1 | MODULE icerdgrft |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE icerdgrft *** |
---|
4 | !! LIM-3 : Mechanical impact on ice thickness distribution |
---|
5 | !!====================================================================== |
---|
6 | !! History : LIM ! 2006-02 (M. Vancoppenolle) Original code |
---|
7 | !! 3.2 ! 2009-07 (M. Vancoppenolle, Y. Aksenov, G. Madec) bug correction in smsw & sfx_dyn |
---|
8 | !! 4.0 ! 2011-02 (G. Madec) dynamical allocation |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | #if defined key_lim3 |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! 'key_lim3' LIM-3 sea-ice model |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | USE par_oce ! ocean parameters |
---|
15 | USE dom_oce ! ocean domain |
---|
16 | USE phycst ! physical constants (ocean directory) |
---|
17 | USE sbc_oce, ONLY: sss_m, sst_m ! surface boundary condition: ocean fields |
---|
18 | USE ice1D ! LIM thermodynamics |
---|
19 | USE ice ! LIM variables |
---|
20 | USE icevar ! LIM |
---|
21 | USE icecons ! conservation tests |
---|
22 | USE icectl ! control prints |
---|
23 | ! |
---|
24 | USE lbclnk ! lateral boundary condition - MPP exchanges |
---|
25 | USE lib_mpp ! MPP library |
---|
26 | USE in_out_manager ! I/O manager |
---|
27 | USE iom ! I/O manager |
---|
28 | USE lib_fortran ! glob_sum |
---|
29 | USE timing ! Timing |
---|
30 | |
---|
31 | IMPLICIT NONE |
---|
32 | PRIVATE |
---|
33 | |
---|
34 | PUBLIC ice_rdgrft ! called by ice_stp |
---|
35 | PUBLIC ice_rdgrft_icestrength |
---|
36 | PUBLIC ice_rdgrft_init |
---|
37 | PUBLIC ice_rdgrft_alloc ! called by ice_init |
---|
38 | |
---|
39 | !----------------------------------------------------------------------- |
---|
40 | ! Variables shared among ridging subroutines |
---|
41 | !----------------------------------------------------------------------- |
---|
42 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: asum ! sum of total ice and open water area |
---|
43 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: aksum ! ratio of area removed to area ridged |
---|
44 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: athorn ! participation function; fraction of ridging/closing associated w/ category n |
---|
45 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: hrmin ! minimum ridge thickness |
---|
46 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: hrmax ! maximum ridge thickness |
---|
47 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: hraft ! thickness of rafted ice |
---|
48 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: krdg ! thickness of ridging ice / mean ridge thickness |
---|
49 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: aridge ! participating ice ridging |
---|
50 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: araft ! participating ice rafting |
---|
51 | |
---|
52 | REAL(wp), PARAMETER :: krdgmin = 1.1_wp ! min ridge thickness multiplier |
---|
53 | REAL(wp), PARAMETER :: kraft = 0.5_wp ! rafting multipliyer |
---|
54 | |
---|
55 | REAL(wp) :: Cp ! |
---|
56 | ! |
---|
57 | ! |
---|
58 | !!---------------------------------------------------------------------- |
---|
59 | !! NEMO/LIM3 3.3 , UCL - NEMO Consortium (2010) |
---|
60 | !! $Id: icerdgrft.F90 8378 2017-07-26 13:55:59Z clem $ |
---|
61 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
62 | !!---------------------------------------------------------------------- |
---|
63 | CONTAINS |
---|
64 | |
---|
65 | INTEGER FUNCTION ice_rdgrft_alloc() |
---|
66 | !!---------------------------------------------------------------------! |
---|
67 | !! *** ROUTINE ice_rdgrft_alloc *** |
---|
68 | !!---------------------------------------------------------------------! |
---|
69 | ALLOCATE( & |
---|
70 | !* Variables shared among ridging subroutines |
---|
71 | & asum (jpi,jpj) , athorn(jpi,jpj,0:jpl) , aksum (jpi,jpj) , & |
---|
72 | & hrmin(jpi,jpj,jpl) , hraft(jpi,jpj,jpl) , aridge(jpi,jpj,jpl) , & |
---|
73 | & hrmax(jpi,jpj,jpl) , krdg (jpi,jpj,jpl) , araft (jpi,jpj,jpl) , STAT=ice_rdgrft_alloc ) |
---|
74 | ! |
---|
75 | IF( ice_rdgrft_alloc /= 0 ) CALL ctl_warn( 'ice_rdgrft_alloc: failed to allocate arrays' ) |
---|
76 | ! |
---|
77 | END FUNCTION ice_rdgrft_alloc |
---|
78 | |
---|
79 | |
---|
80 | SUBROUTINE ice_rdgrft |
---|
81 | !!---------------------------------------------------------------------! |
---|
82 | !! *** ROUTINE ice_rdgrft *** |
---|
83 | !! |
---|
84 | !! ** Purpose : computes the mechanical redistribution of ice thickness |
---|
85 | !! |
---|
86 | !! ** Method : Steps : |
---|
87 | !! 1) Thickness categories boundaries, ice / o.w. concentrations |
---|
88 | !! Ridge preparation |
---|
89 | !! 2) Dynamical inputs (closing rate, divu_adv, opning) |
---|
90 | !! 3) Ridging iteration |
---|
91 | !! 4) Ridging diagnostics |
---|
92 | !! 5) Heat, salt and freshwater fluxes |
---|
93 | !! 6) Compute increments of tate variables and come back to old values |
---|
94 | !! |
---|
95 | !! References : Flato, G. M., and W. D. Hibler III, 1995, JGR, 100, 18,611-18,626. |
---|
96 | !! Hibler, W. D. III, 1980, MWR, 108, 1943-1973, 1980. |
---|
97 | !! Rothrock, D. A., 1975: JGR, 80, 4514-4519. |
---|
98 | !! Thorndike et al., 1975, JGR, 80, 4501-4513. |
---|
99 | !! Bitz et al., JGR, 2001 |
---|
100 | !! Amundrud and Melling, JGR 2005 |
---|
101 | !! Babko et al., JGR 2002 |
---|
102 | !! |
---|
103 | !! This routine is based on CICE code and authors William H. Lipscomb, |
---|
104 | !! and Elizabeth C. Hunke, LANL are gratefully acknowledged |
---|
105 | !!--------------------------------------------------------------------! |
---|
106 | INTEGER :: ji, jj, jk, jl ! dummy loop index |
---|
107 | INTEGER :: niter ! local integer |
---|
108 | INTEGER :: iterate_ridging ! if true, repeat the ridging |
---|
109 | REAL(wp) :: za, zfac ! local scalar |
---|
110 | CHARACTER (len = 15) :: fieldid |
---|
111 | REAL(wp), DIMENSION(jpi,jpj) :: closing_net ! net rate at which area is removed (1/s) |
---|
112 | ! (ridging ice area - area of new ridges) / dt |
---|
113 | REAL(wp), DIMENSION(jpi,jpj) :: divu_adv ! divu as implied by transport scheme (1/s) |
---|
114 | REAL(wp), DIMENSION(jpi,jpj) :: opning ! rate of opening due to divergence/shear |
---|
115 | REAL(wp), DIMENSION(jpi,jpj) :: closing_gross ! rate at which area removed, not counting area of new ridges |
---|
116 | ! |
---|
117 | INTEGER, PARAMETER :: nitermax = 20 |
---|
118 | ! |
---|
119 | REAL(wp) :: zvi_b, zsmv_b, zei_b, zfs_b, zfw_b, zft_b |
---|
120 | !!----------------------------------------------------------------------------- |
---|
121 | IF( nn_timing == 1 ) CALL timing_start('icerdgrft') |
---|
122 | |
---|
123 | ! conservation test |
---|
124 | IF( ln_limdiachk ) CALL ice_cons_hsm(0, 'icerdgrft', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) |
---|
125 | |
---|
126 | !-----------------------------------------------------------------------------! |
---|
127 | ! 1) Thickness categories boundaries, ice / o.w. concentrations, init_ons |
---|
128 | !-----------------------------------------------------------------------------! |
---|
129 | Cp = 0.5 * grav * (rau0-rhoic) * rhoic * r1_rau0 ! proport const for PE |
---|
130 | ! |
---|
131 | CALL ice_rdgrft_ridgeprep ! prepare ridging |
---|
132 | ! |
---|
133 | |
---|
134 | DO jj = 1, jpj ! Initialize arrays. |
---|
135 | DO ji = 1, jpi |
---|
136 | |
---|
137 | !-----------------------------------------------------------------------------! |
---|
138 | ! 2) Dynamical inputs (closing rate, divu_adv, opning) |
---|
139 | !-----------------------------------------------------------------------------! |
---|
140 | ! |
---|
141 | ! 2.1 closing_net |
---|
142 | !----------------- |
---|
143 | ! Compute the net rate of closing due to convergence |
---|
144 | ! and shear, based on Flato and Hibler (1995). |
---|
145 | ! |
---|
146 | ! The energy dissipation rate is equal to the net closing rate |
---|
147 | ! times the ice strength. |
---|
148 | ! |
---|
149 | ! NOTE: The NET closing rate is equal to the rate that open water |
---|
150 | ! area is removed, plus the rate at which ice area is removed by |
---|
151 | ! ridging, minus the rate at which area is added in new ridges. |
---|
152 | ! The GROSS closing rate is equal to the first two terms (open |
---|
153 | ! water closing and thin ice ridging) without the third term |
---|
154 | ! (thick, newly ridged ice). |
---|
155 | |
---|
156 | closing_net(ji,jj) = rn_cs * 0.5 * ( delta_i(ji,jj) - ABS( divu_i(ji,jj) ) ) - MIN( divu_i(ji,jj), 0._wp ) |
---|
157 | |
---|
158 | ! 2.2 divu_adv |
---|
159 | !-------------- |
---|
160 | ! Compute divu_adv, the divergence rate given by the transport/ |
---|
161 | ! advection scheme, which may not be equal to divu as computed |
---|
162 | ! from the velocity field. |
---|
163 | ! |
---|
164 | ! If divu_adv < 0, make sure the closing rate is large enough |
---|
165 | ! to give asum = 1.0 after ridging. |
---|
166 | |
---|
167 | divu_adv(ji,jj) = ( 1._wp - asum(ji,jj) ) * r1_rdtice ! asum found in ridgeprep |
---|
168 | |
---|
169 | IF( divu_adv(ji,jj) < 0._wp ) closing_net(ji,jj) = MAX( closing_net(ji,jj), -divu_adv(ji,jj) ) |
---|
170 | |
---|
171 | ! 2.3 opning |
---|
172 | !------------ |
---|
173 | ! Compute the (non-negative) opening rate that will give asum = 1.0 after ridging. |
---|
174 | opning(ji,jj) = closing_net(ji,jj) + divu_adv(ji,jj) |
---|
175 | END DO |
---|
176 | END DO |
---|
177 | |
---|
178 | !-----------------------------------------------------------------------------! |
---|
179 | ! 3) Ridging iteration |
---|
180 | !-----------------------------------------------------------------------------! |
---|
181 | niter = 1 ! iteration counter |
---|
182 | iterate_ridging = 1 |
---|
183 | |
---|
184 | DO WHILE ( iterate_ridging > 0 .AND. niter < nitermax ) |
---|
185 | |
---|
186 | ! 3.2 closing_gross |
---|
187 | !-----------------------------------------------------------------------------! |
---|
188 | ! Based on the ITD of ridging and ridged ice, convert the net |
---|
189 | ! closing rate to a gross closing rate. |
---|
190 | ! NOTE: 0 < aksum <= 1 |
---|
191 | closing_gross(:,:) = closing_net(:,:) / aksum(:,:) |
---|
192 | |
---|
193 | ! correction to closing rate and opening if closing rate is excessive |
---|
194 | !--------------------------------------------------------------------- |
---|
195 | ! Reduce the closing rate if more than 100% of the open water |
---|
196 | ! would be removed. Reduce the opening rate proportionately. |
---|
197 | DO jj = 1, jpj |
---|
198 | DO ji = 1, jpi |
---|
199 | za = ( opning(ji,jj) - athorn(ji,jj,0) * closing_gross(ji,jj) ) * rdt_ice |
---|
200 | IF ( za < 0._wp .AND. za > - ato_i(ji,jj) ) THEN ! would lead to negative ato_i |
---|
201 | zfac = - ato_i(ji,jj) / za |
---|
202 | opning(ji,jj) = athorn(ji,jj,0) * closing_gross(ji,jj) - ato_i(ji,jj) * r1_rdtice |
---|
203 | ELSEIF( za > 0._wp .AND. za > ( asum(ji,jj) - ato_i(ji,jj) ) ) THEN ! would lead to ato_i > asum |
---|
204 | zfac = ( asum(ji,jj) - ato_i(ji,jj) ) / za |
---|
205 | opning(ji,jj) = athorn(ji,jj,0) * closing_gross(ji,jj) + ( asum(ji,jj) - ato_i(ji,jj) ) * r1_rdtice |
---|
206 | ENDIF |
---|
207 | END DO |
---|
208 | END DO |
---|
209 | |
---|
210 | ! correction to closing rate / opening if excessive ice removal |
---|
211 | !--------------------------------------------------------------- |
---|
212 | ! Reduce the closing rate if more than 100% of any ice category |
---|
213 | ! would be removed. Reduce the opening rate proportionately. |
---|
214 | DO jl = 1, jpl |
---|
215 | DO jj = 1, jpj |
---|
216 | DO ji = 1, jpi |
---|
217 | za = athorn(ji,jj,jl) * closing_gross(ji,jj) * rdt_ice |
---|
218 | IF( za > a_i(ji,jj,jl) ) THEN |
---|
219 | zfac = a_i(ji,jj,jl) / za |
---|
220 | closing_gross(ji,jj) = closing_gross(ji,jj) * zfac |
---|
221 | ENDIF |
---|
222 | END DO |
---|
223 | END DO |
---|
224 | END DO |
---|
225 | |
---|
226 | ! 3.3 Redistribute area, volume, and energy. |
---|
227 | !-----------------------------------------------------------------------------! |
---|
228 | |
---|
229 | CALL ice_rdgrft_ridgeshift( opning, closing_gross ) |
---|
230 | |
---|
231 | |
---|
232 | ! 3.4 Compute total area of ice plus open water after ridging. |
---|
233 | !-----------------------------------------------------------------------------! |
---|
234 | ! This is in general not equal to one because of divergence during transport |
---|
235 | asum(:,:) = ato_i(:,:) + SUM( a_i, dim=3 ) |
---|
236 | |
---|
237 | ! 3.5 Do we keep on iterating ??? |
---|
238 | !-----------------------------------------------------------------------------! |
---|
239 | ! Check whether asum = 1. If not (because the closing and opening |
---|
240 | ! rates were reduced above), ridge again with new rates. |
---|
241 | |
---|
242 | iterate_ridging = 0 |
---|
243 | DO jj = 1, jpj |
---|
244 | DO ji = 1, jpi |
---|
245 | IF( ABS( asum(ji,jj) - 1._wp ) < epsi10 ) THEN |
---|
246 | closing_net(ji,jj) = 0._wp |
---|
247 | opning (ji,jj) = 0._wp |
---|
248 | ato_i (ji,jj) = MAX( 0._wp, 1._wp - SUM( a_i(ji,jj,:) ) ) |
---|
249 | ELSE |
---|
250 | iterate_ridging = 1 |
---|
251 | divu_adv (ji,jj) = ( 1._wp - asum(ji,jj) ) * r1_rdtice |
---|
252 | closing_net(ji,jj) = MAX( 0._wp, -divu_adv(ji,jj) ) |
---|
253 | opning (ji,jj) = MAX( 0._wp, divu_adv(ji,jj) ) |
---|
254 | ENDIF |
---|
255 | END DO |
---|
256 | END DO |
---|
257 | |
---|
258 | IF( lk_mpp ) CALL mpp_max( iterate_ridging ) |
---|
259 | |
---|
260 | ! Repeat if necessary. |
---|
261 | ! NOTE: If strength smoothing is turned on, the ridging must be |
---|
262 | ! iterated globally because of the boundary update in the |
---|
263 | ! smoothing. |
---|
264 | |
---|
265 | niter = niter + 1 |
---|
266 | |
---|
267 | IF( iterate_ridging == 1 ) THEN |
---|
268 | CALL ice_rdgrft_ridgeprep |
---|
269 | IF( niter > nitermax ) THEN |
---|
270 | WRITE(numout,*) ' ALERTE : non-converging ridging scheme ' |
---|
271 | WRITE(numout,*) ' niter, iterate_ridging ', niter, iterate_ridging |
---|
272 | ENDIF |
---|
273 | ENDIF |
---|
274 | |
---|
275 | END DO !! on the do while over iter |
---|
276 | |
---|
277 | CALL ice_var_agg( 1 ) |
---|
278 | |
---|
279 | !-----------------------------------------------------------------------------! |
---|
280 | ! control prints |
---|
281 | !-----------------------------------------------------------------------------! |
---|
282 | ! conservation test |
---|
283 | IF( ln_limdiachk ) CALL ice_cons_hsm(1, 'icerdgrft', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) |
---|
284 | |
---|
285 | ! control prints |
---|
286 | IF( ln_ctl ) CALL ice_prt3D( 'icerdgrft' ) |
---|
287 | ! |
---|
288 | IF( nn_timing == 1 ) CALL timing_stop('icerdgrft') |
---|
289 | END SUBROUTINE ice_rdgrft |
---|
290 | |
---|
291 | SUBROUTINE ice_rdgrft_ridgeprep |
---|
292 | !!---------------------------------------------------------------------! |
---|
293 | !! *** ROUTINE ice_rdgrft_ridgeprep *** |
---|
294 | !! |
---|
295 | !! ** Purpose : preparation for ridging and strength calculations |
---|
296 | !! |
---|
297 | !! ** Method : Compute the thickness distribution of the ice and open water |
---|
298 | !! participating in ridging and of the resulting ridges. |
---|
299 | !!---------------------------------------------------------------------! |
---|
300 | INTEGER :: ji,jj, jl ! dummy loop indices |
---|
301 | REAL(wp) :: Gstari, astari, hrmean, zdummy ! local scalar |
---|
302 | REAL(wp), DIMENSION(jpi,jpj,-1:jpl) :: Gsum ! Gsum(n) = sum of areas in categories 0 to n |
---|
303 | !------------------------------------------------------------------------------! |
---|
304 | |
---|
305 | Gstari = 1.0/rn_gstar |
---|
306 | astari = 1.0/rn_astar |
---|
307 | aksum(:,:) = 0.0 |
---|
308 | athorn(:,:,:) = 0.0 |
---|
309 | aridge(:,:,:) = 0.0 |
---|
310 | araft (:,:,:) = 0.0 |
---|
311 | |
---|
312 | ! Zero out categories with very small areas |
---|
313 | CALL ice_var_zapsmall |
---|
314 | |
---|
315 | ! Ice thickness needed for rafting |
---|
316 | DO jl = 1, jpl |
---|
317 | DO jj = 1, jpj |
---|
318 | DO ji = 1, jpi |
---|
319 | rswitch = MAX( 0._wp , SIGN( 1._wp, a_i(ji,jj,jl) - epsi20 ) ) |
---|
320 | ht_i(ji,jj,jl) = v_i (ji,jj,jl) / MAX( a_i(ji,jj,jl) , epsi20 ) * rswitch |
---|
321 | END DO |
---|
322 | END DO |
---|
323 | END DO |
---|
324 | |
---|
325 | !------------------------------------------------------------------------------! |
---|
326 | ! 1) Participation function |
---|
327 | !------------------------------------------------------------------------------! |
---|
328 | |
---|
329 | ! Compute total area of ice plus open water. |
---|
330 | ! This is in general not equal to one because of divergence during transport |
---|
331 | asum(:,:) = ato_i(:,:) + SUM( a_i, dim=3 ) |
---|
332 | |
---|
333 | ! Compute cumulative thickness distribution function |
---|
334 | ! Compute the cumulative thickness distribution function Gsum, |
---|
335 | ! where Gsum(n) is the fractional area in categories 0 to n. |
---|
336 | ! initial value (in h = 0) equals open water area |
---|
337 | Gsum(:,:,-1) = 0._wp |
---|
338 | Gsum(:,:,0 ) = ato_i(:,:) |
---|
339 | ! for each value of h, you have to add ice concentration then |
---|
340 | DO jl = 1, jpl |
---|
341 | Gsum(:,:,jl) = Gsum(:,:,jl-1) + a_i(:,:,jl) |
---|
342 | END DO |
---|
343 | |
---|
344 | ! Normalize the cumulative distribution to 1 |
---|
345 | DO jl = 0, jpl |
---|
346 | Gsum(:,:,jl) = Gsum(:,:,jl) / asum(:,:) |
---|
347 | END DO |
---|
348 | |
---|
349 | ! 1.3 Compute participation function a(h) = b(h).g(h) (athorn) |
---|
350 | !-------------------------------------------------------------------------------------------------- |
---|
351 | ! Compute the participation function athorn; this is analogous to |
---|
352 | ! a(h) = b(h)g(h) as defined in Thorndike et al. (1975). |
---|
353 | ! area lost from category n due to ridging/closing |
---|
354 | ! athorn(n) = total area lost due to ridging/closing |
---|
355 | ! assume b(h) = (2/Gstar) * (1 - G(h)/Gstar). |
---|
356 | ! |
---|
357 | ! The expressions for athorn are found by integrating b(h)g(h) between |
---|
358 | ! the category boundaries. |
---|
359 | ! athorn is always >= 0 and SUM(athorn(0:jpl))=1 |
---|
360 | !----------------------------------------------------------------- |
---|
361 | |
---|
362 | IF( nn_partfun == 0 ) THEN !--- Linear formulation (Thorndike et al., 1975) |
---|
363 | DO jl = 0, jpl |
---|
364 | DO jj = 1, jpj |
---|
365 | DO ji = 1, jpi |
---|
366 | IF ( Gsum(ji,jj,jl) < rn_gstar ) THEN |
---|
367 | athorn(ji,jj,jl) = Gstari * ( Gsum(ji,jj,jl) - Gsum(ji,jj,jl-1) ) * & |
---|
368 | & ( 2._wp - ( Gsum(ji,jj,jl-1) + Gsum(ji,jj,jl) ) * Gstari ) |
---|
369 | ELSEIF( Gsum(ji,jj,jl-1) < rn_gstar ) THEN |
---|
370 | athorn(ji,jj,jl) = Gstari * ( rn_gstar - Gsum(ji,jj,jl-1) ) * & |
---|
371 | & ( 2._wp - ( Gsum(ji,jj,jl-1) + rn_gstar ) * Gstari ) |
---|
372 | ELSE |
---|
373 | athorn(ji,jj,jl) = 0._wp |
---|
374 | ENDIF |
---|
375 | END DO |
---|
376 | END DO |
---|
377 | END DO |
---|
378 | |
---|
379 | ELSE !--- Exponential, more stable formulation (Lipscomb et al, 2007) |
---|
380 | ! |
---|
381 | zdummy = 1._wp / ( 1._wp - EXP(-astari) ) ! precompute exponential terms using Gsum as a work array |
---|
382 | DO jl = -1, jpl |
---|
383 | Gsum(:,:,jl) = EXP( -Gsum(:,:,jl) * astari ) * zdummy |
---|
384 | END DO |
---|
385 | DO jl = 0, jpl |
---|
386 | athorn(:,:,jl) = Gsum(:,:,jl-1) - Gsum(:,:,jl) |
---|
387 | END DO |
---|
388 | ! |
---|
389 | ENDIF |
---|
390 | |
---|
391 | ! --- Ridging and rafting participation concentrations --- ! |
---|
392 | IF( ln_rafting .AND. ln_ridging ) THEN |
---|
393 | ! |
---|
394 | DO jl = 1, jpl |
---|
395 | DO jj = 1, jpj |
---|
396 | DO ji = 1, jpi |
---|
397 | zdummy = TANH ( rn_craft * ( ht_i(ji,jj,jl) - rn_hraft ) ) |
---|
398 | aridge(ji,jj,jl) = ( 1._wp + zdummy ) * 0.5_wp * athorn(ji,jj,jl) |
---|
399 | araft (ji,jj,jl) = athorn(ji,jj,jl) - aridge(ji,jj,jl) |
---|
400 | END DO |
---|
401 | END DO |
---|
402 | END DO |
---|
403 | ! |
---|
404 | ELSEIF( ln_ridging .AND. .NOT. ln_rafting ) THEN |
---|
405 | ! |
---|
406 | DO jl = 1, jpl |
---|
407 | aridge(:,:,jl) = athorn(:,:,jl) |
---|
408 | END DO |
---|
409 | ! |
---|
410 | ELSEIF( ln_rafting .AND. .NOT. ln_ridging ) THEN |
---|
411 | ! |
---|
412 | DO jl = 1, jpl |
---|
413 | araft(:,:,jl) = athorn(:,:,jl) |
---|
414 | END DO |
---|
415 | ! |
---|
416 | ENDIF |
---|
417 | |
---|
418 | !----------------------------------------------------------------- |
---|
419 | ! 2) Transfer function |
---|
420 | !----------------------------------------------------------------- |
---|
421 | ! Compute max and min ridged ice thickness for each ridging category. |
---|
422 | ! Assume ridged ice is uniformly distributed between hrmin and hrmax. |
---|
423 | ! |
---|
424 | ! This parameterization is a modified version of Hibler (1980). |
---|
425 | ! The mean ridging thickness, hrmean, is proportional to hi^(0.5) |
---|
426 | ! and for very thick ridging ice must be >= krdgmin*hi |
---|
427 | ! |
---|
428 | ! The minimum ridging thickness, hrmin, is equal to 2*hi |
---|
429 | ! (i.e., rafting) and for very thick ridging ice is |
---|
430 | ! constrained by hrmin <= (hrmean + hi)/2. |
---|
431 | ! |
---|
432 | ! The maximum ridging thickness, hrmax, is determined by |
---|
433 | ! hrmean and hrmin. |
---|
434 | ! |
---|
435 | ! These modifications have the effect of reducing the ice strength |
---|
436 | ! (relative to the Hibler formulation) when very thick ice is |
---|
437 | ! ridging. |
---|
438 | ! |
---|
439 | ! aksum = net area removed/ total area removed |
---|
440 | ! where total area removed = area of ice that ridges |
---|
441 | ! net area removed = total area removed - area of new ridges |
---|
442 | !----------------------------------------------------------------- |
---|
443 | |
---|
444 | aksum(:,:) = athorn(:,:,0) |
---|
445 | ! Transfer function |
---|
446 | DO jl = 1, jpl !all categories have a specific transfer function |
---|
447 | DO jj = 1, jpj |
---|
448 | DO ji = 1, jpi |
---|
449 | |
---|
450 | IF( athorn(ji,jj,jl) > 0._wp ) THEN |
---|
451 | hrmean = MAX( SQRT( rn_hstar * ht_i(ji,jj,jl) ), ht_i(ji,jj,jl) * krdgmin ) |
---|
452 | hrmin(ji,jj,jl) = MIN( 2._wp * ht_i(ji,jj,jl), 0.5_wp * ( hrmean + ht_i(ji,jj,jl) ) ) |
---|
453 | hrmax(ji,jj,jl) = 2._wp * hrmean - hrmin(ji,jj,jl) |
---|
454 | hraft(ji,jj,jl) = ht_i(ji,jj,jl) / kraft |
---|
455 | krdg(ji,jj,jl) = ht_i(ji,jj,jl) / MAX( hrmean, epsi20 ) |
---|
456 | |
---|
457 | ! Normalization factor : aksum, ensures mass conservation |
---|
458 | aksum(ji,jj) = aksum(ji,jj) + aridge(ji,jj,jl) * ( 1._wp - krdg(ji,jj,jl) ) & |
---|
459 | & + araft (ji,jj,jl) * ( 1._wp - kraft ) |
---|
460 | |
---|
461 | ELSE |
---|
462 | hrmin(ji,jj,jl) = 0._wp |
---|
463 | hrmax(ji,jj,jl) = 0._wp |
---|
464 | hraft(ji,jj,jl) = 0._wp |
---|
465 | krdg (ji,jj,jl) = 1._wp |
---|
466 | ENDIF |
---|
467 | |
---|
468 | END DO |
---|
469 | END DO |
---|
470 | END DO |
---|
471 | ! |
---|
472 | ! |
---|
473 | END SUBROUTINE ice_rdgrft_ridgeprep |
---|
474 | |
---|
475 | |
---|
476 | SUBROUTINE ice_rdgrft_ridgeshift( opning, closing_gross ) |
---|
477 | !!---------------------------------------------------------------------- |
---|
478 | !! *** ROUTINE ice_rdgrft_icestrength *** |
---|
479 | !! |
---|
480 | !! ** Purpose : shift ridging ice among thickness categories of ice thickness |
---|
481 | !! |
---|
482 | !! ** Method : Remove area, volume, and energy from each ridging category |
---|
483 | !! and add to thicker ice categories. |
---|
484 | !!---------------------------------------------------------------------- |
---|
485 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: opning ! rate of opening due to divergence/shear |
---|
486 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: closing_gross ! rate at which area removed, excluding area of new ridges |
---|
487 | ! |
---|
488 | CHARACTER (len=80) :: fieldid ! field identifier |
---|
489 | ! |
---|
490 | INTEGER :: ji, jj, jl, jl1, jl2, jk ! dummy loop indices |
---|
491 | INTEGER :: ij ! horizontal index, combines i and j loops |
---|
492 | INTEGER :: icells ! number of cells with a_i > puny |
---|
493 | REAL(wp) :: hL, hR, farea ! left and right limits of integration |
---|
494 | REAL(wp) :: zwfx_snw ! snow mass flux increment |
---|
495 | |
---|
496 | INTEGER , DIMENSION(jpij) :: indxi, indxj ! compressed indices |
---|
497 | REAL(wp), DIMENSION(jpij) :: zswitch, fvol ! new ridge volume going to n2 |
---|
498 | |
---|
499 | REAL(wp), DIMENSION(jpij) :: afrac ! fraction of category area ridged |
---|
500 | REAL(wp), DIMENSION(jpij) :: ardg1 , ardg2 ! area of ice ridged & new ridges |
---|
501 | REAL(wp), DIMENSION(jpij) :: vsrdg , esrdg ! snow volume & energy of ridging ice |
---|
502 | ! MV MP 2016 |
---|
503 | REAL(wp), DIMENSION(jpij) :: vprdg ! pond volume of ridging ice |
---|
504 | REAL(wp), DIMENSION(jpij) :: aprdg1 ! pond area of ridging ice |
---|
505 | REAL(wp), DIMENSION(jpij) :: aprdg2 ! pond area of ridging ice |
---|
506 | ! END MV MP 2016 |
---|
507 | REAL(wp), DIMENSION(jpij) :: dhr , dhr2 ! hrmax - hrmin & hrmax^2 - hrmin^2 |
---|
508 | |
---|
509 | REAL(wp), DIMENSION(jpij) :: vrdg1 ! volume of ice ridged |
---|
510 | REAL(wp), DIMENSION(jpij) :: vrdg2 ! volume of new ridges |
---|
511 | REAL(wp), DIMENSION(jpij) :: vsw ! volume of seawater trapped into ridges |
---|
512 | REAL(wp), DIMENSION(jpij) :: srdg1 ! sal*volume of ice ridged |
---|
513 | REAL(wp), DIMENSION(jpij) :: srdg2 ! sal*volume of new ridges |
---|
514 | REAL(wp), DIMENSION(jpij) :: smsw ! sal*volume of water trapped into ridges |
---|
515 | REAL(wp), DIMENSION(jpij) :: oirdg1, oirdg2 ! ice age of ice ridged |
---|
516 | |
---|
517 | REAL(wp), DIMENSION(jpij) :: afrft ! fraction of category area rafted |
---|
518 | REAL(wp), DIMENSION(jpij) :: arft1 , arft2 ! area of ice rafted and new rafted zone |
---|
519 | REAL(wp), DIMENSION(jpij) :: virft , vsrft ! ice & snow volume of rafting ice |
---|
520 | ! MV MP 2016 |
---|
521 | REAL(wp), DIMENSION(jpij) :: vprft ! pond volume of rafting ice |
---|
522 | REAL(wp), DIMENSION(jpij) :: aprft1 ! pond area of rafted ice |
---|
523 | REAL(wp), DIMENSION(jpij) :: aprft2 ! pond area of new rafted ice |
---|
524 | ! END MV MP 2016 |
---|
525 | REAL(wp), DIMENSION(jpij) :: esrft , smrft ! snow energy & salinity of rafting ice |
---|
526 | REAL(wp), DIMENSION(jpij) :: oirft1, oirft2 ! ice age of ice rafted |
---|
527 | |
---|
528 | REAL(wp), DIMENSION(jpij,nlay_i) :: eirft ! ice energy of rafting ice |
---|
529 | REAL(wp), DIMENSION(jpij,nlay_i) :: erdg1 ! enth*volume of ice ridged |
---|
530 | REAL(wp), DIMENSION(jpij,nlay_i) :: erdg2 ! enth*volume of new ridges |
---|
531 | REAL(wp), DIMENSION(jpij,nlay_i) :: ersw ! enth of water trapped into ridges |
---|
532 | !!---------------------------------------------------------------------- |
---|
533 | |
---|
534 | !------------------------------------------------------------------------------- |
---|
535 | ! 1) Compute change in open water area due to closing and opening. |
---|
536 | !------------------------------------------------------------------------------- |
---|
537 | DO jj = 1, jpj |
---|
538 | DO ji = 1, jpi |
---|
539 | ato_i(ji,jj) = MAX( 0._wp, ato_i(ji,jj) + & |
---|
540 | & ( opning(ji,jj) - athorn(ji,jj,0) * closing_gross(ji,jj) ) * rdt_ice ) |
---|
541 | END DO |
---|
542 | END DO |
---|
543 | |
---|
544 | !----------------------------------------------------------------- |
---|
545 | ! 3) Pump everything from ice which is being ridged / rafted |
---|
546 | !----------------------------------------------------------------- |
---|
547 | ! Compute the area, volume, and energy of ice ridging in each |
---|
548 | ! category, along with the area of the resulting ridge. |
---|
549 | |
---|
550 | DO jl1 = 1, jpl !jl1 describes the ridging category |
---|
551 | |
---|
552 | !------------------------------------------------ |
---|
553 | ! 3.1) Identify grid cells with nonzero ridging |
---|
554 | !------------------------------------------------ |
---|
555 | icells = 0 |
---|
556 | DO jj = 1, jpj |
---|
557 | DO ji = 1, jpi |
---|
558 | IF( athorn(ji,jj,jl1) > 0._wp .AND. closing_gross(ji,jj) > 0._wp ) THEN |
---|
559 | icells = icells + 1 |
---|
560 | indxi(icells) = ji |
---|
561 | indxj(icells) = jj |
---|
562 | ENDIF |
---|
563 | END DO |
---|
564 | END DO |
---|
565 | |
---|
566 | DO ij = 1, icells |
---|
567 | ji = indxi(ij) ; jj = indxj(ij) |
---|
568 | |
---|
569 | !-------------------------------------------------------------------- |
---|
570 | ! 3.2) Compute area of ridging ice (ardg1) and of new ridge (ardg2) |
---|
571 | !-------------------------------------------------------------------- |
---|
572 | ardg1(ij) = aridge(ji,jj,jl1) * closing_gross(ji,jj) * rdt_ice |
---|
573 | arft1(ij) = araft (ji,jj,jl1) * closing_gross(ji,jj) * rdt_ice |
---|
574 | |
---|
575 | !--------------------------------------------------------------- |
---|
576 | ! 3.3) Compute ridging /rafting fractions, make sure afrac <=1 |
---|
577 | !--------------------------------------------------------------- |
---|
578 | afrac(ij) = ardg1(ij) / a_i(ji,jj,jl1) !ridging |
---|
579 | afrft(ij) = arft1(ij) / a_i(ji,jj,jl1) !rafting |
---|
580 | ardg2(ij) = ardg1(ij) * krdg(ji,jj,jl1) |
---|
581 | arft2(ij) = arft1(ij) * kraft |
---|
582 | |
---|
583 | !-------------------------------------------------------------------------- |
---|
584 | ! 3.4) Substract area, volume, and energy from ridging |
---|
585 | ! / rafting category n1. |
---|
586 | !-------------------------------------------------------------------------- |
---|
587 | vrdg1(ij) = v_i(ji,jj,jl1) * afrac(ij) |
---|
588 | vrdg2(ij) = vrdg1(ij) * ( 1. + rn_por_rdg ) |
---|
589 | vsw (ij) = vrdg1(ij) * rn_por_rdg |
---|
590 | |
---|
591 | vsrdg (ij) = v_s (ji,jj, jl1) * afrac(ij) |
---|
592 | esrdg (ij) = e_s (ji,jj,1,jl1) * afrac(ij) |
---|
593 | !MV MP 2016 |
---|
594 | IF ( nn_pnd_scheme > 0 ) THEN |
---|
595 | aprdg1(ij) = a_ip(ji,jj, jl1) * afrac(ij) |
---|
596 | aprdg2(ij) = a_ip(ji,jj, jl1) * afrac(ij) * krdg(ji,jj,jl1) |
---|
597 | vprdg(ij) = v_ip(ji,jj, jl1) * afrac(ij) |
---|
598 | ENDIF |
---|
599 | ! END MV MP 2016 |
---|
600 | srdg1 (ij) = smv_i(ji,jj, jl1) * afrac(ij) |
---|
601 | oirdg1(ij) = oa_i (ji,jj, jl1) * afrac(ij) |
---|
602 | oirdg2(ij) = oa_i (ji,jj, jl1) * afrac(ij) * krdg(ji,jj,jl1) |
---|
603 | |
---|
604 | ! rafting volumes, heat contents ... |
---|
605 | virft (ij) = v_i (ji,jj, jl1) * afrft(ij) |
---|
606 | vsrft (ij) = v_s (ji,jj, jl1) * afrft(ij) |
---|
607 | !MV MP 2016 |
---|
608 | IF ( nn_pnd_scheme > 0 ) THEN |
---|
609 | aprft1(ij) = a_ip (ji,jj, jl1) * afrft(ij) |
---|
610 | aprft2(ij) = a_ip (ji,jj, jl1) * afrft(ij) * kraft |
---|
611 | vprft(ij) = v_ip(ji,jj,jl1) * afrft(ij) |
---|
612 | ENDIF |
---|
613 | ! END MV MP 2016 |
---|
614 | srdg1 (ij) = smv_i(ji,jj, jl1) * afrac(ij) |
---|
615 | esrft (ij) = e_s (ji,jj,1,jl1) * afrft(ij) |
---|
616 | smrft (ij) = smv_i(ji,jj, jl1) * afrft(ij) |
---|
617 | oirft1(ij) = oa_i (ji,jj, jl1) * afrft(ij) |
---|
618 | oirft2(ij) = oa_i (ji,jj, jl1) * afrft(ij) * kraft |
---|
619 | |
---|
620 | !----------------------------------------------------------------- |
---|
621 | ! 3.5) Compute properties of new ridges |
---|
622 | !----------------------------------------------------------------- |
---|
623 | smsw(ij) = vsw(ij) * sss_m(ji,jj) ! salt content of seawater frozen in voids |
---|
624 | srdg2(ij) = srdg1(ij) + smsw(ij) ! salt content of new ridge |
---|
625 | |
---|
626 | sfx_dyn(ji,jj) = sfx_dyn(ji,jj) - smsw(ij) * rhoic * r1_rdtice |
---|
627 | wfx_dyn(ji,jj) = wfx_dyn(ji,jj) - vsw (ij) * rhoic * r1_rdtice ! increase in ice volume due to seawater frozen in voids |
---|
628 | |
---|
629 | ! virtual salt flux to keep salinity constant |
---|
630 | IF( nn_icesal == 1 .OR. nn_icesal == 3 ) THEN |
---|
631 | srdg2(ij) = srdg2(ij) - vsw(ij) * ( sss_m(ji,jj) - sm_i(ji,jj,jl1) ) ! ridge salinity = sm_i |
---|
632 | sfx_bri(ji,jj) = sfx_bri(ji,jj) + sss_m(ji,jj) * vsw(ij) * rhoic * r1_rdtice & ! put back sss_m into the ocean |
---|
633 | & - sm_i(ji,jj,jl1) * vsw(ij) * rhoic * r1_rdtice ! and get sm_i from the ocean |
---|
634 | ENDIF |
---|
635 | |
---|
636 | !------------------------------------------ |
---|
637 | ! 3.7 Put the snow somewhere in the ocean |
---|
638 | !------------------------------------------ |
---|
639 | ! Place part of the snow lost by ridging into the ocean. |
---|
640 | ! Note that esrdg > 0; the ocean must cool to melt snow. |
---|
641 | ! If the ocean temp = Tf already, new ice must grow. |
---|
642 | ! During the next time step, thermo_rates will determine whether |
---|
643 | ! the ocean cools or new ice grows. |
---|
644 | zwfx_snw = ( rhosn * vsrdg(ij) * ( 1._wp - rn_fsnowrdg ) & |
---|
645 | & + rhosn * vsrft(ij) * ( 1._wp - rn_fsnowrft ) ) * r1_rdtice ! fresh water source for ocean |
---|
646 | |
---|
647 | wfx_snw_dyn(ji,jj) = wfx_snw_dyn(ji,jj) + zwfx_snw |
---|
648 | |
---|
649 | hfx_dyn(ji,jj) = hfx_dyn(ji,jj) + ( - esrdg(ij) * ( 1._wp - rn_fsnowrdg ) & |
---|
650 | & - esrft(ij) * ( 1._wp - rn_fsnowrft ) ) * r1_rdtice ! heat sink for ocean (<0, W.m-2) |
---|
651 | |
---|
652 | ! MV MP 2016 |
---|
653 | !------------------------------------------ |
---|
654 | ! 3.X Put the melt pond water in the ocean |
---|
655 | !------------------------------------------ |
---|
656 | ! Place part of the melt pond volume into the ocean. |
---|
657 | IF ( ( nn_pnd_scheme > 0 ) .AND. ln_pnd_fw ) THEN |
---|
658 | wfx_pnd(ji,jj) = wfx_pnd(ji,jj) + ( rhofw * vprdg(ij) * ( 1._wp - rn_fpondrdg ) & |
---|
659 | & + rhofw * vprft(ij) * ( 1._wp - rn_fpondrft ) ) * r1_rdtice ! fresh water source for ocean |
---|
660 | ENDIF |
---|
661 | ! END MV MP 2016 |
---|
662 | |
---|
663 | !----------------------------------------------------------------- |
---|
664 | ! 3.8 Compute quantities used to apportion ice among categories |
---|
665 | ! in the n2 loop below |
---|
666 | !----------------------------------------------------------------- |
---|
667 | dhr (ij) = 1._wp / ( hrmax(ji,jj,jl1) - hrmin(ji,jj,jl1) ) |
---|
668 | dhr2(ij) = 1._wp / ( hrmax(ji,jj,jl1) * hrmax(ji,jj,jl1) - hrmin(ji,jj,jl1) * hrmin(ji,jj,jl1) ) |
---|
669 | |
---|
670 | |
---|
671 | ! update jl1 (removing ridged/rafted area) |
---|
672 | a_i (ji,jj, jl1) = a_i (ji,jj, jl1) - ardg1 (ij) - arft1 (ij) |
---|
673 | v_i (ji,jj, jl1) = v_i (ji,jj, jl1) - vrdg1 (ij) - virft (ij) |
---|
674 | v_s (ji,jj, jl1) = v_s (ji,jj, jl1) - vsrdg (ij) - vsrft (ij) |
---|
675 | e_s (ji,jj,1,jl1) = e_s (ji,jj,1,jl1) - esrdg (ij) - esrft (ij) |
---|
676 | smv_i(ji,jj, jl1) = smv_i(ji,jj, jl1) - srdg1 (ij) - smrft (ij) |
---|
677 | oa_i (ji,jj, jl1) = oa_i (ji,jj, jl1) - oirdg1(ij) - oirft1(ij) |
---|
678 | |
---|
679 | ! MV MP 2016 |
---|
680 | IF ( nn_pnd_scheme > 0 ) THEN |
---|
681 | v_ip (ji,jj,jl1) = v_ip (ji,jj,jl1) - vprdg (ij) - vprft (ij) |
---|
682 | a_ip (ji,jj,jl1) = a_ip (ji,jj,jl1) - aprdg1(ij) - aprft1(ij) |
---|
683 | ENDIF |
---|
684 | ! END MV MP 2016 |
---|
685 | |
---|
686 | END DO |
---|
687 | |
---|
688 | !-------------------------------------------------------------------- |
---|
689 | ! 3.9 Compute ridging ice enthalpy, remove it from ridging ice and |
---|
690 | ! compute ridged ice enthalpy |
---|
691 | !-------------------------------------------------------------------- |
---|
692 | DO jk = 1, nlay_i |
---|
693 | DO ij = 1, icells |
---|
694 | ji = indxi(ij) ; jj = indxj(ij) |
---|
695 | ! heat content of ridged ice |
---|
696 | erdg1(ij,jk) = e_i(ji,jj,jk,jl1) * afrac(ij) |
---|
697 | eirft(ij,jk) = e_i(ji,jj,jk,jl1) * afrft(ij) |
---|
698 | |
---|
699 | ! enthalpy of the trapped seawater (J/m2, >0) |
---|
700 | ! clem: if sst>0, then ersw <0 (is that possible?) |
---|
701 | ersw(ij,jk) = - rhoic * vsw(ij) * rcp * sst_m(ji,jj) * r1_nlay_i |
---|
702 | |
---|
703 | ! heat flux to the ocean |
---|
704 | hfx_dyn(ji,jj) = hfx_dyn(ji,jj) + ersw(ij,jk) * r1_rdtice ! > 0 [W.m-2] ocean->ice flux |
---|
705 | |
---|
706 | ! it is added to sea ice because the sign convention is the opposite of the sign convention for the ocean |
---|
707 | erdg2(ij,jk) = erdg1(ij,jk) + ersw(ij,jk) |
---|
708 | |
---|
709 | ! update jl1 |
---|
710 | e_i (ji,jj,jk,jl1) = e_i(ji,jj,jk,jl1) - erdg1(ij,jk) - eirft(ij,jk) |
---|
711 | |
---|
712 | END DO |
---|
713 | END DO |
---|
714 | |
---|
715 | !------------------------------------------------------------------------------- |
---|
716 | ! 4) Add area, volume, and energy of new ridge to each category jl2 |
---|
717 | !------------------------------------------------------------------------------- |
---|
718 | DO jl2 = 1, jpl |
---|
719 | ! over categories to which ridged/rafted ice is transferred |
---|
720 | DO ij = 1, icells |
---|
721 | ji = indxi(ij) ; jj = indxj(ij) |
---|
722 | |
---|
723 | ! Compute the fraction of ridged ice area and volume going to thickness category jl2. |
---|
724 | IF( hrmin(ji,jj,jl1) <= hi_max(jl2) .AND. hrmax(ji,jj,jl1) > hi_max(jl2-1) ) THEN |
---|
725 | hL = MAX( hrmin(ji,jj,jl1), hi_max(jl2-1) ) |
---|
726 | hR = MIN( hrmax(ji,jj,jl1), hi_max(jl2) ) |
---|
727 | farea = ( hR - hL ) * dhr(ij) |
---|
728 | fvol(ij) = ( hR * hR - hL * hL ) * dhr2(ij) |
---|
729 | ELSE |
---|
730 | farea = 0._wp |
---|
731 | fvol(ij) = 0._wp |
---|
732 | ENDIF |
---|
733 | |
---|
734 | ! Compute the fraction of rafted ice area and volume going to thickness category jl2 |
---|
735 | IF( hraft(ji,jj,jl1) <= hi_max(jl2) .AND. hraft(ji,jj,jl1) > hi_max(jl2-1) ) THEN |
---|
736 | zswitch(ij) = 1._wp |
---|
737 | ELSE |
---|
738 | zswitch(ij) = 0._wp |
---|
739 | ENDIF |
---|
740 | |
---|
741 | a_i (ji,jj ,jl2) = a_i (ji,jj ,jl2) + ( ardg2 (ij) * farea + arft2 (ij) * zswitch(ij) ) |
---|
742 | oa_i (ji,jj ,jl2) = oa_i (ji,jj ,jl2) + ( oirdg2(ij) * farea + oirft2(ij) * zswitch(ij) ) |
---|
743 | v_i (ji,jj ,jl2) = v_i (ji,jj ,jl2) + ( vrdg2 (ij) * fvol(ij) + virft (ij) * zswitch(ij) ) |
---|
744 | smv_i(ji,jj ,jl2) = smv_i(ji,jj ,jl2) + ( srdg2 (ij) * fvol(ij) + smrft (ij) * zswitch(ij) ) |
---|
745 | v_s (ji,jj ,jl2) = v_s (ji,jj ,jl2) + ( vsrdg (ij) * rn_fsnowrdg * fvol(ij) + & |
---|
746 | & vsrft (ij) * rn_fsnowrft * zswitch(ij) ) |
---|
747 | e_s (ji,jj,1,jl2) = e_s (ji,jj,1,jl2) + ( esrdg (ij) * rn_fsnowrdg * fvol(ij) + & |
---|
748 | & esrft (ij) * rn_fsnowrft * zswitch(ij) ) |
---|
749 | ! MV MP 2016 |
---|
750 | IF ( nn_pnd_scheme > 0 ) THEN |
---|
751 | v_ip (ji,jj,jl2) = v_ip (ji,jj,jl2) + ( vprdg (ij) * rn_fpondrdg * fvol(ij) + & |
---|
752 | & vprft (ij) * rn_fpondrft * zswitch(ij) ) |
---|
753 | a_ip (ji,jj,jl2) = a_ip(ji,jj,jl2) + ( aprdg2(ij) * rn_fpondrdg * farea + & |
---|
754 | & aprft2(ij) * rn_fpondrft * zswitch(ji) ) |
---|
755 | ENDIF |
---|
756 | ! END MV MP 2016 |
---|
757 | |
---|
758 | END DO |
---|
759 | |
---|
760 | ! Transfer ice energy to category jl2 by ridging |
---|
761 | DO jk = 1, nlay_i |
---|
762 | DO ij = 1, icells |
---|
763 | ji = indxi(ij) ; jj = indxj(ij) |
---|
764 | e_i(ji,jj,jk,jl2) = e_i(ji,jj,jk,jl2) + erdg2(ij,jk) * fvol(ij) + eirft(ij,jk) * zswitch(ij) |
---|
765 | END DO |
---|
766 | END DO |
---|
767 | ! |
---|
768 | END DO ! jl2 |
---|
769 | |
---|
770 | END DO ! jl1 (deforming categories) |
---|
771 | |
---|
772 | ! SIMIP diagnostics |
---|
773 | diag_dmi_dyn(:,:) = - wfx_dyn(:,:) + rhoic * diag_trp_vi(:,:) |
---|
774 | diag_dms_dyn(:,:) = - wfx_snw_dyn(:,:) + rhosn * diag_trp_vs(:,:) |
---|
775 | ! |
---|
776 | END SUBROUTINE ice_rdgrft_ridgeshift |
---|
777 | |
---|
778 | SUBROUTINE ice_rdgrft_icestrength( kstrngth ) |
---|
779 | !!---------------------------------------------------------------------- |
---|
780 | !! *** ROUTINE ice_rdgrft_icestrength *** |
---|
781 | !! |
---|
782 | !! ** Purpose : computes ice strength used in dynamics routines of ice thickness |
---|
783 | !! |
---|
784 | !! ** Method : Compute the strength of the ice pack, defined as the energy (J m-2) |
---|
785 | !! dissipated per unit area removed from the ice pack under compression, |
---|
786 | !! and assumed proportional to the change in potential energy caused |
---|
787 | !! by ridging. Note that only Hibler's formulation is stable and that |
---|
788 | !! ice strength has to be smoothed |
---|
789 | !! |
---|
790 | !! ** Inputs / Ouputs : kstrngth (what kind of ice strength we are using) |
---|
791 | !!---------------------------------------------------------------------- |
---|
792 | INTEGER, INTENT(in) :: kstrngth ! = 1 for Rothrock formulation, 0 for Hibler (1979) |
---|
793 | INTEGER :: ji,jj, jl ! dummy loop indices |
---|
794 | INTEGER :: ksmooth ! smoothing the resistance to deformation |
---|
795 | INTEGER :: numts_rm ! number of time steps for the P smoothing |
---|
796 | REAL(wp) :: zp, z1_3 ! local scalars |
---|
797 | REAL(wp), DIMENSION(jpi,jpj) :: zworka ! temporary array used here |
---|
798 | REAL(wp), DIMENSION(jpi,jpj) :: zstrp1, zstrp2 ! strength at previous time steps |
---|
799 | !!---------------------------------------------------------------------- |
---|
800 | |
---|
801 | !------------------------------------------------------------------------------! |
---|
802 | ! 1) Initialize |
---|
803 | !------------------------------------------------------------------------------! |
---|
804 | strength(:,:) = 0._wp |
---|
805 | |
---|
806 | !------------------------------------------------------------------------------! |
---|
807 | ! 2) Compute thickness distribution of ridging and ridged ice |
---|
808 | !------------------------------------------------------------------------------! |
---|
809 | CALL ice_rdgrft_ridgeprep |
---|
810 | |
---|
811 | !------------------------------------------------------------------------------! |
---|
812 | ! 3) Rothrock(1975)'s method |
---|
813 | !------------------------------------------------------------------------------! |
---|
814 | IF( kstrngth == 1 ) THEN |
---|
815 | z1_3 = 1._wp / 3._wp |
---|
816 | DO jl = 1, jpl |
---|
817 | DO jj= 1, jpj |
---|
818 | DO ji = 1, jpi |
---|
819 | ! |
---|
820 | IF( athorn(ji,jj,jl) > 0._wp ) THEN |
---|
821 | !---------------------------- |
---|
822 | ! PE loss from deforming ice |
---|
823 | !---------------------------- |
---|
824 | strength(ji,jj) = strength(ji,jj) - athorn(ji,jj,jl) * ht_i(ji,jj,jl) * ht_i(ji,jj,jl) |
---|
825 | |
---|
826 | !-------------------------- |
---|
827 | ! PE gain from rafting ice |
---|
828 | !-------------------------- |
---|
829 | strength(ji,jj) = strength(ji,jj) + 2._wp * araft(ji,jj,jl) * ht_i(ji,jj,jl) * ht_i(ji,jj,jl) |
---|
830 | |
---|
831 | !---------------------------- |
---|
832 | ! PE gain from ridging ice |
---|
833 | !---------------------------- |
---|
834 | strength(ji,jj) = strength(ji,jj) + aridge(ji,jj,jl) * krdg(ji,jj,jl) * z1_3 * & |
---|
835 | & ( hrmax(ji,jj,jl) * hrmax(ji,jj,jl) + & |
---|
836 | & hrmin(ji,jj,jl) * hrmin(ji,jj,jl) + & |
---|
837 | & hrmax(ji,jj,jl) * hrmin(ji,jj,jl) ) |
---|
838 | !!(a**3-b**3)/(a-b) = a*a+ab+b*b |
---|
839 | ENDIF |
---|
840 | ! |
---|
841 | END DO |
---|
842 | END DO |
---|
843 | END DO |
---|
844 | |
---|
845 | strength(:,:) = rn_pe_rdg * Cp * strength(:,:) / aksum(:,:) * tmask(:,:,1) |
---|
846 | ! where Cp = (g/2)*(rhow-rhoi)*(rhoi/rhow) and rn_pe_rdg accounts for frictional dissipation |
---|
847 | ksmooth = 1 |
---|
848 | |
---|
849 | !------------------------------------------------------------------------------! |
---|
850 | ! 4) Hibler (1979)' method |
---|
851 | !------------------------------------------------------------------------------! |
---|
852 | ELSE ! kstrngth ne 1: Hibler (1979) form |
---|
853 | ! |
---|
854 | strength(:,:) = rn_pstar * vt_i(:,:) * EXP( - rn_crhg * ( 1._wp - at_i(:,:) ) ) * tmask(:,:,1) |
---|
855 | ! |
---|
856 | ksmooth = 1 |
---|
857 | ! |
---|
858 | ENDIF ! kstrngth |
---|
859 | ! |
---|
860 | !------------------------------------------------------------------------------! |
---|
861 | ! 5) Impact of brine volume |
---|
862 | !------------------------------------------------------------------------------! |
---|
863 | ! CAN BE REMOVED |
---|
864 | IF( ln_icestr_bvf ) THEN |
---|
865 | DO jj = 1, jpj |
---|
866 | DO ji = 1, jpi |
---|
867 | strength(ji,jj) = strength(ji,jj) * exp(-5.88*SQRT(MAX(bvm_i(ji,jj),0.0))) |
---|
868 | END DO |
---|
869 | END DO |
---|
870 | ENDIF |
---|
871 | ! |
---|
872 | !------------------------------------------------------------------------------! |
---|
873 | ! 6) Smoothing ice strength |
---|
874 | !------------------------------------------------------------------------------! |
---|
875 | ! |
---|
876 | !------------------- |
---|
877 | ! Spatial smoothing |
---|
878 | !------------------- |
---|
879 | IF ( ksmooth == 1 ) THEN |
---|
880 | |
---|
881 | DO jj = 2, jpjm1 |
---|
882 | DO ji = 2, jpim1 |
---|
883 | IF ( ( asum(ji,jj) - ato_i(ji,jj) ) > 0._wp ) THEN |
---|
884 | zworka(ji,jj) = ( 4.0 * strength(ji,jj) & |
---|
885 | & + strength(ji-1,jj) * tmask(ji-1,jj,1) + strength(ji+1,jj) * tmask(ji+1,jj,1) & |
---|
886 | & + strength(ji,jj-1) * tmask(ji,jj-1,1) + strength(ji,jj+1) * tmask(ji,jj+1,1) & |
---|
887 | & ) / ( 4.0 + tmask(ji-1,jj,1) + tmask(ji+1,jj,1) + tmask(ji,jj-1,1) + tmask(ji,jj+1,1) ) |
---|
888 | ELSE |
---|
889 | zworka(ji,jj) = 0._wp |
---|
890 | ENDIF |
---|
891 | END DO |
---|
892 | END DO |
---|
893 | |
---|
894 | DO jj = 2, jpjm1 |
---|
895 | DO ji = 2, jpim1 |
---|
896 | strength(ji,jj) = zworka(ji,jj) |
---|
897 | END DO |
---|
898 | END DO |
---|
899 | CALL lbc_lnk( strength, 'T', 1. ) |
---|
900 | |
---|
901 | ENDIF |
---|
902 | |
---|
903 | !-------------------- |
---|
904 | ! Temporal smoothing |
---|
905 | !-------------------- |
---|
906 | IF ( ksmooth == 2 ) THEN |
---|
907 | |
---|
908 | IF ( kt_ice == nit000 ) THEN |
---|
909 | zstrp1(:,:) = 0._wp |
---|
910 | zstrp2(:,:) = 0._wp |
---|
911 | ENDIF |
---|
912 | |
---|
913 | DO jj = 2, jpjm1 |
---|
914 | DO ji = 2, jpim1 |
---|
915 | IF ( ( asum(ji,jj) - ato_i(ji,jj) ) > 0._wp ) THEN |
---|
916 | numts_rm = 1 ! number of time steps for the running mean |
---|
917 | IF ( zstrp1(ji,jj) > 0._wp ) numts_rm = numts_rm + 1 |
---|
918 | IF ( zstrp2(ji,jj) > 0._wp ) numts_rm = numts_rm + 1 |
---|
919 | zp = ( strength(ji,jj) + zstrp1(ji,jj) + zstrp2(ji,jj) ) / numts_rm |
---|
920 | zstrp2(ji,jj) = zstrp1(ji,jj) |
---|
921 | zstrp1(ji,jj) = strength(ji,jj) |
---|
922 | strength(ji,jj) = zp |
---|
923 | ENDIF |
---|
924 | END DO |
---|
925 | END DO |
---|
926 | |
---|
927 | CALL lbc_lnk( strength, 'T', 1. ) ! Boundary conditions |
---|
928 | |
---|
929 | ENDIF ! ksmooth |
---|
930 | ! |
---|
931 | END SUBROUTINE ice_rdgrft_icestrength |
---|
932 | |
---|
933 | SUBROUTINE ice_rdgrft_init |
---|
934 | !!------------------------------------------------------------------- |
---|
935 | !! *** ROUTINE ice_rdgrft_init *** |
---|
936 | !! |
---|
937 | !! ** Purpose : Physical constants and parameters linked |
---|
938 | !! to the mechanical ice redistribution |
---|
939 | !! |
---|
940 | !! ** Method : Read the namiceitdme namelist |
---|
941 | !! and check the parameters values |
---|
942 | !! called at the first timestep (nit000) |
---|
943 | !! |
---|
944 | !! ** input : Namelist namiceitdme |
---|
945 | !!------------------------------------------------------------------- |
---|
946 | INTEGER :: ios ! Local integer output status for namelist read |
---|
947 | NAMELIST/namiceitdme/ rn_cs, nn_partfun, rn_gstar, rn_astar, & |
---|
948 | & ln_ridging, rn_hstar, rn_por_rdg, rn_fsnowrdg, rn_fpondrdg, & |
---|
949 | ln_rafting, rn_hraft, rn_craft, rn_fsnowrft, rn_fpondrft |
---|
950 | !!------------------------------------------------------------------- |
---|
951 | ! |
---|
952 | REWIND( numnam_ice_ref ) ! Namelist namicetdme in reference namelist : Ice mechanical ice redistribution |
---|
953 | READ ( numnam_ice_ref, namiceitdme, IOSTAT = ios, ERR = 901) |
---|
954 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namiceitdme in reference namelist', lwp ) |
---|
955 | |
---|
956 | REWIND( numnam_ice_cfg ) ! Namelist namiceitdme in configuration namelist : Ice mechanical ice redistribution |
---|
957 | READ ( numnam_ice_cfg, namiceitdme, IOSTAT = ios, ERR = 902 ) |
---|
958 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namiceitdme in configuration namelist', lwp ) |
---|
959 | IF(lwm) WRITE ( numoni, namiceitdme ) |
---|
960 | ! |
---|
961 | IF (lwp) THEN ! control print |
---|
962 | WRITE(numout,*) |
---|
963 | WRITE(numout,*)'ice_rdgrft_init : ice parameters for mechanical ice redistribution ' |
---|
964 | WRITE(numout,*)'~~~~~~~~~~~~~~~' |
---|
965 | WRITE(numout,*)' Fraction of shear energy contributing to ridging rn_cs = ', rn_cs |
---|
966 | WRITE(numout,*)' Switch for part. function (0) linear (1) exponential nn_partfun = ', nn_partfun |
---|
967 | WRITE(numout,*)' Fraction of total ice coverage contributing to ridging rn_gstar = ', rn_gstar |
---|
968 | WRITE(numout,*)' Equivalent to G* for an exponential part function rn_astar = ', rn_astar |
---|
969 | WRITE(numout,*)' Ridging of ice sheets or not ln_ridging = ', ln_ridging |
---|
970 | WRITE(numout,*)' Quantity playing a role in max ridged ice thickness rn_hstar = ', rn_hstar |
---|
971 | WRITE(numout,*)' Initial porosity of ridges rn_por_rdg = ', rn_por_rdg |
---|
972 | WRITE(numout,*)' Fraction of snow volume conserved during ridging rn_fsnowrdg = ', rn_fsnowrdg |
---|
973 | WRITE(numout,*)' Fraction of pond volume conserved during ridging rn_fpondrdg = ', rn_fpondrdg |
---|
974 | WRITE(numout,*)' Rafting of ice sheets or not ln_rafting = ', ln_rafting |
---|
975 | WRITE(numout,*)' Parmeter thickness (threshold between ridge-raft) rn_hraft = ', rn_hraft |
---|
976 | WRITE(numout,*)' Rafting hyperbolic tangent coefficient rn_craft = ', rn_craft |
---|
977 | WRITE(numout,*)' Fraction of snow volume conserved during ridging rn_fsnowrft = ', rn_fsnowrft |
---|
978 | WRITE(numout,*)' Fraction of pond volume conserved during rafting rn_fpondrft = ', rn_fpondrft |
---|
979 | ENDIF |
---|
980 | ! |
---|
981 | END SUBROUTINE ice_rdgrft_init |
---|
982 | |
---|
983 | #else |
---|
984 | !!---------------------------------------------------------------------- |
---|
985 | !! Default option Empty module NO LIM-3 sea-ice model |
---|
986 | !!---------------------------------------------------------------------- |
---|
987 | CONTAINS |
---|
988 | SUBROUTINE ice_rdgrft ! Empty routines |
---|
989 | END SUBROUTINE ice_rdgrft |
---|
990 | SUBROUTINE ice_rdgrft_icestrength |
---|
991 | END SUBROUTINE ice_rdgrft_icestrength |
---|
992 | SUBROUTINE ice_rdgrft_init |
---|
993 | END SUBROUTINE ice_rdgrft_init |
---|
994 | #endif |
---|
995 | !!====================================================================== |
---|
996 | END MODULE icerdgrft |
---|