1 | MODULE agrif_opa_interp |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE agrif_opa_interp *** |
---|
4 | !! AGRIF: interpolation package |
---|
5 | !!====================================================================== |
---|
6 | !! History : 2.0 ! 2002-06 (XXX) Original cade |
---|
7 | !! - ! 2005-11 (XXX) |
---|
8 | !! 3.2 ! 2009-04 (R. Benshila) |
---|
9 | !! 3.6 ! 2014-09 (R. Benshila) |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | #if defined key_agrif |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! 'key_agrif' AGRIF zoom |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | !! Agrif_tra : |
---|
16 | !! Agrif_dyn : |
---|
17 | !! interpu : |
---|
18 | !! interpv : |
---|
19 | !!---------------------------------------------------------------------- |
---|
20 | USE par_oce |
---|
21 | USE oce |
---|
22 | USE dom_oce |
---|
23 | USE zdf_oce |
---|
24 | USE agrif_oce |
---|
25 | USE phycst |
---|
26 | ! |
---|
27 | USE in_out_manager |
---|
28 | USE agrif_opa_sponge |
---|
29 | USE lib_mpp |
---|
30 | USE wrk_nemo |
---|
31 | |
---|
32 | IMPLICIT NONE |
---|
33 | PRIVATE |
---|
34 | |
---|
35 | PUBLIC Agrif_tra, Agrif_dyn, Agrif_ssh, Agrif_dyn_ts, Agrif_ssh_ts, Agrif_dta_ts |
---|
36 | PUBLIC interpun, interpvn |
---|
37 | PUBLIC interptsn, interpsshn |
---|
38 | PUBLIC interpunb, interpvnb, interpub2b, interpvb2b |
---|
39 | PUBLIC interpe3t, interpumsk, interpvmsk |
---|
40 | # if defined key_zdftke |
---|
41 | PUBLIC Agrif_tke, interpavm |
---|
42 | # endif |
---|
43 | |
---|
44 | INTEGER :: bdy_tinterp = 0 |
---|
45 | |
---|
46 | # include "vectopt_loop_substitute.h90" |
---|
47 | !!---------------------------------------------------------------------- |
---|
48 | !! NEMO/NST 3.7 , NEMO Consortium (2015) |
---|
49 | !! $Id$ |
---|
50 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
51 | !!---------------------------------------------------------------------- |
---|
52 | CONTAINS |
---|
53 | |
---|
54 | SUBROUTINE Agrif_tra |
---|
55 | !!---------------------------------------------------------------------- |
---|
56 | !! *** ROUTINE Agrif_tra *** |
---|
57 | !!---------------------------------------------------------------------- |
---|
58 | ! |
---|
59 | IF( Agrif_Root() ) RETURN |
---|
60 | ! |
---|
61 | Agrif_SpecialValue = 0._wp |
---|
62 | Agrif_UseSpecialValue = .TRUE. |
---|
63 | ! |
---|
64 | CALL Agrif_Bc_variable( tsn_id, procname=interptsn ) |
---|
65 | ! |
---|
66 | Agrif_UseSpecialValue = .FALSE. |
---|
67 | ! |
---|
68 | END SUBROUTINE Agrif_tra |
---|
69 | |
---|
70 | |
---|
71 | SUBROUTINE Agrif_dyn( kt ) |
---|
72 | !!---------------------------------------------------------------------- |
---|
73 | !! *** ROUTINE Agrif_DYN *** |
---|
74 | !!---------------------------------------------------------------------- |
---|
75 | INTEGER, INTENT(in) :: kt |
---|
76 | ! |
---|
77 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
78 | INTEGER :: j1, j2, i1, i2 |
---|
79 | REAL(wp), POINTER, DIMENSION(:,:) :: zub, zvb |
---|
80 | !!---------------------------------------------------------------------- |
---|
81 | ! |
---|
82 | IF( Agrif_Root() ) RETURN |
---|
83 | ! |
---|
84 | CALL wrk_alloc( jpi,jpj, zub, zvb ) |
---|
85 | ! |
---|
86 | Agrif_SpecialValue = 0._wp |
---|
87 | Agrif_UseSpecialValue = ln_spc_dyn |
---|
88 | ! |
---|
89 | CALL Agrif_Bc_variable( un_interp_id, procname=interpun ) |
---|
90 | CALL Agrif_Bc_variable( vn_interp_id, procname=interpvn ) |
---|
91 | ! |
---|
92 | Agrif_UseSpecialValue = .FALSE. |
---|
93 | ! |
---|
94 | ! prevent smoothing in ghost cells |
---|
95 | i1 = 1 ; i2 = jpi |
---|
96 | j1 = 1 ; j2 = jpj |
---|
97 | IF( nbondj == -1 .OR. nbondj == 2 ) j1 = 3 |
---|
98 | IF( nbondj == +1 .OR. nbondj == 2 ) j2 = nlcj-2 |
---|
99 | IF( nbondi == -1 .OR. nbondi == 2 ) i1 = 3 |
---|
100 | IF( nbondi == +1 .OR. nbondi == 2 ) i2 = nlci-2 |
---|
101 | |
---|
102 | IF( nbondi == -1 .OR. nbondi == 2 ) THEN |
---|
103 | ! |
---|
104 | ! Smoothing |
---|
105 | ! --------- |
---|
106 | IF( .NOT.ln_dynspg_ts ) THEN ! Store transport |
---|
107 | ua_b(2,:) = 0._wp |
---|
108 | DO jk = 1, jpkm1 |
---|
109 | DO jj = 1, jpj |
---|
110 | ua_b(2,jj) = ua_b(2,jj) + e3u_a(2,jj,jk) * ua(2,jj,jk) |
---|
111 | END DO |
---|
112 | END DO |
---|
113 | DO jj = 1, jpj |
---|
114 | ua_b(2,jj) = ua_b(2,jj) * r1_hu_a(2,jj) |
---|
115 | END DO |
---|
116 | ENDIF |
---|
117 | ! |
---|
118 | DO jk=1,jpkm1 ! Smooth |
---|
119 | DO jj=j1,j2 |
---|
120 | ua(2,jj,jk) = 0.25_wp*(ua(1,jj,jk)+2._wp*ua(2,jj,jk)+ua(3,jj,jk)) |
---|
121 | ua(2,jj,jk) = ua(2,jj,jk) * umask(2,jj,jk) |
---|
122 | END DO |
---|
123 | END DO |
---|
124 | ! |
---|
125 | zub(2,:) = 0._wp ! Correct transport |
---|
126 | DO jk = 1, jpkm1 |
---|
127 | DO jj = 1, jpj |
---|
128 | zub(2,jj) = zub(2,jj) + e3u_a(2,jj,jk) * ua(2,jj,jk) |
---|
129 | END DO |
---|
130 | END DO |
---|
131 | DO jj=1,jpj |
---|
132 | zub(2,jj) = zub(2,jj) * r1_hu_a(2,jj) |
---|
133 | END DO |
---|
134 | |
---|
135 | DO jk=1,jpkm1 |
---|
136 | DO jj=1,jpj |
---|
137 | ua(2,jj,jk) = (ua(2,jj,jk)+ua_b(2,jj)-zub(2,jj))*umask(2,jj,jk) |
---|
138 | END DO |
---|
139 | END DO |
---|
140 | |
---|
141 | ! Set tangential velocities to time splitting estimate |
---|
142 | !----------------------------------------------------- |
---|
143 | IF( ln_dynspg_ts ) THEN |
---|
144 | zvb(2,:) = 0._wp |
---|
145 | DO jk = 1, jpkm1 |
---|
146 | DO jj = 1, jpj |
---|
147 | zvb(2,jj) = zvb(2,jj) + e3v_a(2,jj,jk) * va(2,jj,jk) |
---|
148 | END DO |
---|
149 | END DO |
---|
150 | DO jj = 1, jpj |
---|
151 | zvb(2,jj) = zvb(2,jj) * r1_hv_a(2,jj) |
---|
152 | END DO |
---|
153 | DO jk = 1, jpkm1 |
---|
154 | DO jj = 1, jpj |
---|
155 | va(2,jj,jk) = (va(2,jj,jk)+va_b(2,jj)-zvb(2,jj)) * vmask(2,jj,jk) |
---|
156 | END DO |
---|
157 | END DO |
---|
158 | ENDIF |
---|
159 | ! |
---|
160 | ! Mask domain edges: |
---|
161 | !------------------- |
---|
162 | DO jk = 1, jpkm1 |
---|
163 | DO jj = 1, jpj |
---|
164 | ua(1,jj,jk) = 0._wp |
---|
165 | va(1,jj,jk) = 0._wp |
---|
166 | END DO |
---|
167 | END DO |
---|
168 | ! |
---|
169 | ENDIF |
---|
170 | |
---|
171 | IF( nbondi == 1 .OR. nbondi == 2 ) THEN |
---|
172 | |
---|
173 | ! Smoothing |
---|
174 | ! --------- |
---|
175 | IF( .NOT.ln_dynspg_ts ) THEN ! Store transport |
---|
176 | ua_b(nlci-2,:) = 0._wp |
---|
177 | DO jk=1,jpkm1 |
---|
178 | DO jj=1,jpj |
---|
179 | ua_b(nlci-2,jj) = ua_b(nlci-2,jj) + e3u_a(nlci-2,jj,jk) * ua(nlci-2,jj,jk) |
---|
180 | END DO |
---|
181 | END DO |
---|
182 | DO jj=1,jpj |
---|
183 | ua_b(nlci-2,jj) = ua_b(nlci-2,jj) * r1_hu_a(nlci-2,jj) |
---|
184 | END DO |
---|
185 | ENDIF |
---|
186 | |
---|
187 | DO jk = 1, jpkm1 ! Smooth |
---|
188 | DO jj = j1, j2 |
---|
189 | ua(nlci-2,jj,jk) = 0.25_wp * umask(nlci-2,jj,jk) & |
---|
190 | & * ( ua(nlci-3,jj,jk) + 2._wp*ua(nlci-2,jj,jk) + ua(nlci-1,jj,jk) ) |
---|
191 | END DO |
---|
192 | END DO |
---|
193 | |
---|
194 | zub(nlci-2,:) = 0._wp ! Correct transport |
---|
195 | DO jk = 1, jpkm1 |
---|
196 | DO jj = 1, jpj |
---|
197 | zub(nlci-2,jj) = zub(nlci-2,jj) + e3u_a(nlci-2,jj,jk) * ua(nlci-2,jj,jk) |
---|
198 | END DO |
---|
199 | END DO |
---|
200 | DO jj = 1, jpj |
---|
201 | zub(nlci-2,jj) = zub(nlci-2,jj) * r1_hu_a(nlci-2,jj) |
---|
202 | END DO |
---|
203 | |
---|
204 | DO jk = 1, jpkm1 |
---|
205 | DO jj = 1, jpj |
---|
206 | ua(nlci-2,jj,jk) = ( ua(nlci-2,jj,jk) + ua_b(nlci-2,jj) - zub(nlci-2,jj) ) * umask(nlci-2,jj,jk) |
---|
207 | END DO |
---|
208 | END DO |
---|
209 | ! |
---|
210 | ! Set tangential velocities to time splitting estimate |
---|
211 | !----------------------------------------------------- |
---|
212 | IF( ln_dynspg_ts ) THEN |
---|
213 | zvb(nlci-1,:) = 0._wp |
---|
214 | DO jk = 1, jpkm1 |
---|
215 | DO jj = 1, jpj |
---|
216 | zvb(nlci-1,jj) = zvb(nlci-1,jj) + e3v_a(nlci-1,jj,jk) * va(nlci-1,jj,jk) |
---|
217 | END DO |
---|
218 | END DO |
---|
219 | DO jj=1,jpj |
---|
220 | zvb(nlci-1,jj) = zvb(nlci-1,jj) * r1_hv_a(nlci-1,jj) |
---|
221 | END DO |
---|
222 | DO jk = 1, jpkm1 |
---|
223 | DO jj = 1, jpj |
---|
224 | va(nlci-1,jj,jk) = ( va(nlci-1,jj,jk) + va_b(nlci-1,jj) - zvb(nlci-1,jj) ) * vmask(nlci-1,jj,jk) |
---|
225 | END DO |
---|
226 | END DO |
---|
227 | ENDIF |
---|
228 | ! |
---|
229 | ! Mask domain edges: |
---|
230 | !------------------- |
---|
231 | DO jk = 1, jpkm1 |
---|
232 | DO jj = 1, jpj |
---|
233 | ua(nlci-1,jj,jk) = 0._wp |
---|
234 | va(nlci ,jj,jk) = 0._wp |
---|
235 | END DO |
---|
236 | END DO |
---|
237 | ! |
---|
238 | ENDIF |
---|
239 | |
---|
240 | IF( nbondj == -1 .OR. nbondj == 2 ) THEN |
---|
241 | |
---|
242 | ! Smoothing |
---|
243 | ! --------- |
---|
244 | IF( .NOT.ln_dynspg_ts ) THEN ! Store transport |
---|
245 | va_b(:,2) = 0._wp |
---|
246 | DO jk = 1, jpkm1 |
---|
247 | DO ji = 1, jpi |
---|
248 | va_b(ji,2) = va_b(ji,2) + e3v_a(ji,2,jk) * va(ji,2,jk) |
---|
249 | END DO |
---|
250 | END DO |
---|
251 | DO ji=1,jpi |
---|
252 | va_b(ji,2) = va_b(ji,2) * r1_hv_a(ji,2) |
---|
253 | END DO |
---|
254 | ENDIF |
---|
255 | ! |
---|
256 | DO jk = 1, jpkm1 ! Smooth |
---|
257 | DO ji = i1, i2 |
---|
258 | va(ji,2,jk) = 0.25_wp * vmask(ji,2,jk) & |
---|
259 | & * ( va(ji,1,jk) + 2._wp*va(ji,2,jk) + va(ji,3,jk) ) |
---|
260 | END DO |
---|
261 | END DO |
---|
262 | ! |
---|
263 | zvb(:,2) = 0._wp ! Correct transport |
---|
264 | DO jk=1,jpkm1 |
---|
265 | DO ji=1,jpi |
---|
266 | zvb(ji,2) = zvb(ji,2) + e3v_a(ji,2,jk) * va(ji,2,jk) * vmask(ji,2,jk) |
---|
267 | END DO |
---|
268 | END DO |
---|
269 | DO ji = 1, jpi |
---|
270 | zvb(ji,2) = zvb(ji,2) * r1_hv_a(ji,2) |
---|
271 | END DO |
---|
272 | DO jk = 1, jpkm1 |
---|
273 | DO ji = 1, jpi |
---|
274 | va(ji,2,jk) = ( va(ji,2,jk) + va_b(ji,2) - zvb(ji,2) ) * vmask(ji,2,jk) |
---|
275 | END DO |
---|
276 | END DO |
---|
277 | |
---|
278 | ! Set tangential velocities to time splitting estimate |
---|
279 | !----------------------------------------------------- |
---|
280 | IF( ln_dynspg_ts ) THEN |
---|
281 | zub(:,2) = 0._wp |
---|
282 | DO jk = 1, jpkm1 |
---|
283 | DO ji = 1, jpi |
---|
284 | zub(ji,2) = zub(ji,2) + e3u_a(ji,2,jk) * ua(ji,2,jk) * umask(ji,2,jk) |
---|
285 | END DO |
---|
286 | END DO |
---|
287 | DO ji = 1, jpi |
---|
288 | zub(ji,2) = zub(ji,2) * r1_hu_a(ji,2) |
---|
289 | END DO |
---|
290 | |
---|
291 | DO jk = 1, jpkm1 |
---|
292 | DO ji = 1, jpi |
---|
293 | ua(ji,2,jk) = ( ua(ji,2,jk) + ua_b(ji,2) - zub(ji,2) ) * umask(ji,2,jk) |
---|
294 | END DO |
---|
295 | END DO |
---|
296 | ENDIF |
---|
297 | |
---|
298 | ! Mask domain edges: |
---|
299 | !------------------- |
---|
300 | DO jk = 1, jpkm1 |
---|
301 | DO ji = 1, jpi |
---|
302 | ua(ji,1,jk) = 0._wp |
---|
303 | va(ji,1,jk) = 0._wp |
---|
304 | END DO |
---|
305 | END DO |
---|
306 | |
---|
307 | ENDIF |
---|
308 | |
---|
309 | IF( nbondj == 1 .OR. nbondj == 2 ) THEN |
---|
310 | ! |
---|
311 | ! Smoothing |
---|
312 | ! --------- |
---|
313 | IF( .NOT.ln_dynspg_ts ) THEN ! Store transport |
---|
314 | va_b(:,nlcj-2) = 0._wp |
---|
315 | DO jk = 1, jpkm1 |
---|
316 | DO ji = 1, jpi |
---|
317 | va_b(ji,nlcj-2) = va_b(ji,nlcj-2) + e3v_a(ji,nlcj-2,jk) * va(ji,nlcj-2,jk) |
---|
318 | END DO |
---|
319 | END DO |
---|
320 | DO ji = 1, jpi |
---|
321 | va_b(ji,nlcj-2) = va_b(ji,nlcj-2) * r1_hv_a(ji,nlcj-2) |
---|
322 | END DO |
---|
323 | ENDIF |
---|
324 | ! |
---|
325 | DO jk = 1, jpkm1 ! Smooth |
---|
326 | DO ji = i1, i2 |
---|
327 | va(ji,nlcj-2,jk) = 0.25_wp * vmask(ji,nlcj-2,jk) & |
---|
328 | & * ( va(ji,nlcj-3,jk) + 2._wp * va(ji,nlcj-2,jk) + va(ji,nlcj-1,jk) ) |
---|
329 | END DO |
---|
330 | END DO |
---|
331 | ! |
---|
332 | zvb(:,nlcj-2) = 0._wp ! Correct transport |
---|
333 | DO jk = 1, jpkm1 |
---|
334 | DO ji = 1, jpi |
---|
335 | zvb(ji,nlcj-2) = zvb(ji,nlcj-2) + e3v_a(ji,nlcj-2,jk) * va(ji,nlcj-2,jk) * vmask(ji,nlcj-2,jk) |
---|
336 | END DO |
---|
337 | END DO |
---|
338 | DO ji = 1, jpi |
---|
339 | zvb(ji,nlcj-2) = zvb(ji,nlcj-2) * r1_hv_a(ji,nlcj-2) |
---|
340 | END DO |
---|
341 | DO jk = 1, jpkm1 |
---|
342 | DO ji = 1, jpi |
---|
343 | va(ji,nlcj-2,jk) = ( va(ji,nlcj-2,jk) + va_b(ji,nlcj-2) - zvb(ji,nlcj-2) ) * vmask(ji,nlcj-2,jk) |
---|
344 | END DO |
---|
345 | END DO |
---|
346 | ! |
---|
347 | ! Set tangential velocities to time splitting estimate |
---|
348 | !----------------------------------------------------- |
---|
349 | IF( ln_dynspg_ts ) THEN |
---|
350 | zub(:,nlcj-1) = 0._wp |
---|
351 | DO jk = 1, jpkm1 |
---|
352 | DO ji = 1, jpi |
---|
353 | zub(ji,nlcj-1) = zub(ji,nlcj-1) + e3u_a(ji,nlcj-1,jk) * ua(ji,nlcj-1,jk) * umask(ji,nlcj-1,jk) |
---|
354 | END DO |
---|
355 | END DO |
---|
356 | DO ji = 1, jpi |
---|
357 | zub(ji,nlcj-1) = zub(ji,nlcj-1) * r1_hu_a(ji,nlcj-1) |
---|
358 | END DO |
---|
359 | ! |
---|
360 | DO jk = 1, jpkm1 |
---|
361 | DO ji = 1, jpi |
---|
362 | ua(ji,nlcj-1,jk) = ( ua(ji,nlcj-1,jk) + ua_b(ji,nlcj-1) - zub(ji,nlcj-1) ) * umask(ji,nlcj-1,jk) |
---|
363 | END DO |
---|
364 | END DO |
---|
365 | ENDIF |
---|
366 | ! |
---|
367 | ! Mask domain edges: |
---|
368 | !------------------- |
---|
369 | DO jk = 1, jpkm1 |
---|
370 | DO ji = 1, jpi |
---|
371 | ua(ji,nlcj ,jk) = 0._wp |
---|
372 | va(ji,nlcj-1,jk) = 0._wp |
---|
373 | END DO |
---|
374 | END DO |
---|
375 | ! |
---|
376 | ENDIF |
---|
377 | ! |
---|
378 | CALL wrk_dealloc( jpi,jpj, zub, zvb ) |
---|
379 | ! |
---|
380 | END SUBROUTINE Agrif_dyn |
---|
381 | |
---|
382 | |
---|
383 | SUBROUTINE Agrif_dyn_ts( jn ) |
---|
384 | !!---------------------------------------------------------------------- |
---|
385 | !! *** ROUTINE Agrif_dyn_ts *** |
---|
386 | !!---------------------------------------------------------------------- |
---|
387 | !! |
---|
388 | INTEGER, INTENT(in) :: jn |
---|
389 | !! |
---|
390 | INTEGER :: ji, jj |
---|
391 | !!---------------------------------------------------------------------- |
---|
392 | ! |
---|
393 | IF( Agrif_Root() ) RETURN |
---|
394 | ! |
---|
395 | IF((nbondi == -1).OR.(nbondi == 2)) THEN |
---|
396 | DO jj=1,jpj |
---|
397 | va_e(2,jj) = vbdy_w(jj) * hvr_e(2,jj) |
---|
398 | ! Specified fluxes: |
---|
399 | ua_e(2,jj) = ubdy_w(jj) * hur_e(2,jj) |
---|
400 | ! Characteristics method: |
---|
401 | !alt ua_e(2,jj) = 0.5_wp * ( ubdy_w(jj) * hur_e(2,jj) + ua_e(3,jj) & |
---|
402 | !alt & - sqrt(grav * hur_e(2,jj)) * (sshn_e(3,jj) - hbdy_w(jj)) ) |
---|
403 | END DO |
---|
404 | ENDIF |
---|
405 | ! |
---|
406 | IF((nbondi == 1).OR.(nbondi == 2)) THEN |
---|
407 | DO jj=1,jpj |
---|
408 | va_e(nlci-1,jj) = vbdy_e(jj) * hvr_e(nlci-1,jj) |
---|
409 | ! Specified fluxes: |
---|
410 | ua_e(nlci-2,jj) = ubdy_e(jj) * hur_e(nlci-2,jj) |
---|
411 | ! Characteristics method: |
---|
412 | !alt ua_e(nlci-2,jj) = 0.5_wp * ( ubdy_e(jj) * hur_e(nlci-2,jj) + ua_e(nlci-3,jj) & |
---|
413 | !alt & + sqrt(grav * hur_e(nlci-2,jj)) * (sshn_e(nlci-2,jj) - hbdy_e(jj)) ) |
---|
414 | END DO |
---|
415 | ENDIF |
---|
416 | ! |
---|
417 | IF((nbondj == -1).OR.(nbondj == 2)) THEN |
---|
418 | DO ji=1,jpi |
---|
419 | ua_e(ji,2) = ubdy_s(ji) * hur_e(ji,2) |
---|
420 | ! Specified fluxes: |
---|
421 | va_e(ji,2) = vbdy_s(ji) * hvr_e(ji,2) |
---|
422 | ! Characteristics method: |
---|
423 | !alt va_e(ji,2) = 0.5_wp * ( vbdy_s(ji) * hvr_e(ji,2) + va_e(ji,3) & |
---|
424 | !alt & - sqrt(grav * hvr_e(ji,2)) * (sshn_e(ji,3) - hbdy_s(ji)) ) |
---|
425 | END DO |
---|
426 | ENDIF |
---|
427 | ! |
---|
428 | IF((nbondj == 1).OR.(nbondj == 2)) THEN |
---|
429 | DO ji=1,jpi |
---|
430 | ua_e(ji,nlcj-1) = ubdy_n(ji) * hur_e(ji,nlcj-1) |
---|
431 | ! Specified fluxes: |
---|
432 | va_e(ji,nlcj-2) = vbdy_n(ji) * hvr_e(ji,nlcj-2) |
---|
433 | ! Characteristics method: |
---|
434 | !alt va_e(ji,nlcj-2) = 0.5_wp * ( vbdy_n(ji) * hvr_e(ji,nlcj-2) + va_e(ji,nlcj-3) & |
---|
435 | !alt & + sqrt(grav * hvr_e(ji,nlcj-2)) * (sshn_e(ji,nlcj-2) - hbdy_n(ji)) ) |
---|
436 | END DO |
---|
437 | ENDIF |
---|
438 | ! |
---|
439 | END SUBROUTINE Agrif_dyn_ts |
---|
440 | |
---|
441 | |
---|
442 | SUBROUTINE Agrif_dta_ts( kt ) |
---|
443 | !!---------------------------------------------------------------------- |
---|
444 | !! *** ROUTINE Agrif_dta_ts *** |
---|
445 | !!---------------------------------------------------------------------- |
---|
446 | !! |
---|
447 | INTEGER, INTENT(in) :: kt |
---|
448 | !! |
---|
449 | INTEGER :: ji, jj |
---|
450 | LOGICAL :: ll_int_cons |
---|
451 | REAL(wp) :: zrhot, zt |
---|
452 | !!---------------------------------------------------------------------- |
---|
453 | ! |
---|
454 | IF( Agrif_Root() ) RETURN |
---|
455 | ! |
---|
456 | ll_int_cons = ln_bt_fw ! Assume conservative temporal integration in the forward case only |
---|
457 | ! |
---|
458 | zrhot = Agrif_rhot() |
---|
459 | ! |
---|
460 | ! "Central" time index for interpolation: |
---|
461 | IF( ln_bt_fw ) THEN |
---|
462 | zt = REAL( Agrif_NbStepint()+0.5_wp, wp ) / zrhot |
---|
463 | ELSE |
---|
464 | zt = REAL( Agrif_NbStepint() , wp ) / zrhot |
---|
465 | ENDIF |
---|
466 | ! |
---|
467 | ! Linear interpolation of sea level |
---|
468 | Agrif_SpecialValue = 0._wp |
---|
469 | Agrif_UseSpecialValue = .TRUE. |
---|
470 | CALL Agrif_Bc_variable( sshn_id, calledweight=zt, procname=interpsshn ) |
---|
471 | Agrif_UseSpecialValue = .FALSE. |
---|
472 | ! |
---|
473 | ! Interpolate barotropic fluxes |
---|
474 | Agrif_SpecialValue=0. |
---|
475 | Agrif_UseSpecialValue = ln_spc_dyn |
---|
476 | ! |
---|
477 | IF( ll_int_cons ) THEN ! Conservative interpolation |
---|
478 | ! orders matters here !!!!!! |
---|
479 | CALL Agrif_Bc_variable( ub2b_interp_id, calledweight=1._wp, procname=interpub2b ) ! Time integrated |
---|
480 | CALL Agrif_Bc_variable( vb2b_interp_id, calledweight=1._wp, procname=interpvb2b ) |
---|
481 | bdy_tinterp = 1 |
---|
482 | CALL Agrif_Bc_variable( unb_id , calledweight=1._wp, procname=interpunb ) ! After |
---|
483 | CALL Agrif_Bc_variable( vnb_id , calledweight=1._wp, procname=interpvnb ) |
---|
484 | bdy_tinterp = 2 |
---|
485 | CALL Agrif_Bc_variable( unb_id , calledweight=0._wp, procname=interpunb ) ! Before |
---|
486 | CALL Agrif_Bc_variable( vnb_id , calledweight=0._wp, procname=interpvnb ) |
---|
487 | ELSE ! Linear interpolation |
---|
488 | bdy_tinterp = 0 |
---|
489 | ubdy_w(:) = 0._wp ; vbdy_w(:) = 0._wp |
---|
490 | ubdy_e(:) = 0._wp ; vbdy_e(:) = 0._wp |
---|
491 | ubdy_n(:) = 0._wp ; vbdy_n(:) = 0._wp |
---|
492 | ubdy_s(:) = 0._wp ; vbdy_s(:) = 0._wp |
---|
493 | CALL Agrif_Bc_variable( unb_id, calledweight=zt, procname=interpunb ) |
---|
494 | CALL Agrif_Bc_variable( vnb_id, calledweight=zt, procname=interpvnb ) |
---|
495 | ENDIF |
---|
496 | Agrif_UseSpecialValue = .FALSE. |
---|
497 | ! |
---|
498 | END SUBROUTINE Agrif_dta_ts |
---|
499 | |
---|
500 | |
---|
501 | SUBROUTINE Agrif_ssh( kt ) |
---|
502 | !!---------------------------------------------------------------------- |
---|
503 | !! *** ROUTINE Agrif_DYN *** |
---|
504 | !!---------------------------------------------------------------------- |
---|
505 | INTEGER, INTENT(in) :: kt |
---|
506 | !! |
---|
507 | !!---------------------------------------------------------------------- |
---|
508 | ! |
---|
509 | IF( Agrif_Root() ) RETURN |
---|
510 | ! |
---|
511 | IF((nbondi == -1).OR.(nbondi == 2)) THEN |
---|
512 | ssha(2,:)=ssha(3,:) |
---|
513 | sshn(2,:)=sshn(3,:) |
---|
514 | ENDIF |
---|
515 | ! |
---|
516 | IF((nbondi == 1).OR.(nbondi == 2)) THEN |
---|
517 | ssha(nlci-1,:)=ssha(nlci-2,:) |
---|
518 | sshn(nlci-1,:)=sshn(nlci-2,:) |
---|
519 | ENDIF |
---|
520 | ! |
---|
521 | IF((nbondj == -1).OR.(nbondj == 2)) THEN |
---|
522 | ssha(:,2)=ssha(:,3) |
---|
523 | sshn(:,2)=sshn(:,3) |
---|
524 | ENDIF |
---|
525 | ! |
---|
526 | IF((nbondj == 1).OR.(nbondj == 2)) THEN |
---|
527 | ssha(:,nlcj-1)=ssha(:,nlcj-2) |
---|
528 | sshn(:,nlcj-1)=sshn(:,nlcj-2) |
---|
529 | ENDIF |
---|
530 | ! |
---|
531 | END SUBROUTINE Agrif_ssh |
---|
532 | |
---|
533 | |
---|
534 | SUBROUTINE Agrif_ssh_ts( jn ) |
---|
535 | !!---------------------------------------------------------------------- |
---|
536 | !! *** ROUTINE Agrif_ssh_ts *** |
---|
537 | !!---------------------------------------------------------------------- |
---|
538 | INTEGER, INTENT(in) :: jn |
---|
539 | !! |
---|
540 | INTEGER :: ji,jj |
---|
541 | !!---------------------------------------------------------------------- |
---|
542 | ! |
---|
543 | IF((nbondi == -1).OR.(nbondi == 2)) THEN |
---|
544 | DO jj = 1, jpj |
---|
545 | ssha_e(2,jj) = hbdy_w(jj) |
---|
546 | END DO |
---|
547 | ENDIF |
---|
548 | ! |
---|
549 | IF((nbondi == 1).OR.(nbondi == 2)) THEN |
---|
550 | DO jj = 1, jpj |
---|
551 | ssha_e(nlci-1,jj) = hbdy_e(jj) |
---|
552 | END DO |
---|
553 | ENDIF |
---|
554 | ! |
---|
555 | IF((nbondj == -1).OR.(nbondj == 2)) THEN |
---|
556 | DO ji = 1, jpi |
---|
557 | ssha_e(ji,2) = hbdy_s(ji) |
---|
558 | END DO |
---|
559 | ENDIF |
---|
560 | ! |
---|
561 | IF((nbondj == 1).OR.(nbondj == 2)) THEN |
---|
562 | DO ji = 1, jpi |
---|
563 | ssha_e(ji,nlcj-1) = hbdy_n(ji) |
---|
564 | END DO |
---|
565 | ENDIF |
---|
566 | ! |
---|
567 | END SUBROUTINE Agrif_ssh_ts |
---|
568 | |
---|
569 | # if defined key_zdftke |
---|
570 | |
---|
571 | SUBROUTINE Agrif_tke |
---|
572 | !!---------------------------------------------------------------------- |
---|
573 | !! *** ROUTINE Agrif_tke *** |
---|
574 | !!---------------------------------------------------------------------- |
---|
575 | REAL(wp) :: zalpha |
---|
576 | !!---------------------------------------------------------------------- |
---|
577 | ! |
---|
578 | return |
---|
579 | |
---|
580 | zalpha = REAL( Agrif_NbStepint() + Agrif_IRhot() - 1, wp ) / REAL( Agrif_IRhot(), wp ) |
---|
581 | IF( zalpha > 1. ) zalpha = 1. |
---|
582 | ! |
---|
583 | Agrif_SpecialValue = 0.e0 |
---|
584 | Agrif_UseSpecialValue = .TRUE. |
---|
585 | ! |
---|
586 | CALL Agrif_Bc_variable(avm_id ,calledweight=zalpha, procname=interpavm) |
---|
587 | ! |
---|
588 | Agrif_UseSpecialValue = .FALSE. |
---|
589 | ! |
---|
590 | END SUBROUTINE Agrif_tke |
---|
591 | |
---|
592 | # endif |
---|
593 | |
---|
594 | SUBROUTINE interptsn( ptab, i1, i2, j1, j2, k1, k2, n1, n2, before, nb, ndir ) |
---|
595 | !!---------------------------------------------------------------------- |
---|
596 | !! *** ROUTINE interptsn *** |
---|
597 | !!---------------------------------------------------------------------- |
---|
598 | REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2,n1:n2), INTENT(inout) :: ptab |
---|
599 | INTEGER , INTENT(in ) :: i1, i2, j1, j2, k1, k2, n1, n2 |
---|
600 | LOGICAL , INTENT(in ) :: before |
---|
601 | INTEGER , INTENT(in ) :: nb , ndir |
---|
602 | ! |
---|
603 | INTEGER :: ji, jj, jk, jn ! dummy loop indices |
---|
604 | INTEGER :: imin, imax, jmin, jmax |
---|
605 | REAL(wp) :: zrhox , zalpha1, zalpha2, zalpha3 |
---|
606 | REAL(wp) :: zalpha4, zalpha5, zalpha6, zalpha7 |
---|
607 | LOGICAL :: western_side, eastern_side,northern_side,southern_side |
---|
608 | ! VERTICAL REFINEMENT BEGIN |
---|
609 | REAL(wp), DIMENSION(i1:i2,j1:j2,1:jpk,n1:n2) :: ptab_child |
---|
610 | REAL(wp), DIMENSION(k1:k2,n1:n2-1) :: tabin |
---|
611 | REAL(wp) :: h_in(k1:k2) |
---|
612 | REAL(wp) :: h_out(1:jpk) |
---|
613 | INTEGER :: N_in, N_out |
---|
614 | REAL(wp) :: h_diff |
---|
615 | REAL(wp) :: zrhoxy |
---|
616 | ! VERTICAL REFINEMENT END |
---|
617 | |
---|
618 | zrhoxy = Agrif_rhox()*Agrif_rhoy() |
---|
619 | IF (before) THEN |
---|
620 | DO jn = n1,n2-1 |
---|
621 | DO jk=k1,k2 |
---|
622 | DO jj=j1,j2 |
---|
623 | DO ji=i1,i2 |
---|
624 | ptab(ji,jj,jk,jn) = tsn(ji,jj,jk,jn) * e1e2t(ji,jj) * e3t_n(ji,jj,jk) |
---|
625 | END DO |
---|
626 | END DO |
---|
627 | END DO |
---|
628 | END DO |
---|
629 | DO jk=k1,k2 |
---|
630 | DO jj=j1,j2 |
---|
631 | DO ji=i1,i2 |
---|
632 | ptab(ji,jj,jk,n2) = tmask(ji,jj,jk) * e1e2t(ji,jj) * e3t_n(ji,jj,jk) |
---|
633 | END DO |
---|
634 | END DO |
---|
635 | END DO |
---|
636 | |
---|
637 | ELSE |
---|
638 | ! VERTICAL REFINEMENT BEGIN |
---|
639 | |
---|
640 | ptab_child(:,:,:,:) = 0. |
---|
641 | do jj=j1,j2 |
---|
642 | do ji=i1,i2 |
---|
643 | N_in = 0 |
---|
644 | DO jk=k1,k2 !k2 = jpk of parent grid |
---|
645 | IF (ptab(ji,jj,jk,n2) == 0) EXIT |
---|
646 | N_in = N_in + 1 |
---|
647 | tabin(jk,:) = ptab(ji,jj,jk,n1:n2-1)/ptab(ji,jj,jk,n2) |
---|
648 | h_in(N_in) = ptab(ji,jj,jk,n2)/(e1e2t(ji,jj)*zrhoxy) |
---|
649 | END DO |
---|
650 | N_out = 0 |
---|
651 | DO jk=1,jpk ! jpk of child grid |
---|
652 | IF (tmask(ji,jj,jk) == 0) EXIT ! TODO: Will not work with ISF. !This doesn't seem to work at the moment in GYRE but is OK in overflow model |
---|
653 | N_out = N_out + 1 |
---|
654 | h_out(jk) = e3t_n(ji,jj,jk) !Child grid scale factors. Could multiply by e1e2t here instead of division above |
---|
655 | ENDDO |
---|
656 | IF (N_in > 0) THEN |
---|
657 | h_diff = sum(h_out(1:N_out))-sum(h_in(1:N_in)) |
---|
658 | ! if (h_diff > 0) then |
---|
659 | ! h_in(N_in+1) = h_diff |
---|
660 | ! N_in = N_in + 1 |
---|
661 | ! else |
---|
662 | ! h_out(N_out+1) = -h_diff |
---|
663 | ! N_out = N_out + 1 |
---|
664 | ! endif |
---|
665 | ptab(ji,jj,k2,:) = ptab(ji,jj,k2-1,:) !what is this line for????? |
---|
666 | do jn=1,jpts |
---|
667 | call reconstructandremap(tabin(1:N_in,jn),h_in,ptab_child(ji,jj,1:N_out,jn),h_out,N_in,N_out) |
---|
668 | enddo |
---|
669 | ! if (abs(h_diff) > 1000.) then |
---|
670 | ! do jn=1,jpts |
---|
671 | ! do jk=1,N_out |
---|
672 | ! print *,'AVANT APRES = ',ji,jj,jk,N_out,ptab(ji,jj,jk,jn),ptab_child(ji,jj,jk,jn) |
---|
673 | ! enddo |
---|
674 | ! enddo |
---|
675 | ! endif |
---|
676 | ENDIF |
---|
677 | enddo |
---|
678 | enddo |
---|
679 | |
---|
680 | |
---|
681 | ! VERTICAL REFINEMENT END |
---|
682 | |
---|
683 | ! |
---|
684 | western_side = (nb == 1).AND.(ndir == 1) |
---|
685 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
686 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
687 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
688 | ! |
---|
689 | zrhox = Agrif_Rhox() |
---|
690 | ! |
---|
691 | zalpha1 = ( zrhox - 1. ) * 0.5 |
---|
692 | zalpha2 = 1. - zalpha1 |
---|
693 | ! |
---|
694 | zalpha3 = ( zrhox - 1. ) / ( zrhox + 1. ) |
---|
695 | zalpha4 = 1. - zalpha3 |
---|
696 | ! |
---|
697 | zalpha6 = 2. * ( zrhox - 1. ) / ( zrhox + 1. ) |
---|
698 | zalpha7 = - ( zrhox - 1. ) / ( zrhox + 3. ) |
---|
699 | zalpha5 = 1. - zalpha6 - zalpha7 |
---|
700 | ! |
---|
701 | imin = i1 |
---|
702 | imax = i2 |
---|
703 | jmin = j1 |
---|
704 | jmax = j2 |
---|
705 | ! |
---|
706 | ! Remove CORNERS |
---|
707 | IF((nbondj == -1).OR.(nbondj == 2)) jmin = 3 |
---|
708 | IF((nbondj == +1).OR.(nbondj == 2)) jmax = nlcj-2 |
---|
709 | IF((nbondi == -1).OR.(nbondi == 2)) imin = 3 |
---|
710 | IF((nbondi == +1).OR.(nbondi == 2)) imax = nlci-2 |
---|
711 | ! |
---|
712 | IF( eastern_side ) THEN |
---|
713 | DO jn = 1, jpts |
---|
714 | tsa(nlci,j1:j2,1:jpk,jn) = zalpha1 * ptab_child(nlci,j1:j2,1:jpk,jn) + zalpha2 * ptab_child(nlci-1,j1:j2,1:jpk,jn) |
---|
715 | DO jk = 1, jpkm1 |
---|
716 | DO jj = jmin,jmax |
---|
717 | IF( umask(nlci-2,jj,jk) == 0._wp ) THEN |
---|
718 | tsa(nlci-1,jj,jk,jn) = tsa(nlci,jj,jk,jn) * tmask(nlci-1,jj,jk) |
---|
719 | ELSE |
---|
720 | tsa(nlci-1,jj,jk,jn)=(zalpha4*tsa(nlci,jj,jk,jn)+zalpha3*tsa(nlci-2,jj,jk,jn))*tmask(nlci-1,jj,jk) |
---|
721 | IF( un(nlci-2,jj,jk) > 0._wp ) THEN |
---|
722 | tsa(nlci-1,jj,jk,jn)=( zalpha6*tsa(nlci-2,jj,jk,jn)+zalpha5*tsa(nlci,jj,jk,jn) & |
---|
723 | + zalpha7*tsa(nlci-3,jj,jk,jn) ) * tmask(nlci-1,jj,jk) |
---|
724 | ENDIF |
---|
725 | ENDIF |
---|
726 | END DO |
---|
727 | END DO |
---|
728 | tsa(nlci,j1:j2,k1:k2,jn) = 0._wp |
---|
729 | END DO |
---|
730 | ENDIF |
---|
731 | ! |
---|
732 | IF( northern_side ) THEN |
---|
733 | DO jn = 1, jpts |
---|
734 | tsa(i1:i2,nlcj,1:jpk,jn) = zalpha1 * ptab_child(i1:i2,nlcj,1:jpk,jn) + zalpha2 * ptab_child(i1:i2,nlcj-1,1:jpk,jn) |
---|
735 | DO jk = 1, jpkm1 |
---|
736 | DO ji = imin,imax |
---|
737 | IF( vmask(ji,nlcj-2,jk) == 0._wp ) THEN |
---|
738 | tsa(ji,nlcj-1,jk,jn) = tsa(ji,nlcj,jk,jn) * tmask(ji,nlcj-1,jk) |
---|
739 | ELSE |
---|
740 | tsa(ji,nlcj-1,jk,jn)=(zalpha4*tsa(ji,nlcj,jk,jn)+zalpha3*tsa(ji,nlcj-2,jk,jn))*tmask(ji,nlcj-1,jk) |
---|
741 | IF (vn(ji,nlcj-2,jk) > 0._wp ) THEN |
---|
742 | tsa(ji,nlcj-1,jk,jn)=( zalpha6*tsa(ji,nlcj-2,jk,jn)+zalpha5*tsa(ji,nlcj,jk,jn) & |
---|
743 | + zalpha7*tsa(ji,nlcj-3,jk,jn) ) * tmask(ji,nlcj-1,jk) |
---|
744 | ENDIF |
---|
745 | ENDIF |
---|
746 | END DO |
---|
747 | END DO |
---|
748 | tsa(i1:i2,nlcj,k1:k2,jn) = 0._wp |
---|
749 | END DO |
---|
750 | ENDIF |
---|
751 | ! |
---|
752 | IF( western_side ) THEN |
---|
753 | DO jn = 1, jpts |
---|
754 | tsa(1,j1:j2,1:jpk,jn) = zalpha1 * ptab_child(1,j1:j2,1:jpk,jn) + zalpha2 * ptab_child(2,j1:j2,1:jpk,jn) |
---|
755 | DO jk = 1, jpkm1 |
---|
756 | DO jj = jmin,jmax |
---|
757 | IF( umask(2,jj,jk) == 0._wp ) THEN |
---|
758 | tsa(2,jj,jk,jn) = tsa(1,jj,jk,jn) * tmask(2,jj,jk) |
---|
759 | ELSE |
---|
760 | tsa(2,jj,jk,jn)=(zalpha4*tsa(1,jj,jk,jn)+zalpha3*tsa(3,jj,jk,jn))*tmask(2,jj,jk) |
---|
761 | IF( un(2,jj,jk) < 0._wp ) THEN |
---|
762 | tsa(2,jj,jk,jn)=(zalpha6*tsa(3,jj,jk,jn)+zalpha5*tsa(1,jj,jk,jn)+zalpha7*tsa(4,jj,jk,jn))*tmask(2,jj,jk) |
---|
763 | ENDIF |
---|
764 | ENDIF |
---|
765 | END DO |
---|
766 | END DO |
---|
767 | tsa(1,j1:j2,k1:k2,jn) = 0._wp |
---|
768 | END DO |
---|
769 | ENDIF |
---|
770 | ! |
---|
771 | IF( southern_side ) THEN |
---|
772 | DO jn = 1, jpts |
---|
773 | tsa(i1:i2,1,1:jpk,jn) = zalpha1 * ptab_child(i1:i2,1,1:jpk,jn) + zalpha2 * ptab_child(i1:i2,2,1:jpk,jn) |
---|
774 | DO jk = 1, jpk |
---|
775 | DO ji=imin,imax |
---|
776 | IF( vmask(ji,2,jk) == 0._wp ) THEN |
---|
777 | tsa(ji,2,jk,jn)=tsa(ji,1,jk,jn) * tmask(ji,2,jk) |
---|
778 | ELSE |
---|
779 | tsa(ji,2,jk,jn)=(zalpha4*tsa(ji,1,jk,jn)+zalpha3*tsa(ji,3,jk,jn))*tmask(ji,2,jk) |
---|
780 | IF( vn(ji,2,jk) < 0._wp ) THEN |
---|
781 | tsa(ji,2,jk,jn)=(zalpha6*tsa(ji,3,jk,jn)+zalpha5*tsa(ji,1,jk,jn)+zalpha7*tsa(ji,4,jk,jn))*tmask(ji,2,jk) |
---|
782 | ENDIF |
---|
783 | ENDIF |
---|
784 | END DO |
---|
785 | END DO |
---|
786 | tsa(i1:i2,1,k1:k2,jn) = 0._wp |
---|
787 | END DO |
---|
788 | ENDIF |
---|
789 | ! |
---|
790 | ! Treatment of corners |
---|
791 | ! |
---|
792 | ! East south |
---|
793 | IF ((eastern_side).AND.((nbondj == -1).OR.(nbondj == 2))) THEN |
---|
794 | tsa(nlci-1,2,:,:) = ptab_child(nlci-1,2,:,1:jpts) |
---|
795 | ENDIF |
---|
796 | ! East north |
---|
797 | IF ((eastern_side).AND.((nbondj == 1).OR.(nbondj == 2))) THEN |
---|
798 | tsa(nlci-1,nlcj-1,:,:) = ptab_child(nlci-1,nlcj-1,:,1:jpts) |
---|
799 | ENDIF |
---|
800 | ! West south |
---|
801 | IF ((western_side).AND.((nbondj == -1).OR.(nbondj == 2))) THEN |
---|
802 | tsa(2,2,:,:) = ptab_child(2,2,:,1:jpts) |
---|
803 | ENDIF |
---|
804 | ! West north |
---|
805 | IF ((western_side).AND.((nbondj == 1).OR.(nbondj == 2))) THEN |
---|
806 | tsa(2,nlcj-1,:,:) = ptab_child(2,nlcj-1,:,1:jpts) |
---|
807 | ENDIF |
---|
808 | ! |
---|
809 | ENDIF |
---|
810 | ! |
---|
811 | END SUBROUTINE interptsn |
---|
812 | |
---|
813 | |
---|
814 | SUBROUTINE interpsshn( ptab, i1, i2, j1, j2, before, nb, ndir ) |
---|
815 | !!---------------------------------------------------------------------- |
---|
816 | !! *** ROUTINE interpsshn *** |
---|
817 | !!---------------------------------------------------------------------- |
---|
818 | INTEGER , INTENT(in ) :: i1, i2, j1, j2 |
---|
819 | REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab |
---|
820 | LOGICAL , INTENT(in ) :: before |
---|
821 | INTEGER , INTENT(in ) :: nb , ndir |
---|
822 | ! |
---|
823 | LOGICAL :: western_side, eastern_side,northern_side,southern_side |
---|
824 | !!---------------------------------------------------------------------- |
---|
825 | ! |
---|
826 | IF( before) THEN |
---|
827 | ptab(i1:i2,j1:j2) = sshn(i1:i2,j1:j2) |
---|
828 | ELSE |
---|
829 | western_side = (nb == 1).AND.(ndir == 1) |
---|
830 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
831 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
832 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
833 | IF(western_side) hbdy_w(j1:j2) = ptab(i1,j1:j2) * tmask(i1,j1:j2,1) |
---|
834 | IF(eastern_side) hbdy_e(j1:j2) = ptab(i1,j1:j2) * tmask(i1,j1:j2,1) |
---|
835 | IF(southern_side) hbdy_s(i1:i2) = ptab(i1:i2,j1) * tmask(i1:i2,j1,1) |
---|
836 | IF(northern_side) hbdy_n(i1:i2) = ptab(i1:i2,j1) * tmask(i1:i2,j1,1) |
---|
837 | ENDIF |
---|
838 | ! |
---|
839 | END SUBROUTINE interpsshn |
---|
840 | |
---|
841 | |
---|
842 | SUBROUTINE interpun( ptab, i1, i2, j1, j2, k1, k2, before ) |
---|
843 | !!---------------------------------------------------------------------- |
---|
844 | !! *** ROUTINE interpun *** |
---|
845 | !!--------------------------------------------- |
---|
846 | !! |
---|
847 | INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2,m1,m2 |
---|
848 | REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2,m1:m2), INTENT(inout) :: ptab |
---|
849 | LOGICAL, INTENT(in) :: before |
---|
850 | INTEGER, INTENT(in) :: nb , ndir |
---|
851 | !! |
---|
852 | INTEGER :: ji,jj,jk |
---|
853 | REAL(wp) :: zrhoy |
---|
854 | ! VERTICAL REFINEMENT BEGIN |
---|
855 | REAL(wp), DIMENSION(i1:i2,j1:j2,1:jpk) :: ptab_child |
---|
856 | REAL(wp), DIMENSION(k1:k2) :: tabin |
---|
857 | REAL(wp) :: h_in(k1:k2) |
---|
858 | REAL(wp) :: h_out(1:jpk) |
---|
859 | INTEGER :: N_in, N_out |
---|
860 | REAL(wp) :: h_diff |
---|
861 | LOGICAL :: western_side, eastern_side |
---|
862 | INTEGER :: iref |
---|
863 | |
---|
864 | ! VERTICAL REFINEMENT END |
---|
865 | !!--------------------------------------------- |
---|
866 | ! |
---|
867 | zrhoy = Agrif_rhoy() |
---|
868 | IF (before) THEN |
---|
869 | !We can't use zero as the special value because we need to include zeros |
---|
870 | !when interpolating the scale factors |
---|
871 | IF(Agrif_UseSpecialValue) THEN |
---|
872 | Agrif_SpecialValue = -999._wp |
---|
873 | ELSE |
---|
874 | Agrif_SpecialValue = 0._wp |
---|
875 | ENDIF |
---|
876 | DO jk=1,jpk |
---|
877 | DO jj=j1,j2 |
---|
878 | DO ji=i1,i2 |
---|
879 | ptab(ji,jj,jk,1) = (e2u(ji,jj) * e3u_n(ji,jj,jk) * un(ji,jj,jk)*umask(ji,jj,jk)) - & |
---|
880 | & ((umask(ji,jj,jk)-1) * Agrif_SpecialValue) |
---|
881 | ptab(ji,jj,jk,2) = (umask(ji,jj,jk) * e2u(ji,jj) * e3u_n(ji,jj,jk)) |
---|
882 | END DO |
---|
883 | END DO |
---|
884 | END DO |
---|
885 | ELSE |
---|
886 | ! VERTICAL REFINEMENT BEGIN |
---|
887 | western_side = (nb == 1).AND.(ndir == 1) |
---|
888 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
889 | |
---|
890 | Agrif_SpecialValue = 0._wp ! reset specialvalue to zero now interpolation completed |
---|
891 | |
---|
892 | ptab_child(:,:,:) = 0. |
---|
893 | DO jj=j1,j2 |
---|
894 | DO ji=i1,i2 |
---|
895 | iref = ji |
---|
896 | IF (western_side) iref = 2 |
---|
897 | IF (eastern_side) iref = nlci-2 |
---|
898 | |
---|
899 | N_in = 0 |
---|
900 | DO jk=k1,k2 |
---|
901 | IF (ptab(ji,jj,jk,2) == 0) EXIT |
---|
902 | N_in = N_in + 1 |
---|
903 | tabin(jk) = ptab(ji,jj,jk,1)/ptab(ji,jj,jk,2) |
---|
904 | h_in(N_in) = ptab(ji,jj,jk,2)/(e2u(ji,jj) * zrhoy) |
---|
905 | ENDDO |
---|
906 | |
---|
907 | IF (N_in == 0) THEN |
---|
908 | ptab_child(ji,jj,:) = 0. |
---|
909 | CYCLE |
---|
910 | ENDIF |
---|
911 | |
---|
912 | N_out = 0 |
---|
913 | DO jk=1,jpk |
---|
914 | if (umask(ji,jj,jk) == 0) EXIT |
---|
915 | N_out = N_out + 1 |
---|
916 | h_out(N_out) = e3u_n(ji,jj,jk) |
---|
917 | ENDDO |
---|
918 | |
---|
919 | IF (N_out == 0) THEN |
---|
920 | ptab_child(ji,jj,:) = 0. |
---|
921 | CYCLE |
---|
922 | ENDIF |
---|
923 | |
---|
924 | ! IF (N_in * N_out > 0) THEN |
---|
925 | ! h_diff = sum(h_out(1:N_out))-sum(h_in(1:N_in)) |
---|
926 | ! Should be able to remove the next IF/ELSEIF statement once scale factors are dealt with properly |
---|
927 | ! if (h_diff < 0.) then |
---|
928 | ! print *,'CHECK YOUR BATHY ...', h_diff, sum(h_out(1:N_out)), sum(h_in(1:N_in)) |
---|
929 | ! stop |
---|
930 | ! endif |
---|
931 | ! ENDIF |
---|
932 | call reconstructandremap(tabin(1:N_in),h_in(1:N_in),ptab_child(ji,jj,1:N_out),h_out(1:N_out),N_in,N_out) |
---|
933 | |
---|
934 | ENDDO |
---|
935 | ENDDO |
---|
936 | |
---|
937 | ! in the following |
---|
938 | ! remove division of ua by fs e3u (already done) and also zrhoy and e2u |
---|
939 | ! VERTICAL REFINEMENT END |
---|
940 | |
---|
941 | DO jk = 1, jpkm1 |
---|
942 | DO jj=j1,j2 |
---|
943 | ua(i1:i2,jj,jk) = ptab_child(i1:i2,jj,jk) |
---|
944 | !/(zrhoy*e2u(i1:i2,jj))) |
---|
945 | END DO |
---|
946 | END DO |
---|
947 | ENDIF |
---|
948 | ! |
---|
949 | END SUBROUTINE interpun |
---|
950 | |
---|
951 | |
---|
952 | SUBROUTINE interpvn( ptab, i1, i2, j1, j2, k1, k2, before ) |
---|
953 | !!---------------------------------------------------------------------- |
---|
954 | !! *** ROUTINE interpvn *** |
---|
955 | !!---------------------------------------------------------------------- |
---|
956 | ! |
---|
957 | INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2,m1,m2 |
---|
958 | REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2,m1:m2), INTENT(inout) :: ptab |
---|
959 | LOGICAL, INTENT(in) :: before |
---|
960 | INTEGER, INTENT(in) :: nb , ndir |
---|
961 | ! |
---|
962 | INTEGER :: ji,jj,jk |
---|
963 | REAL(wp) :: zrhox |
---|
964 | ! VERTICAL REFINEMENT BEGIN |
---|
965 | REAL(wp), DIMENSION(i1:i2,j1:j2,1:jpk) :: ptab_child |
---|
966 | REAL(wp), DIMENSION(k1:k2) :: tabin |
---|
967 | REAL(wp) :: h_in(k1:k2) |
---|
968 | REAL(wp) :: h_out(1:jpk) |
---|
969 | INTEGER :: N_in, N_out |
---|
970 | REAL(wp) :: h_diff |
---|
971 | LOGICAL :: northern_side,southern_side |
---|
972 | INTEGER :: jref |
---|
973 | |
---|
974 | ! VERTICAL REFINEMENT END |
---|
975 | !!--------------------------------------------- |
---|
976 | ! |
---|
977 | zrhox = Agrif_rhox() |
---|
978 | IF (before) THEN |
---|
979 | IF(Agrif_UseSpecialValue) THEN |
---|
980 | Agrif_SpecialValue = -999._wp |
---|
981 | ELSE |
---|
982 | Agrif_SpecialValue = 0._wp |
---|
983 | ENDIF |
---|
984 | DO jk=k1,k2 |
---|
985 | DO jj=j1,j2 |
---|
986 | DO ji=i1,i2 |
---|
987 | ptab(ji,jj,jk,1) = e1v(ji,jj) * e3v_n(ji,jj,jk) * vn(ji,jj,jk) |
---|
988 | ptab(ji,jj,jk,2) = vmask(ji,jj,jk) * e1v(ji,jj) * e3v_n(ji,jj,jk) |
---|
989 | END DO |
---|
990 | END DO |
---|
991 | END DO |
---|
992 | ELSE |
---|
993 | ! VERTICAL REFINEMENT BEGIN |
---|
994 | ptab_child(:,:,:) = 0. |
---|
995 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
996 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
997 | |
---|
998 | Agrif_SpecialValue = 0._wp !Reset special value to zero now interpolation is done |
---|
999 | |
---|
1000 | do jj=j1,j2 |
---|
1001 | jref = jj |
---|
1002 | IF (southern_side) jref = 2 |
---|
1003 | IF (northern_side) jref = nlcj-2 |
---|
1004 | do ji=i1,i2 |
---|
1005 | |
---|
1006 | N_in = 0 |
---|
1007 | do jk=k1,k2 |
---|
1008 | if (ptab(ji,jj,jk,2) == 0) EXIT |
---|
1009 | N_in = N_in + 1 |
---|
1010 | tabin(jk) = ptab(ji,jj,jk,1)/ptab(ji,jj,jk,2) |
---|
1011 | h_in(N_in) = ptab(ji,jj,jk,2)/(e1v(ji,jj)*zrhox) |
---|
1012 | enddo |
---|
1013 | IF (N_in == 0) THEN |
---|
1014 | ptab_child(ji,jj,:) = 0. |
---|
1015 | CYCLE |
---|
1016 | ENDIF |
---|
1017 | |
---|
1018 | N_out = 0 |
---|
1019 | do jk=1,jpk |
---|
1020 | if (vmask(ji,jref,jk) == 0) EXIT |
---|
1021 | N_out = N_out + 1 |
---|
1022 | h_out(N_out) = e3v_n(ji,jj,jk) |
---|
1023 | enddo |
---|
1024 | IF (N_out == 0) THEN |
---|
1025 | ptab_child(ji,jj,:) = 0. |
---|
1026 | CYCLE |
---|
1027 | ENDIF |
---|
1028 | |
---|
1029 | ! IF (N_in * N_out > 0) THEN |
---|
1030 | ! h_diff = sum(h_out(1:N_out))-sum(h_in(1:N_in)) |
---|
1031 | ! Should be able to remove the next IF/ELSEIF statement once scale factors are dealt with properly |
---|
1032 | ! if (h_diff < 0.) then |
---|
1033 | ! print *,'CHECK YOUR BATHY interpvn...', h_diff, sum(h_out(1:N_out)), sum(h_in(1:N_in)) |
---|
1034 | ! stop |
---|
1035 | ! endif |
---|
1036 | ! ENDIF |
---|
1037 | call reconstructandremap(tabin(1:N_in),h_in(1:N_in),ptab_child(ji,jj,1:N_out),h_out(1:N_out),N_in,N_out) |
---|
1038 | |
---|
1039 | enddo |
---|
1040 | enddo |
---|
1041 | ! in the following |
---|
1042 | ! remove division of va by fs e3v, zrhox and e1v (already done) |
---|
1043 | ! VERTICAL REFINEMENT END |
---|
1044 | DO jk=1,jpkm1 |
---|
1045 | DO jj=j1,j2 |
---|
1046 | va(i1:i2,jj,jk) = ptab_child(i1:i2,jj,jk) |
---|
1047 | END DO |
---|
1048 | END DO |
---|
1049 | ENDIF |
---|
1050 | ! |
---|
1051 | END SUBROUTINE interpvn |
---|
1052 | |
---|
1053 | |
---|
1054 | SUBROUTINE interpunb( ptab, i1, i2, j1, j2, before, nb, ndir ) |
---|
1055 | !!---------------------------------------------------------------------- |
---|
1056 | !! *** ROUTINE interpunb *** |
---|
1057 | !!---------------------------------------------------------------------- |
---|
1058 | INTEGER , INTENT(in ) :: i1, i2, j1, j2 |
---|
1059 | REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab |
---|
1060 | LOGICAL , INTENT(in ) :: before |
---|
1061 | INTEGER , INTENT(in ) :: nb , ndir |
---|
1062 | ! |
---|
1063 | INTEGER :: ji, jj |
---|
1064 | REAL(wp) :: zrhoy, zrhot, zt0, zt1, ztcoeff |
---|
1065 | LOGICAL :: western_side, eastern_side,northern_side,southern_side |
---|
1066 | !!---------------------------------------------------------------------- |
---|
1067 | ! |
---|
1068 | IF( before ) THEN |
---|
1069 | ptab(i1:i2,j1:j2) = e2u(i1:i2,j1:j2) * hu_n(i1:i2,j1:j2) * un_b(i1:i2,j1:j2) |
---|
1070 | ELSE |
---|
1071 | western_side = (nb == 1).AND.(ndir == 1) |
---|
1072 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
1073 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
1074 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
1075 | zrhoy = Agrif_Rhoy() |
---|
1076 | zrhot = Agrif_rhot() |
---|
1077 | ! Time indexes bounds for integration |
---|
1078 | zt0 = REAL(Agrif_NbStepint() , wp) / zrhot |
---|
1079 | zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot |
---|
1080 | ! Polynomial interpolation coefficients: |
---|
1081 | IF( bdy_tinterp == 1 ) THEN |
---|
1082 | ztcoeff = zrhot * ( zt1**2._wp * ( zt1 - 1._wp) & |
---|
1083 | & - zt0**2._wp * ( zt0 - 1._wp) ) |
---|
1084 | ELSEIF( bdy_tinterp == 2 ) THEN |
---|
1085 | ztcoeff = zrhot * ( zt1 * ( zt1 - 1._wp)**2._wp & |
---|
1086 | & - zt0 * ( zt0 - 1._wp)**2._wp ) |
---|
1087 | |
---|
1088 | ELSE |
---|
1089 | ztcoeff = 1 |
---|
1090 | ENDIF |
---|
1091 | ! |
---|
1092 | IF(western_side) THEN |
---|
1093 | ubdy_w(j1:j2) = ubdy_w(j1:j2) + ztcoeff * ptab(i1,j1:j2) |
---|
1094 | ENDIF |
---|
1095 | IF(eastern_side) THEN |
---|
1096 | ubdy_e(j1:j2) = ubdy_e(j1:j2) + ztcoeff * ptab(i1,j1:j2) |
---|
1097 | ENDIF |
---|
1098 | IF(southern_side) THEN |
---|
1099 | ubdy_s(i1:i2) = ubdy_s(i1:i2) + ztcoeff * ptab(i1:i2,j1) |
---|
1100 | ENDIF |
---|
1101 | IF(northern_side) THEN |
---|
1102 | ubdy_n(i1:i2) = ubdy_n(i1:i2) + ztcoeff * ptab(i1:i2,j1) |
---|
1103 | ENDIF |
---|
1104 | ! |
---|
1105 | IF( bdy_tinterp == 0 .OR. bdy_tinterp == 2) THEN |
---|
1106 | IF(western_side) THEN |
---|
1107 | ubdy_w(j1:j2) = ubdy_w(j1:j2) / (zrhoy*e2u(i1,j1:j2)) * umask(i1,j1:j2,1) |
---|
1108 | ENDIF |
---|
1109 | IF(eastern_side) THEN |
---|
1110 | ubdy_e(j1:j2) = ubdy_e(j1:j2) / (zrhoy*e2u(i1,j1:j2)) * umask(i1,j1:j2,1) |
---|
1111 | ENDIF |
---|
1112 | IF(southern_side) THEN |
---|
1113 | ubdy_s(i1:i2) = ubdy_s(i1:i2) / (zrhoy*e2u(i1:i2,j1)) * umask(i1:i2,j1,1) |
---|
1114 | ENDIF |
---|
1115 | IF(northern_side) THEN |
---|
1116 | ubdy_n(i1:i2) = ubdy_n(i1:i2) / (zrhoy*e2u(i1:i2,j1)) * umask(i1:i2,j1,1) |
---|
1117 | ENDIF |
---|
1118 | ENDIF |
---|
1119 | ENDIF |
---|
1120 | ! |
---|
1121 | END SUBROUTINE interpunb |
---|
1122 | |
---|
1123 | |
---|
1124 | SUBROUTINE interpvnb( ptab, i1, i2, j1, j2, before, nb, ndir ) |
---|
1125 | !!---------------------------------------------------------------------- |
---|
1126 | !! *** ROUTINE interpvnb *** |
---|
1127 | !!---------------------------------------------------------------------- |
---|
1128 | INTEGER , INTENT(in ) :: i1, i2, j1, j2 |
---|
1129 | REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab |
---|
1130 | LOGICAL , INTENT(in ) :: before |
---|
1131 | INTEGER , INTENT(in ) :: nb , ndir |
---|
1132 | ! |
---|
1133 | INTEGER :: ji,jj |
---|
1134 | REAL(wp) :: zrhox, zrhot, zt0, zt1, ztcoeff |
---|
1135 | LOGICAL :: western_side, eastern_side,northern_side,southern_side |
---|
1136 | !!---------------------------------------------------------------------- |
---|
1137 | ! |
---|
1138 | IF( before ) THEN |
---|
1139 | ptab(i1:i2,j1:j2) = e1v(i1:i2,j1:j2) * hv_n(i1:i2,j1:j2) * vn_b(i1:i2,j1:j2) |
---|
1140 | ELSE |
---|
1141 | western_side = (nb == 1).AND.(ndir == 1) |
---|
1142 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
1143 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
1144 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
1145 | zrhox = Agrif_Rhox() |
---|
1146 | zrhot = Agrif_rhot() |
---|
1147 | ! Time indexes bounds for integration |
---|
1148 | zt0 = REAL(Agrif_NbStepint() , wp) / zrhot |
---|
1149 | zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot |
---|
1150 | IF( bdy_tinterp == 1 ) THEN |
---|
1151 | ztcoeff = zrhot * ( zt1**2._wp * ( zt1 - 1._wp) & |
---|
1152 | & - zt0**2._wp * ( zt0 - 1._wp) ) |
---|
1153 | ELSEIF( bdy_tinterp == 2 ) THEN |
---|
1154 | ztcoeff = zrhot * ( zt1 * ( zt1 - 1._wp)**2._wp & |
---|
1155 | & - zt0 * ( zt0 - 1._wp)**2._wp ) |
---|
1156 | ELSE |
---|
1157 | ztcoeff = 1 |
---|
1158 | ENDIF |
---|
1159 | ! |
---|
1160 | IF(western_side) THEN |
---|
1161 | vbdy_w(j1:j2) = vbdy_w(j1:j2) + ztcoeff * ptab(i1,j1:j2) |
---|
1162 | ENDIF |
---|
1163 | IF(eastern_side) THEN |
---|
1164 | vbdy_e(j1:j2) = vbdy_e(j1:j2) + ztcoeff * ptab(i1,j1:j2) |
---|
1165 | ENDIF |
---|
1166 | IF(southern_side) THEN |
---|
1167 | vbdy_s(i1:i2) = vbdy_s(i1:i2) + ztcoeff * ptab(i1:i2,j1) |
---|
1168 | ENDIF |
---|
1169 | IF(northern_side) THEN |
---|
1170 | vbdy_n(i1:i2) = vbdy_n(i1:i2) + ztcoeff * ptab(i1:i2,j1) |
---|
1171 | ENDIF |
---|
1172 | ! |
---|
1173 | IF( bdy_tinterp == 0 .OR. bdy_tinterp == 2) THEN |
---|
1174 | IF(western_side) THEN |
---|
1175 | vbdy_w(j1:j2) = vbdy_w(j1:j2) / (zrhox*e1v(i1,j1:j2)) & |
---|
1176 | & * vmask(i1,j1:j2,1) |
---|
1177 | ENDIF |
---|
1178 | IF(eastern_side) THEN |
---|
1179 | vbdy_e(j1:j2) = vbdy_e(j1:j2) / (zrhox*e1v(i1,j1:j2)) & |
---|
1180 | & * vmask(i1,j1:j2,1) |
---|
1181 | ENDIF |
---|
1182 | IF(southern_side) THEN |
---|
1183 | vbdy_s(i1:i2) = vbdy_s(i1:i2) / (zrhox*e1v(i1:i2,j1)) & |
---|
1184 | & * vmask(i1:i2,j1,1) |
---|
1185 | ENDIF |
---|
1186 | IF(northern_side) THEN |
---|
1187 | vbdy_n(i1:i2) = vbdy_n(i1:i2) / (zrhox*e1v(i1:i2,j1)) & |
---|
1188 | & * vmask(i1:i2,j1,1) |
---|
1189 | ENDIF |
---|
1190 | ENDIF |
---|
1191 | ENDIF |
---|
1192 | ! |
---|
1193 | END SUBROUTINE interpvnb |
---|
1194 | |
---|
1195 | |
---|
1196 | SUBROUTINE interpub2b( ptab, i1, i2, j1, j2, before, nb, ndir ) |
---|
1197 | !!---------------------------------------------------------------------- |
---|
1198 | !! *** ROUTINE interpub2b *** |
---|
1199 | !!---------------------------------------------------------------------- |
---|
1200 | INTEGER , INTENT(in ) :: i1, i2, j1, j2 |
---|
1201 | REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab |
---|
1202 | LOGICAL , INTENT(in ) :: before |
---|
1203 | INTEGER , INTENT(in ) :: nb , ndir |
---|
1204 | ! |
---|
1205 | INTEGER :: ji,jj |
---|
1206 | REAL(wp) :: zrhot, zt0, zt1,zat |
---|
1207 | LOGICAL :: western_side, eastern_side,northern_side,southern_side |
---|
1208 | !!---------------------------------------------------------------------- |
---|
1209 | IF( before ) THEN |
---|
1210 | ptab(i1:i2,j1:j2) = e2u(i1:i2,j1:j2) * ub2_b(i1:i2,j1:j2) |
---|
1211 | ELSE |
---|
1212 | western_side = (nb == 1).AND.(ndir == 1) |
---|
1213 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
1214 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
1215 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
1216 | zrhot = Agrif_rhot() |
---|
1217 | ! Time indexes bounds for integration |
---|
1218 | zt0 = REAL(Agrif_NbStepint() , wp) / zrhot |
---|
1219 | zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot |
---|
1220 | ! Polynomial interpolation coefficients: |
---|
1221 | zat = zrhot * ( zt1**2._wp * (-2._wp*zt1 + 3._wp) & |
---|
1222 | & - zt0**2._wp * (-2._wp*zt0 + 3._wp) ) |
---|
1223 | ! |
---|
1224 | IF(western_side ) ubdy_w(j1:j2) = zat * ptab(i1,j1:j2) |
---|
1225 | IF(eastern_side ) ubdy_e(j1:j2) = zat * ptab(i1,j1:j2) |
---|
1226 | IF(southern_side) ubdy_s(i1:i2) = zat * ptab(i1:i2,j1) |
---|
1227 | IF(northern_side) ubdy_n(i1:i2) = zat * ptab(i1:i2,j1) |
---|
1228 | ENDIF |
---|
1229 | ! |
---|
1230 | END SUBROUTINE interpub2b |
---|
1231 | |
---|
1232 | |
---|
1233 | SUBROUTINE interpvb2b( ptab, i1, i2, j1, j2, before, nb, ndir ) |
---|
1234 | !!---------------------------------------------------------------------- |
---|
1235 | !! *** ROUTINE interpvb2b *** |
---|
1236 | !!---------------------------------------------------------------------- |
---|
1237 | INTEGER , INTENT(in ) :: i1, i2, j1, j2 |
---|
1238 | REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab |
---|
1239 | LOGICAL , INTENT(in ) :: before |
---|
1240 | INTEGER , INTENT(in ) :: nb , ndir |
---|
1241 | ! |
---|
1242 | INTEGER :: ji,jj |
---|
1243 | REAL(wp) :: zrhot, zt0, zt1,zat |
---|
1244 | LOGICAL :: western_side, eastern_side,northern_side,southern_side |
---|
1245 | !!---------------------------------------------------------------------- |
---|
1246 | ! |
---|
1247 | IF( before ) THEN |
---|
1248 | ptab(i1:i2,j1:j2) = e1v(i1:i2,j1:j2) * vb2_b(i1:i2,j1:j2) |
---|
1249 | ELSE |
---|
1250 | western_side = (nb == 1).AND.(ndir == 1) |
---|
1251 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
1252 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
1253 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
1254 | zrhot = Agrif_rhot() |
---|
1255 | ! Time indexes bounds for integration |
---|
1256 | zt0 = REAL(Agrif_NbStepint() , wp) / zrhot |
---|
1257 | zt1 = REAL(Agrif_NbStepint()+1, wp) / zrhot |
---|
1258 | ! Polynomial interpolation coefficients: |
---|
1259 | zat = zrhot * ( zt1**2._wp * (-2._wp*zt1 + 3._wp) & |
---|
1260 | & - zt0**2._wp * (-2._wp*zt0 + 3._wp) ) |
---|
1261 | ! |
---|
1262 | IF(western_side ) vbdy_w(j1:j2) = zat * ptab(i1,j1:j2) |
---|
1263 | IF(eastern_side ) vbdy_e(j1:j2) = zat * ptab(i1,j1:j2) |
---|
1264 | IF(southern_side) vbdy_s(i1:i2) = zat * ptab(i1:i2,j1) |
---|
1265 | IF(northern_side) vbdy_n(i1:i2) = zat * ptab(i1:i2,j1) |
---|
1266 | ENDIF |
---|
1267 | ! |
---|
1268 | END SUBROUTINE interpvb2b |
---|
1269 | |
---|
1270 | |
---|
1271 | SUBROUTINE interpe3t( ptab, i1, i2, j1, j2, k1, k2, before, nb, ndir ) |
---|
1272 | !!---------------------------------------------------------------------- |
---|
1273 | !! *** ROUTINE interpe3t *** |
---|
1274 | !!---------------------------------------------------------------------- |
---|
1275 | INTEGER , INTENT(in ) :: i1, i2, j1, j2, k1, k2 |
---|
1276 | REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab |
---|
1277 | LOGICAL , INTENT(in ) :: before |
---|
1278 | INTEGER , INTENT(in ) :: nb , ndir |
---|
1279 | ! |
---|
1280 | INTEGER :: ji, jj, jk |
---|
1281 | LOGICAL :: western_side, eastern_side, northern_side, southern_side |
---|
1282 | REAL(wp) :: ztmpmsk |
---|
1283 | !!---------------------------------------------------------------------- |
---|
1284 | ! |
---|
1285 | IF( before ) THEN |
---|
1286 | ptab(i1:i2,j1:j2,k1:k2) = tmask(i1:i2,j1:j2,k1:k2) * e3t_0(i1:i2,j1:j2,k1:k2) |
---|
1287 | ELSE |
---|
1288 | western_side = (nb == 1).AND.(ndir == 1) |
---|
1289 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
1290 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
1291 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
1292 | |
---|
1293 | DO jk = k1, k2 |
---|
1294 | DO jj = j1, j2 |
---|
1295 | DO ji = i1, i2 |
---|
1296 | ! Get velocity mask at boundary edge points: |
---|
1297 | IF( western_side ) ztmpmsk = umask(ji ,jj ,1) |
---|
1298 | IF( eastern_side ) ztmpmsk = umask(nlci-2,jj ,1) |
---|
1299 | IF( northern_side) ztmpmsk = vmask(ji ,nlcj-2,1) |
---|
1300 | IF( southern_side) ztmpmsk = vmask(ji ,2 ,1) |
---|
1301 | ! |
---|
1302 | IF( ABS( ptab(ji,jj,jk) - tmask(ji,jj,jk) * e3t_0(ji,jj,jk) )*ztmpmsk > 1.D-2) THEN |
---|
1303 | IF (western_side) THEN |
---|
1304 | WRITE(numout,*) 'ERROR bathymetry merge at the western border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk |
---|
1305 | ELSEIF (eastern_side) THEN |
---|
1306 | WRITE(numout,*) 'ERROR bathymetry merge at the eastern border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk |
---|
1307 | ELSEIF (southern_side) THEN |
---|
1308 | WRITE(numout,*) 'ERROR bathymetry merge at the southern border ji,jj,jk', ji+nimpp-1,jj+njmpp-1,jk |
---|
1309 | ELSEIF (northern_side) THEN |
---|
1310 | WRITE(numout,*) 'ERROR bathymetry merge at the northen border ji,jj,jk', ji+nimpp-1,jj+njmpp-1,jk |
---|
1311 | ENDIF |
---|
1312 | WRITE(numout,*) ' ptab(ji,jj,jk), e3t(ji,jj,jk) ', ptab(ji,jj,jk), e3t_0(ji,jj,jk) |
---|
1313 | kindic_agr = kindic_agr + 1 |
---|
1314 | ENDIF |
---|
1315 | END DO |
---|
1316 | END DO |
---|
1317 | END DO |
---|
1318 | ! |
---|
1319 | ENDIF |
---|
1320 | ! |
---|
1321 | END SUBROUTINE interpe3t |
---|
1322 | |
---|
1323 | |
---|
1324 | SUBROUTINE interpumsk( ptab, i1, i2, j1, j2, k1, k2, before, nb, ndir ) |
---|
1325 | !!---------------------------------------------------------------------- |
---|
1326 | !! *** ROUTINE interpumsk *** |
---|
1327 | !!---------------------------------------------------------------------- |
---|
1328 | INTEGER , INTENT(in ) :: i1, i2, j1, j2, k1, k2 |
---|
1329 | REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab |
---|
1330 | LOGICAL , INTENT(in ) :: before |
---|
1331 | INTEGER , INTENT(in ) :: nb , ndir |
---|
1332 | ! |
---|
1333 | INTEGER :: ji, jj, jk |
---|
1334 | LOGICAL :: western_side, eastern_side |
---|
1335 | !!---------------------------------------------------------------------- |
---|
1336 | ! |
---|
1337 | IF( before ) THEN |
---|
1338 | ptab(i1:i2,j1:j2,k1:k2) = umask(i1:i2,j1:j2,k1:k2) |
---|
1339 | ELSE |
---|
1340 | western_side = (nb == 1).AND.(ndir == 1) |
---|
1341 | eastern_side = (nb == 1).AND.(ndir == 2) |
---|
1342 | DO jk = k1, k2 |
---|
1343 | DO jj = j1, j2 |
---|
1344 | DO ji = i1, i2 |
---|
1345 | ! Velocity mask at boundary edge points: |
---|
1346 | IF (ABS(ptab(ji,jj,jk) - umask(ji,jj,jk)) > 1.D-2) THEN |
---|
1347 | IF (western_side) THEN |
---|
1348 | WRITE(numout,*) 'ERROR with umask at the western border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk |
---|
1349 | WRITE(numout,*) ' masks: parent, child ', ptab(ji,jj,jk), umask(ji,jj,jk) |
---|
1350 | kindic_agr = kindic_agr + 1 |
---|
1351 | ELSEIF (eastern_side) THEN |
---|
1352 | WRITE(numout,*) 'ERROR with umask at the eastern border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk |
---|
1353 | WRITE(numout,*) ' masks: parent, child ', ptab(ji,jj,jk), umask(ji,jj,jk) |
---|
1354 | kindic_agr = kindic_agr + 1 |
---|
1355 | ENDIF |
---|
1356 | ENDIF |
---|
1357 | END DO |
---|
1358 | END DO |
---|
1359 | END DO |
---|
1360 | ! |
---|
1361 | ENDIF |
---|
1362 | ! |
---|
1363 | END SUBROUTINE interpumsk |
---|
1364 | |
---|
1365 | |
---|
1366 | SUBROUTINE interpvmsk( ptab, i1, i2, j1, j2, k1, k2, before, nb, ndir ) |
---|
1367 | !!---------------------------------------------------------------------- |
---|
1368 | !! *** ROUTINE interpvmsk *** |
---|
1369 | !!---------------------------------------------------------------------- |
---|
1370 | INTEGER , INTENT(in ) :: i1,i2,j1,j2,k1,k2 |
---|
1371 | REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab |
---|
1372 | LOGICAL , INTENT(in ) :: before |
---|
1373 | INTEGER , INTENT(in ) :: nb , ndir |
---|
1374 | ! |
---|
1375 | INTEGER :: ji, jj, jk |
---|
1376 | LOGICAL :: northern_side, southern_side |
---|
1377 | !!---------------------------------------------------------------------- |
---|
1378 | ! |
---|
1379 | IF( before ) THEN |
---|
1380 | ptab(i1:i2,j1:j2,k1:k2) = vmask(i1:i2,j1:j2,k1:k2) |
---|
1381 | ELSE |
---|
1382 | southern_side = (nb == 2).AND.(ndir == 1) |
---|
1383 | northern_side = (nb == 2).AND.(ndir == 2) |
---|
1384 | DO jk = k1, k2 |
---|
1385 | DO jj = j1, j2 |
---|
1386 | DO ji = i1, i2 |
---|
1387 | ! Velocity mask at boundary edge points: |
---|
1388 | IF (ABS(ptab(ji,jj,jk) - vmask(ji,jj,jk)) > 1.D-2) THEN |
---|
1389 | IF (southern_side) THEN |
---|
1390 | WRITE(numout,*) 'ERROR with vmask at the southern border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk |
---|
1391 | WRITE(numout,*) ' masks: parent, child ', ptab(ji,jj,jk), vmask(ji,jj,jk) |
---|
1392 | kindic_agr = kindic_agr + 1 |
---|
1393 | ELSEIF (northern_side) THEN |
---|
1394 | WRITE(numout,*) 'ERROR with vmask at the northern border ji,jj,jk ', ji+nimpp-1,jj+njmpp-1,jk |
---|
1395 | WRITE(numout,*) ' masks: parent, child ', ptab(ji,jj,jk), vmask(ji,jj,jk) |
---|
1396 | kindic_agr = kindic_agr + 1 |
---|
1397 | ENDIF |
---|
1398 | ENDIF |
---|
1399 | END DO |
---|
1400 | END DO |
---|
1401 | END DO |
---|
1402 | ! |
---|
1403 | ENDIF |
---|
1404 | ! |
---|
1405 | END SUBROUTINE interpvmsk |
---|
1406 | |
---|
1407 | # if defined key_zdftke |
---|
1408 | |
---|
1409 | SUBROUTINE interpavm( ptab, i1, i2, j1, j2, k1, k2, before ) |
---|
1410 | !!---------------------------------------------------------------------- |
---|
1411 | !! *** ROUTINE interavm *** |
---|
1412 | !!---------------------------------------------------------------------- |
---|
1413 | INTEGER , INTENT(in ) :: i1, i2, j1, j2, k1, k2 |
---|
1414 | REAL(wp),DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab |
---|
1415 | LOGICAL , INTENT(in ) :: before |
---|
1416 | !!---------------------------------------------------------------------- |
---|
1417 | ! |
---|
1418 | IF( before ) THEN |
---|
1419 | ptab (i1:i2,j1:j2,k1:k2) = avm_k(i1:i2,j1:j2,k1:k2) |
---|
1420 | ELSE |
---|
1421 | avm_k(i1:i2,j1:j2,k1:k2) = ptab (i1:i2,j1:j2,k1:k2) |
---|
1422 | ENDIF |
---|
1423 | ! |
---|
1424 | END SUBROUTINE interpavm |
---|
1425 | |
---|
1426 | # endif /* key_zdftke */ |
---|
1427 | |
---|
1428 | #else |
---|
1429 | !!---------------------------------------------------------------------- |
---|
1430 | !! Empty module no AGRIF zoom |
---|
1431 | !!---------------------------------------------------------------------- |
---|
1432 | CONTAINS |
---|
1433 | SUBROUTINE Agrif_OPA_Interp_empty |
---|
1434 | WRITE(*,*) 'agrif_opa_interp : You should not have seen this print! error?' |
---|
1435 | END SUBROUTINE Agrif_OPA_Interp_empty |
---|
1436 | #endif |
---|
1437 | |
---|
1438 | !!====================================================================== |
---|
1439 | END MODULE agrif_opa_interp |
---|