1 | MODULE dynzdf |
---|
2 | !!============================================================================== |
---|
3 | !! *** MODULE dynzdf *** |
---|
4 | !! Ocean dynamics : vertical component of the momentum mixing trend |
---|
5 | !!============================================================================== |
---|
6 | !! History : 1.0 ! 2005-11 (G. Madec) Original code |
---|
7 | !! 3.3 ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase |
---|
8 | !! 4.0 ! 2017-06 (G. Madec) remove the explicit time-stepping option + avm at t-point |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! dyn_zdf : compute the after velocity through implicit calculation of vertical mixing |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | USE oce ! ocean dynamics and tracers variables |
---|
15 | USE phycst ! physical constants |
---|
16 | USE dom_oce ! ocean space and time domain variables |
---|
17 | USE sbc_oce ! surface boundary condition: ocean |
---|
18 | USE zdf_oce ! ocean vertical physics variables |
---|
19 | USE zdfdrg ! vertical physics: top/bottom drag coef. |
---|
20 | USE dynadv ,ONLY: ln_dynadv_vec ! dynamics: advection form |
---|
21 | USE dynldf ,ONLY: nldf, np_lap_i ! dynamics: type of lateral mixing |
---|
22 | USE dynldf_iso,ONLY: akzu, akzv ! dynamics: vertical component of rotated lateral mixing |
---|
23 | USE ldfdyn ! lateral diffusion: eddy viscosity coef. |
---|
24 | USE trd_oce ! trends: ocean variables |
---|
25 | USE trddyn ! trend manager: dynamics |
---|
26 | ! |
---|
27 | USE in_out_manager ! I/O manager |
---|
28 | USE lib_mpp ! MPP library |
---|
29 | USE prtctl ! Print control |
---|
30 | USE timing ! Timing |
---|
31 | |
---|
32 | IMPLICIT NONE |
---|
33 | PRIVATE |
---|
34 | |
---|
35 | PUBLIC dyn_zdf ! routine called by step.F90 |
---|
36 | |
---|
37 | REAL(wp) :: r_vvl ! non-linear free surface indicator: =0 if ln_linssh=T, =1 otherwise |
---|
38 | |
---|
39 | !! * Substitutions |
---|
40 | # include "vectopt_loop_substitute.h90" |
---|
41 | !!---------------------------------------------------------------------- |
---|
42 | !! NEMO/OPA 4.0 , NEMO Consortium (2017) |
---|
43 | !! $Id$ |
---|
44 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
45 | !!---------------------------------------------------------------------- |
---|
46 | CONTAINS |
---|
47 | |
---|
48 | SUBROUTINE dyn_zdf( kt ) |
---|
49 | !!---------------------------------------------------------------------- |
---|
50 | !! *** ROUTINE dyn_zdf *** |
---|
51 | !! |
---|
52 | !! ** Purpose : compute the trend due to the vert. momentum diffusion |
---|
53 | !! together with the Leap-Frog time stepping using an |
---|
54 | !! implicit scheme. |
---|
55 | !! |
---|
56 | !! ** Method : - Leap-Frog time stepping on all trends but the vertical mixing |
---|
57 | !! ua = ub + 2*dt * ua vector form or linear free surf. |
---|
58 | !! ua = ( e3u_b*ub + 2*dt * e3u_n*ua ) / e3u_a otherwise |
---|
59 | !! - update the after velocity with the implicit vertical mixing. |
---|
60 | !! This requires to solver the following system: |
---|
61 | !! ua = ua + 1/e3u_a dk+1[ mi(avm) / e3uw_a dk[ua] ] |
---|
62 | !! with the following surface/top/bottom boundary condition: |
---|
63 | !! surface: wind stress input (averaged over kt-1/2 & kt+1/2) |
---|
64 | !! top & bottom : top stress (iceshelf-ocean) & bottom stress (cf zdfdrg.F90) |
---|
65 | !! |
---|
66 | !! ** Action : (ua,va) after velocity |
---|
67 | !!--------------------------------------------------------------------- |
---|
68 | INTEGER, INTENT(in) :: kt ! ocean time-step index |
---|
69 | ! |
---|
70 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
71 | INTEGER :: iku, ikv ! local integers |
---|
72 | REAL(wp) :: zzwi, ze3ua, zdt ! local scalars |
---|
73 | REAL(wp) :: zzws, ze3va ! - - |
---|
74 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zwi, zwd, zws ! 3D workspace |
---|
75 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ztrdu, ztrdv ! - - |
---|
76 | !!--------------------------------------------------------------------- |
---|
77 | ! |
---|
78 | IF( ln_timing ) CALL timing_start('dyn_zdf') |
---|
79 | ! |
---|
80 | IF( kt == nit000 ) THEN !* initialization |
---|
81 | IF(lwp) WRITE(numout,*) |
---|
82 | IF(lwp) WRITE(numout,*) 'dyn_zdf_imp : vertical momentum diffusion implicit operator' |
---|
83 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~ ' |
---|
84 | ! |
---|
85 | If( ln_linssh ) THEN ; r_vvl = 0._wp ! non-linear free surface indicator |
---|
86 | ELSE ; r_vvl = 1._wp |
---|
87 | ENDIF |
---|
88 | ENDIF |
---|
89 | ! !* set time step |
---|
90 | IF( neuler == 0 .AND. kt == nit000 ) THEN ; r2dt = rdt ! = rdt (restart with Euler time stepping) |
---|
91 | ELSEIF( kt <= nit000 + 1 ) THEN ; r2dt = 2. * rdt ! = 2 rdt (leapfrog) |
---|
92 | ENDIF |
---|
93 | ! |
---|
94 | ! !* explicit top/bottom drag case |
---|
95 | IF( .NOT.ln_drgimp ) CALL zdf_drg_exp( kt, ub, vb, ua, va ) ! add top/bottom friction trend to (ua,va) |
---|
96 | ! |
---|
97 | ! |
---|
98 | IF( l_trddyn ) THEN !* temporary save of ta and sa trends |
---|
99 | ALLOCATE( ztrdu(jpi,jpj,jpk), ztrdv(jpi,jpj,jpk) ) |
---|
100 | ztrdu(:,:,:) = ua(:,:,:) |
---|
101 | ztrdv(:,:,:) = va(:,:,:) |
---|
102 | ENDIF |
---|
103 | ! |
---|
104 | ! !== RHS: Leap-Frog time stepping on all trends but the vertical mixing ==! (put in ua,va) |
---|
105 | ! |
---|
106 | ! ! time stepping except vertical diffusion |
---|
107 | IF( ln_dynadv_vec .OR. ln_linssh ) THEN ! applied on velocity |
---|
108 | DO jk = 1, jpkm1 |
---|
109 | ua(:,:,jk) = ( ub(:,:,jk) + r2dt * ua(:,:,jk) ) * umask(:,:,jk) |
---|
110 | va(:,:,jk) = ( vb(:,:,jk) + r2dt * va(:,:,jk) ) * vmask(:,:,jk) |
---|
111 | END DO |
---|
112 | ELSE ! applied on thickness weighted velocity |
---|
113 | DO jk = 1, jpkm1 |
---|
114 | ua(:,:,jk) = ( e3u_b(:,:,jk) * ub(:,:,jk) & |
---|
115 | & + r2dt * e3u_n(:,:,jk) * ua(:,:,jk) ) / e3u_a(:,:,jk) * umask(:,:,jk) |
---|
116 | va(:,:,jk) = ( e3v_b(:,:,jk) * vb(:,:,jk) & |
---|
117 | & + r2dt * e3v_n(:,:,jk) * va(:,:,jk) ) / e3v_a(:,:,jk) * vmask(:,:,jk) |
---|
118 | END DO |
---|
119 | ENDIF |
---|
120 | ! ! add top/bottom friction |
---|
121 | ! With split-explicit free surface, barotropic stress is treated explicitly Update velocities at the bottom. |
---|
122 | ! J. Chanut: The bottom stress is computed considering after barotropic velocities, which does |
---|
123 | ! not lead to the effective stress seen over the whole barotropic loop. |
---|
124 | ! G. Madec : in linear free surface, e3u_a = e3u_n = e3u_0, so systematic use of e3u_a |
---|
125 | IF( ln_drgimp .AND. ln_dynspg_ts ) THEN |
---|
126 | DO jk = 1, jpkm1 ! remove barotropic velocities |
---|
127 | ua(:,:,jk) = ( ua(:,:,jk) - ua_b(:,:) ) * umask(:,:,jk) |
---|
128 | va(:,:,jk) = ( va(:,:,jk) - va_b(:,:) ) * vmask(:,:,jk) |
---|
129 | END DO |
---|
130 | DO jj = 2, jpjm1 ! Add bottom/top stress due to barotropic component only |
---|
131 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
132 | iku = mbku(ji,jj) ! ocean bottom level at u- and v-points |
---|
133 | ikv = mbkv(ji,jj) ! (deepest ocean u- and v-points) |
---|
134 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,iku) + r_vvl * e3u_a(ji,jj,iku) |
---|
135 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,ikv) + r_vvl * e3v_a(ji,jj,ikv) |
---|
136 | ua(ji,jj,iku) = ua(ji,jj,iku) + r2dt * 0.5*( rCdU_bot(ji+1,jj)+rCdU_bot(ji,jj) ) * ua_b(ji,jj) / ze3ua |
---|
137 | va(ji,jj,ikv) = va(ji,jj,ikv) + r2dt * 0.5*( rCdU_bot(ji,jj+1)+rCdU_bot(ji,jj) ) * va_b(ji,jj) / ze3va |
---|
138 | END DO |
---|
139 | END DO |
---|
140 | IF( ln_isfcav ) THEN ! Ocean cavities (ISF) |
---|
141 | DO jj = 2, jpjm1 |
---|
142 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
143 | iku = miku(ji,jj) ! top ocean level at u- and v-points |
---|
144 | ikv = mikv(ji,jj) ! (first wet ocean u- and v-points) |
---|
145 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,iku) + r_vvl * e3u_a(ji,jj,iku) |
---|
146 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,ikv) + r_vvl * e3v_a(ji,jj,ikv) |
---|
147 | ua(ji,jj,iku) = ua(ji,jj,iku) + r2dt * 0.5*( rCdU_top(ji+1,jj)+rCdU_top(ji,jj) ) * ua_b(ji,jj) / ze3ua |
---|
148 | va(ji,jj,ikv) = va(ji,jj,ikv) + r2dt * 0.5*( rCdU_top(ji+1,jj)+rCdU_top(ji,jj) ) * va_b(ji,jj) / ze3va |
---|
149 | END DO |
---|
150 | END DO |
---|
151 | END IF |
---|
152 | ENDIF |
---|
153 | ! |
---|
154 | ! !== Vertical diffusion on u ==! |
---|
155 | ! |
---|
156 | ! !* Matrix construction |
---|
157 | zdt = r2dt * 0.5 |
---|
158 | IF( nldf == np_lap_i ) THEN ! rotated lateral mixing: add its vertical mixing (akzu) |
---|
159 | DO jk = 1, jpkm1 |
---|
160 | DO jj = 2, jpjm1 |
---|
161 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
162 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,jk) + r_vvl * e3u_a(ji,jj,jk) ! after scale factor at T-point |
---|
163 | zzwi = - zdt * ( avm(ji+1,jj,jk ) + avm(ji,jj,jk ) + akzu(ji,jj,jk ) ) & |
---|
164 | & / ( ze3ua * e3uw_n(ji,jj,jk ) ) * wumask(ji,jj,jk ) |
---|
165 | zzws = - zdt * ( avm(ji+1,jj,jk+1) + avm(ji,jj,jk+1) + akzu(ji,jj,jk+1) ) & |
---|
166 | & / ( ze3ua * e3uw_n(ji,jj,jk+1) ) * wumask(ji,jj,jk+1) |
---|
167 | zwi(ji,jj,jk) = zzwi |
---|
168 | zws(ji,jj,jk) = zzws |
---|
169 | zwd(ji,jj,jk) = 1._wp - zzwi - zzws |
---|
170 | END DO |
---|
171 | END DO |
---|
172 | END DO |
---|
173 | ELSE ! standard case |
---|
174 | DO jk = 1, jpkm1 |
---|
175 | DO jj = 2, jpjm1 |
---|
176 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
177 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,jk) + r_vvl * e3u_a(ji,jj,jk) ! after scale factor at T-point |
---|
178 | zzwi = - zdt * ( avm(ji+1,jj,jk ) + avm(ji,jj,jk ) ) / ( ze3ua * e3uw_n(ji,jj,jk ) ) * wumask(ji,jj,jk ) |
---|
179 | zzws = - zdt * ( avm(ji+1,jj,jk+1) + avm(ji,jj,jk+1) ) / ( ze3ua * e3uw_n(ji,jj,jk+1) ) * wumask(ji,jj,jk+1) |
---|
180 | zwi(ji,jj,jk) = zzwi |
---|
181 | zws(ji,jj,jk) = zzws |
---|
182 | zwd(ji,jj,jk) = 1._wp - zzwi - zzws |
---|
183 | END DO |
---|
184 | END DO |
---|
185 | END DO |
---|
186 | ENDIF |
---|
187 | ! |
---|
188 | DO jj = 2, jpjm1 !* Surface boundary conditions |
---|
189 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
190 | zwi(ji,jj,1) = 0._wp |
---|
191 | zwd(ji,jj,1) = 1._wp - zws(ji,jj,1) |
---|
192 | END DO |
---|
193 | END DO |
---|
194 | ! |
---|
195 | ! !== Apply semi-implicit bottom friction ==! |
---|
196 | ! |
---|
197 | ! Only needed for semi-implicit bottom friction setup. The explicit |
---|
198 | ! bottom friction has been included in "u(v)a" which act as the R.H.S |
---|
199 | ! column vector of the tri-diagonal matrix equation |
---|
200 | ! |
---|
201 | IF ( ln_drgimp ) THEN ! implicit bottom friction |
---|
202 | DO jj = 2, jpjm1 |
---|
203 | DO ji = 2, jpim1 |
---|
204 | iku = mbku(ji,jj) ! ocean bottom level at u- and v-points |
---|
205 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,iku) + r_vvl * e3u_a(ji,jj,iku) ! after scale factor at T-point |
---|
206 | zwd(ji,jj,iku) = zwd(ji,jj,iku) - r2dt * 0.5*( rCdU_bot(ji+1,jj)+rCdU_bot(ji,jj) ) / ze3ua |
---|
207 | END DO |
---|
208 | END DO |
---|
209 | IF ( ln_isfcav ) THEN ! top friction (always implicit) |
---|
210 | DO jj = 2, jpjm1 |
---|
211 | DO ji = 2, jpim1 |
---|
212 | !!gm top Cd is masked (=0 outside cavities) no need of test on mik>=2 ==>> it has been suppressed |
---|
213 | iku = miku(ji,jj) ! ocean top level at u- and v-points |
---|
214 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,iku) + r_vvl * e3u_a(ji,jj,iku) ! after scale factor at T-point |
---|
215 | zwd(ji,jj,iku) = zwd(ji,jj,iku) - r2dt * 0.5*( rCdU_top(ji+1,jj)+rCdU_top(ji,jj) ) / ze3ua |
---|
216 | END DO |
---|
217 | END DO |
---|
218 | END IF |
---|
219 | ENDIF |
---|
220 | ! |
---|
221 | ! Matrix inversion starting from the first level |
---|
222 | !----------------------------------------------------------------------- |
---|
223 | ! solve m.x = y where m is a tri diagonal matrix ( jpk*jpk ) |
---|
224 | ! |
---|
225 | ! ( zwd1 zws1 0 0 0 )( zwx1 ) ( zwy1 ) |
---|
226 | ! ( zwi2 zwd2 zws2 0 0 )( zwx2 ) ( zwy2 ) |
---|
227 | ! ( 0 zwi3 zwd3 zws3 0 )( zwx3 )=( zwy3 ) |
---|
228 | ! ( ... )( ... ) ( ... ) |
---|
229 | ! ( 0 0 0 zwik zwdk )( zwxk ) ( zwyk ) |
---|
230 | ! |
---|
231 | ! m is decomposed in the product of an upper and a lower triangular matrix |
---|
232 | ! The 3 diagonal terms are in 2d arrays: zwd, zws, zwi |
---|
233 | ! The solution (the after velocity) is in ua |
---|
234 | !----------------------------------------------------------------------- |
---|
235 | ! |
---|
236 | DO jk = 2, jpkm1 !== First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1 (increasing k) == |
---|
237 | DO jj = 2, jpjm1 |
---|
238 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
239 | zwd(ji,jj,jk) = zwd(ji,jj,jk) - zwi(ji,jj,jk) * zws(ji,jj,jk-1) / zwd(ji,jj,jk-1) |
---|
240 | END DO |
---|
241 | END DO |
---|
242 | END DO |
---|
243 | ! |
---|
244 | DO jj = 2, jpjm1 !== second recurrence: SOLk = RHSk - Lk / Dk-1 Lk-1 ==! |
---|
245 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
246 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,1) + r_vvl * e3u_a(ji,jj,1) |
---|
247 | ua(ji,jj,1) = ua(ji,jj,1) + r2dt * 0.5_wp * ( utau_b(ji,jj) + utau(ji,jj) ) & |
---|
248 | & / ( ze3ua * rau0 ) * umask(ji,jj,1) |
---|
249 | END DO |
---|
250 | END DO |
---|
251 | DO jk = 2, jpkm1 |
---|
252 | DO jj = 2, jpjm1 |
---|
253 | DO ji = fs_2, fs_jpim1 |
---|
254 | ua(ji,jj,jk) = ua(ji,jj,jk) - zwi(ji,jj,jk) / zwd(ji,jj,jk-1) * ua(ji,jj,jk-1) |
---|
255 | END DO |
---|
256 | END DO |
---|
257 | END DO |
---|
258 | ! |
---|
259 | DO jj = 2, jpjm1 !== thrid recurrence : SOLk = ( Lk - Uk * Ek+1 ) / Dk ==! |
---|
260 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
261 | ua(ji,jj,jpkm1) = ua(ji,jj,jpkm1) / zwd(ji,jj,jpkm1) |
---|
262 | END DO |
---|
263 | END DO |
---|
264 | DO jk = jpk-2, 1, -1 |
---|
265 | DO jj = 2, jpjm1 |
---|
266 | DO ji = fs_2, fs_jpim1 |
---|
267 | ua(ji,jj,jk) = ( ua(ji,jj,jk) - zws(ji,jj,jk) * ua(ji,jj,jk+1) ) / zwd(ji,jj,jk) |
---|
268 | END DO |
---|
269 | END DO |
---|
270 | END DO |
---|
271 | ! |
---|
272 | ! !== Vertical diffusion on v ==! |
---|
273 | ! |
---|
274 | ! !* Matrix construction |
---|
275 | zdt = r2dt * 0.5 |
---|
276 | IF( nldf == np_lap_i ) THEN ! rotated lateral mixing: add its vertical mixing (akzu) |
---|
277 | DO jk = 1, jpkm1 |
---|
278 | DO jj = 2, jpjm1 |
---|
279 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
280 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,jk) + r_vvl * e3v_a(ji,jj,jk) ! after scale factor at T-point |
---|
281 | zzwi = - zdt * ( avm(ji,jj+1,jk )+ avm(ji,jj,jk ) + akzv(ji,jj,jk ) ) & |
---|
282 | & / ( ze3va * e3vw_n(ji,jj,jk ) ) * wvmask(ji,jj,jk ) |
---|
283 | zzws = - zdt * ( avm(ji,jj+1,jk+1)+ avm(ji,jj,jk+1) + akzv(ji,jj,jk+1) ) & |
---|
284 | & / ( ze3va * e3vw_n(ji,jj,jk+1) ) * wvmask(ji,jj,jk+1) |
---|
285 | zwi(ji,jj,jk) = zzwi * wvmask(ji,jj,jk ) |
---|
286 | zws(ji,jj,jk) = zzws * wvmask(ji,jj,jk+1) |
---|
287 | zwd(ji,jj,jk) = 1._wp - zzwi - zzws |
---|
288 | END DO |
---|
289 | END DO |
---|
290 | END DO |
---|
291 | ELSE ! standard case |
---|
292 | DO jk = 1, jpkm1 |
---|
293 | DO jj = 2, jpjm1 |
---|
294 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
295 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,jk) + r_vvl * e3v_a(ji,jj,jk) ! after scale factor at T-point |
---|
296 | zzwi = - zdt * ( avm(ji,jj+1,jk )+ avm(ji,jj,jk ) ) / ( ze3va * e3vw_n(ji,jj,jk ) ) * wvmask(ji,jj,jk ) |
---|
297 | zzws = - zdt * ( avm(ji,jj+1,jk+1)+ avm(ji,jj,jk+1) ) / ( ze3va * e3vw_n(ji,jj,jk+1) ) * wvmask(ji,jj,jk+1) |
---|
298 | zwi(ji,jj,jk) = zzwi * wvmask(ji,jj,jk ) |
---|
299 | zws(ji,jj,jk) = zzws * wvmask(ji,jj,jk+1) |
---|
300 | zwd(ji,jj,jk) = 1._wp - zzwi - zzws |
---|
301 | END DO |
---|
302 | END DO |
---|
303 | END DO |
---|
304 | ENDIF |
---|
305 | ! |
---|
306 | DO jj = 2, jpjm1 !* Surface boundary conditions |
---|
307 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
308 | zwi(ji,jj,1) = 0._wp |
---|
309 | zwd(ji,jj,1) = 1._wp - zws(ji,jj,1) |
---|
310 | END DO |
---|
311 | END DO |
---|
312 | ! !== Apply semi-implicit top/bottom friction ==! |
---|
313 | ! |
---|
314 | ! Only needed for semi-implicit bottom friction setup. The explicit |
---|
315 | ! bottom friction has been included in "u(v)a" which act as the R.H.S |
---|
316 | ! column vector of the tri-diagonal matrix equation |
---|
317 | ! |
---|
318 | IF( ln_drgimp ) THEN |
---|
319 | DO jj = 2, jpjm1 |
---|
320 | DO ji = 2, jpim1 |
---|
321 | ikv = mbkv(ji,jj) ! (deepest ocean u- and v-points) |
---|
322 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,ikv) + r_vvl * e3v_a(ji,jj,ikv) ! after scale factor at T-point |
---|
323 | zwd(ji,jj,ikv) = zwd(ji,jj,ikv) - r2dt * 0.5*( rCdU_bot(ji,jj+1)+rCdU_bot(ji,jj) ) / ze3va |
---|
324 | END DO |
---|
325 | END DO |
---|
326 | IF ( ln_isfcav ) THEN |
---|
327 | DO jj = 2, jpjm1 |
---|
328 | DO ji = 2, jpim1 |
---|
329 | ikv = mikv(ji,jj) ! (first wet ocean u- and v-points) |
---|
330 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,ikv) + r_vvl * e3v_a(ji,jj,ikv) ! after scale factor at T-point |
---|
331 | zwd(ji,jj,iku) = zwd(ji,jj,iku) - r2dt * 0.5*( rCdU_top(ji+1,jj)+rCdU_top(ji,jj) ) / ze3va |
---|
332 | END DO |
---|
333 | END DO |
---|
334 | ENDIF |
---|
335 | ENDIF |
---|
336 | |
---|
337 | ! Matrix inversion |
---|
338 | !----------------------------------------------------------------------- |
---|
339 | ! solve m.x = y where m is a tri diagonal matrix ( jpk*jpk ) |
---|
340 | ! |
---|
341 | ! ( zwd1 zws1 0 0 0 )( zwx1 ) ( zwy1 ) |
---|
342 | ! ( zwi2 zwd2 zws2 0 0 )( zwx2 ) ( zwy2 ) |
---|
343 | ! ( 0 zwi3 zwd3 zws3 0 )( zwx3 )=( zwy3 ) |
---|
344 | ! ( ... )( ... ) ( ... ) |
---|
345 | ! ( 0 0 0 zwik zwdk )( zwxk ) ( zwyk ) |
---|
346 | ! |
---|
347 | ! m is decomposed in the product of an upper and lower triangular matrix |
---|
348 | ! The 3 diagonal terms are in 2d arrays: zwd, zws, zwi |
---|
349 | ! The solution (after velocity) is in 2d array va |
---|
350 | !----------------------------------------------------------------------- |
---|
351 | ! |
---|
352 | DO jk = 2, jpkm1 !== First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1 (increasing k) == |
---|
353 | DO jj = 2, jpjm1 |
---|
354 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
355 | zwd(ji,jj,jk) = zwd(ji,jj,jk) - zwi(ji,jj,jk) * zws(ji,jj,jk-1) / zwd(ji,jj,jk-1) |
---|
356 | END DO |
---|
357 | END DO |
---|
358 | END DO |
---|
359 | ! |
---|
360 | DO jj = 2, jpjm1 !== second recurrence: SOLk = RHSk - Lk / Dk-1 Lk-1 ==! |
---|
361 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
362 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,1) + r_vvl * e3v_a(ji,jj,1) |
---|
363 | va(ji,jj,1) = va(ji,jj,1) + r2dt * 0.5_wp * ( vtau_b(ji,jj) + vtau(ji,jj) ) & |
---|
364 | & / ( ze3va * rau0 ) * vmask(ji,jj,1) |
---|
365 | END DO |
---|
366 | END DO |
---|
367 | DO jk = 2, jpkm1 |
---|
368 | DO jj = 2, jpjm1 |
---|
369 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
370 | va(ji,jj,jk) = va(ji,jj,jk) - zwi(ji,jj,jk) / zwd(ji,jj,jk-1) * va(ji,jj,jk-1) |
---|
371 | END DO |
---|
372 | END DO |
---|
373 | END DO |
---|
374 | ! |
---|
375 | DO jj = 2, jpjm1 !== third recurrence : SOLk = ( Lk - Uk * SOLk+1 ) / Dk ==! |
---|
376 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
377 | va(ji,jj,jpkm1) = va(ji,jj,jpkm1) / zwd(ji,jj,jpkm1) |
---|
378 | END DO |
---|
379 | END DO |
---|
380 | DO jk = jpk-2, 1, -1 |
---|
381 | DO jj = 2, jpjm1 |
---|
382 | DO ji = fs_2, fs_jpim1 |
---|
383 | va(ji,jj,jk) = ( va(ji,jj,jk) - zws(ji,jj,jk) * va(ji,jj,jk+1) ) / zwd(ji,jj,jk) |
---|
384 | END DO |
---|
385 | END DO |
---|
386 | END DO |
---|
387 | ! |
---|
388 | IF( l_trddyn ) THEN ! save the vertical diffusive trends for further diagnostics |
---|
389 | ztrdu(:,:,:) = ( ua(:,:,:) - ub(:,:,:) ) / r2dt - ztrdu(:,:,:) |
---|
390 | ztrdv(:,:,:) = ( va(:,:,:) - vb(:,:,:) ) / r2dt - ztrdv(:,:,:) |
---|
391 | CALL trd_dyn( ztrdu, ztrdv, jpdyn_zdf, kt ) |
---|
392 | DEALLOCATE( ztrdu, ztrdv ) |
---|
393 | ENDIF |
---|
394 | ! ! print mean trends (used for debugging) |
---|
395 | IF(ln_ctl) CALL prt_ctl( tab3d_1=ua, clinfo1=' zdf - Ua: ', mask1=umask, & |
---|
396 | & tab3d_2=va, clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' ) |
---|
397 | ! |
---|
398 | IF( ln_timing ) CALL timing_stop('dyn_zdf') |
---|
399 | ! |
---|
400 | END SUBROUTINE dyn_zdf |
---|
401 | |
---|
402 | !!============================================================================== |
---|
403 | END MODULE dynzdf |
---|