( ( 1. - rswitch ) * ( z4 * ztab(nlci,jj,:) + z3 * ztab(nlci-2,jj,:) ) & |
---|
278 | ! & + rswitch * ( z6 * ztab(nlci-2,jj,:) + z5 * ztab(nlci,jj,:) + z7 * ztab(nlci-3,jj,:) ) ) |
---|
279 | ! ztab(nlci-1,jj,:) = ztab(nlci-1,jj,:) * tmask(nlci-1,jj,1) |
---|
280 | ! END DO |
---|
281 | ! ENDIF |
---|
282 | ! ! |
---|
283 | ! IF( northern_side ) THEN |
---|
284 | ! ztab(i1:i2,nlcj,:) = z1 * ptab(i1:i2,nlcj,:) + z2 * ptab(i1:i2,nlcj-1,:) |
---|
285 | ! DO ji = imin, imax |
---|
286 | ! rswitch = 0. |
---|
287 | ! IF( v_ice(ji,nlcj-2) > 0._wp ) rswitch = 1. |
---|
288 | ! ztab(ji,nlcj-1,:) = ( 1. - vmask(ji,nlcj-2,1) ) * ztab(ji,nlcj,:) & |
---|
289 | ! & + vmask(ji,nlcj-2,1) * & |
---|
290 | ! & ( ( 1. - rswitch ) * ( z4 * ztab(ji,nlcj,:) + z3 * ztab(ji,nlcj-2,:) ) & |
---|
291 | ! & + rswitch * ( z6 * ztab(ji,nlcj-2,:) + z5 * ztab(ji,nlcj,:) + z7 * ztab(ji,nlcj-3,:) ) ) |
---|
292 | ! ztab(ji,nlcj-1,:) = ztab(ji,nlcj-1,:) * tmask(ji,nlcj-1,1) |
---|
293 | ! END DO |
---|
294 | ! END IF |
---|
295 | ! ! |
---|
296 | ! IF( western_side) THEN |
---|
297 | ! ztab(1,j1:j2,:) = z1 * ptab(1,j1:j2,:) + z2 * ptab(2,j1:j2,:) |
---|
298 | ! DO jj = jmin, jmax |
---|
299 | ! rswitch = 0. |
---|
300 | ! IF( u_ice(2,jj) < 0._wp ) rswitch = 1. |
---|
301 | ! ztab(2,jj,:) = ( 1. - umask(2,jj,1) ) * ztab(1,jj,:) & |
---|
302 | ! & + umask(2,jj,1) * & |
---|
303 | ! & ( ( 1. - rswitch ) * ( z4 * ztab(1,jj,:) + z3 * ztab(3,jj,:) ) & |
---|
304 | ! & + rswitch * ( z6 * ztab(3,jj,:) + z5 * ztab(1,jj,:) + z7 * ztab(4,jj,:) ) ) |
---|
305 | ! ztab(2,jj,:) = ztab(2,jj,:) * tmask(2,jj,1) |
---|
306 | ! END DO |
---|
307 | ! ENDIF |
---|
308 | ! ! |
---|
309 | ! IF( southern_side ) THEN |
---|
310 | ! ztab(i1:i2,1,:) = z1 * ptab(i1:i2,1,:) + z2 * ptab(i1:i2,2,:) |
---|
311 | ! DO ji = imin, imax |
---|
312 | ! rswitch = 0. |
---|
313 | ! IF( v_ice(ji,2) < 0._wp ) rswitch = 1. |
---|
314 | ! ztab(ji,2,:) = ( 1. - vmask(ji,2,1) ) * ztab(ji,1,:) & |
---|
315 | ! & + vmask(ji,2,1) * & |
---|
316 | ! & ( ( 1. - rswitch ) * ( z4 * ztab(ji,1,:) + z3 * ztab(ji,3,:) ) & |
---|
317 | ! & + rswitch * ( z6 * ztab(ji,3,:) + z5 * ztab(ji,1,:) + z7 * ztab(ji,4,:) ) ) |
---|
318 | ! ztab(ji,2,:) = ztab(ji,2,:) * tmask(ji,2,1) |
---|
319 | ! END DO |
---|
320 | ! END IF |
---|
321 | ! ! |
---|
322 | ! ! Treatment of corners |
---|
323 | ! IF( (eastern_side) .AND. ((nbondj == -1).OR.(nbondj == 2)) ) ztab(nlci-1,2,:) = ptab(nlci-1,2,:) ! East south |
---|
324 | ! IF( (eastern_side) .AND. ((nbondj == 1).OR.(nbondj == 2)) ) ztab(nlci-1,nlcj-1,:) = ptab(nlci-1,nlcj-1,:) ! East north |
---|
325 | ! IF( (western_side) .AND. ((nbondj == -1).OR.(nbondj == 2)) ) ztab(2,2,:) = ptab(2,2,:) ! West south |
---|
326 | ! IF( (western_side) .AND. ((nbondj == 1).OR.(nbondj == 2)) ) ztab(2,nlcj-1,:) = ptab(2,nlcj-1,:) ! West north |
---|
327 | ! |
---|
328 | ! ! retrieve ice tracers |
---|
329 | ! jm = 1 |
---|
330 | ! DO jl = 1, jpl |
---|
331 | ! ! |
---|
332 | ! DO jj = j1, j2 |
---|
333 | ! DO ji = i1, i2 |
---|
334 | ! a_i (ji,jj,jl) = ztab(ji,jj,jm ) * tmask(ji,jj,1) |
---|
335 | ! v_i (ji,jj,jl) = ztab(ji,jj,jm+1) * tmask(ji,jj,1) |
---|
336 | ! v_s (ji,jj,jl) = ztab(ji,jj,jm+2) * tmask(ji,jj,1) |
---|
337 | ! sv_i(ji,jj,jl) = ztab(ji,jj,jm+3) * tmask(ji,jj,1) |
---|
338 | ! oa_i(ji,jj,jl) = ztab(ji,jj,jm+4) * tmask(ji,jj,1) |
---|
339 | ! a_ip(ji,jj,jl) = ztab(ji,jj,jm+5) * tmask(ji,jj,1) |
---|
340 | ! v_ip(ji,jj,jl) = ztab(ji,jj,jm+6) * tmask(ji,jj,1) |
---|
341 | ! t_su(ji,jj,jl) = ztab(ji,jj,jm+7) * tmask(ji,jj,1) |
---|
342 | ! END DO |
---|
343 | ! END DO |
---|
344 | ! jm = jm + 8 |
---|
345 | ! ! |
---|
346 | ! DO jk = 1, nlay_s |
---|
347 | ! e_s(i1:i2,j1:j2,jk,jl) = ztab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) |
---|
348 | ! jm = jm + 1 |
---|
349 | ! END DO |
---|
350 | ! ! |
---|
351 | ! DO jk = 1, nlay_i |
---|
352 | ! e_i(i1:i2,j1:j2,jk,jl) = ztab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) |
---|
353 | ! jm = jm + 1 |
---|
354 | ! END DO |
---|
355 | ! ! |
---|
356 | ! END DO |
---|
357 | ! |
---|
358 | ! ENDIF ! nbghostcells=1 |
---|
359 | |
---|
360 | ! integrated values |
---|
361 | vt_i (i1:i2,j1:j2) = SUM( v_i(i1:i2,j1:j2,:), dim=3 ) |
---|
362 | vt_s (i1:i2,j1:j2) = SUM( v_s(i1:i2,j1:j2,:), dim=3 ) |
---|
363 | at_i (i1:i2,j1:j2) = SUM( a_i(i1:i2,j1:j2,:), dim=3 ) |
---|
364 | et_s(i1:i2,j1:j2) = SUM( SUM( e_s(i1:i2,j1:j2,:,:), dim=4 ), dim=3 ) |
---|
365 | et_i(i1:i2,j1:j2) = SUM( SUM( e_i(i1:i2,j1:j2,:,:), dim=4 ), dim=3 ) |
---|
366 | |
---|
367 | at_ip(i1:i2,j1:j2) = SUM( a_ip(i1:i2,j1:j2,:), dim=3 ) ! melt ponds |
---|
368 | vt_ip(i1:i2,j1:j2) = SUM( v_ip(i1:i2,j1:j2,:), dim=3 ) |
---|
369 | ! |
---|
370 | ato_i(i1:i2,j1:j2) = 1._wp - at_i(i1:i2,j1:j2) ! open water fraction |
---|
371 | |
---|
372 | DO jl = 1, jpl |
---|
373 | WHERE( tmask(i1:i2,j1:j2,1) == 0._wp ) t_su(i1:i2,j1:j2,jl) = rt0 ! to avoid a division by 0 in sbcblk.F90 |
---|
374 | END DO |
---|
375 | ! |
---|
376 | ENDIF |
---|
377 | |
---|
378 | DEALLOCATE( ztab ) |
---|
379 | ! |
---|
380 | END SUBROUTINE interp_tra_ice |
---|
381 | |
---|
382 | #else |
---|
383 | !!---------------------------------------------------------------------- |
---|
384 | !! Empty module no sea-ice |
---|
385 | !!---------------------------------------------------------------------- |
---|
386 | CONTAINS |
---|
387 | SUBROUTINE agrif_lim3_interp_empty |
---|
388 | WRITE(*,*) 'agrif_lim3_interp : You should not have seen this print! error?' |
---|
389 | END SUBROUTINE agrif_lim3_interp_empty |
---|
390 | #endif |
---|
391 | |
---|
392 | !!====================================================================== |
---|
393 | END MODULE agrif_lim3_interp |
---|