1 | MODULE icethd |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE icethd *** |
---|
4 | !! LIM-3 : ice thermodynamic |
---|
5 | !!====================================================================== |
---|
6 | !! History : LIM ! 2000-01 (M.A. Morales Maqueda, H. Goosse, T. Fichefet) LIM-1 |
---|
7 | !! 2.0 ! 2002-07 (C. Ethe, G. Madec) LIM-2 (F90 rewriting) |
---|
8 | !! 3.0 ! 2005-11 (M. Vancoppenolle) LIM-3 : Multi-layer thermodynamics + salinity variations |
---|
9 | !! - ! 2007-04 (M. Vancoppenolle) add ice_thd_glohec, ice_thd_con_dh and ice_thd_con_dif |
---|
10 | !! 3.2 ! 2009-07 (M. Vancoppenolle, Y. Aksenov, G. Madec) bug correction in wfx_snw |
---|
11 | !! 3.3 ! 2010-11 (G. Madec) corrected snow melting heat (due to factor betas) |
---|
12 | !! 4.0 ! 2011-02 (G. Madec) dynamical allocation |
---|
13 | !! - ! 2012-05 (C. Rousset) add penetration solar flux |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | #if defined key_lim3 |
---|
16 | !!---------------------------------------------------------------------- |
---|
17 | !! 'key_lim3' LIM3 sea-ice model |
---|
18 | !!---------------------------------------------------------------------- |
---|
19 | !! ice_thd : thermodynamic of sea ice |
---|
20 | !! ice_thd_init : initialisation of sea-ice thermodynamic |
---|
21 | !!---------------------------------------------------------------------- |
---|
22 | USE phycst ! physical constants |
---|
23 | USE dom_oce ! ocean space and time domain variables |
---|
24 | USE ice ! sea-ice variables |
---|
25 | USE sbc_oce , ONLY : sss_m, sst_m, e3t_m, utau, vtau, ssu_m, ssv_m, frq_m, qns_tot, qsr_tot, sprecip, ln_cpl |
---|
26 | USE sbc_ice , ONLY : qsr_oce, qns_oce, qemp_oce, qsr_ice, qns_ice, dqns_ice, evap_ice, qprec_ice, qevap_ice, & |
---|
27 | & fr1_i0, fr2_i0, nn_limflx |
---|
28 | USE ice1D ! thermodynamic sea-ice variables |
---|
29 | USE icethd_dif ! vertical diffusion |
---|
30 | USE icethd_dh ! ice-snow growth and melt |
---|
31 | USE icethd_da ! lateral melting |
---|
32 | USE icethd_sal ! ice salinity |
---|
33 | USE icethd_ent ! ice enthalpy redistribution |
---|
34 | USE icethd_lac ! lateral accretion |
---|
35 | USE iceitd ! remapping thickness distribution |
---|
36 | USE icetab ! 1D <==> 2D transformation |
---|
37 | USE icevar ! |
---|
38 | USE icecons ! conservation tests |
---|
39 | USE icectl ! control print |
---|
40 | ! |
---|
41 | USE in_out_manager ! I/O manager |
---|
42 | USE lbclnk ! lateral boundary condition - MPP links |
---|
43 | USE lib_mpp ! MPP library |
---|
44 | USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) |
---|
45 | USE timing ! Timing |
---|
46 | |
---|
47 | IMPLICIT NONE |
---|
48 | PRIVATE |
---|
49 | |
---|
50 | PUBLIC ice_thd ! called by limstp module |
---|
51 | PUBLIC ice_thd_init ! called by ice_init |
---|
52 | |
---|
53 | !! * Substitutions |
---|
54 | # include "vectopt_loop_substitute.h90" |
---|
55 | !!---------------------------------------------------------------------- |
---|
56 | !! NEMO/LIM3 4.0 , UCL - NEMO Consortium (2010) |
---|
57 | !! $Id: icethd.F90 8420 2017-08-08 12:18:46Z clem $ |
---|
58 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
59 | !!---------------------------------------------------------------------- |
---|
60 | CONTAINS |
---|
61 | |
---|
62 | SUBROUTINE ice_thd( kt ) |
---|
63 | !!------------------------------------------------------------------- |
---|
64 | !! *** ROUTINE ice_thd *** |
---|
65 | !! |
---|
66 | !! ** Purpose : This routine manages ice thermodynamics |
---|
67 | !! |
---|
68 | !! ** Action : - Initialisation of some variables |
---|
69 | !! - Some preliminary computation (oceanic heat flux |
---|
70 | !! at the ice base, snow acc.,heat budget of the leads) |
---|
71 | !! - selection of the icy points and put them in an array |
---|
72 | !! - call ice_thd_dif for vertical heat diffusion |
---|
73 | !! - call ice_thd_dh for vertical ice growth and melt |
---|
74 | !! - call ice_thd_ent for enthalpy remapping |
---|
75 | !! - call ice_thd_sal for ice desalination |
---|
76 | !! - call ice_thd_temp to retrieve temperature from ice enthalpy |
---|
77 | !! - back to the geographic grid |
---|
78 | !! |
---|
79 | !! ** References : |
---|
80 | !!--------------------------------------------------------------------- |
---|
81 | INTEGER, INTENT(in) :: kt ! number of iteration |
---|
82 | ! |
---|
83 | INTEGER :: ji, jj, jk, jl ! dummy loop indices |
---|
84 | REAL(wp) :: zfric_u, zqld, zqfr, zqfr_neg |
---|
85 | REAL(wp) :: zvi_b, zsmv_b, zei_b, zfs_b, zfw_b, zft_b ! conservation check |
---|
86 | REAL(wp), PARAMETER :: zfric_umin = 0._wp ! lower bound for the friction velocity (cice value=5.e-04) |
---|
87 | REAL(wp), PARAMETER :: zch = 0.0057_wp ! heat transfer coefficient |
---|
88 | REAL(wp), DIMENSION(jpi,jpj) :: zu_io, zv_io, zfric ! ice-ocean velocity (m/s) and frictional velocity (m2/s2) |
---|
89 | ! |
---|
90 | !!------------------------------------------------------------------- |
---|
91 | |
---|
92 | IF( nn_timing == 1 ) CALL timing_start('icethd') |
---|
93 | |
---|
94 | IF( kt == nit000 .AND. lwp ) THEN |
---|
95 | WRITE(numout,*)'' |
---|
96 | WRITE(numout,*)' ice_thd ' |
---|
97 | WRITE(numout,*)' ~~~~~~~~' |
---|
98 | ENDIF |
---|
99 | |
---|
100 | ! conservation test |
---|
101 | IF( ln_limdiachk ) CALL ice_cons_hsm(0, 'icethd', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) |
---|
102 | |
---|
103 | CALL ice_var_glo2eqv |
---|
104 | |
---|
105 | !---------------------------------------------! |
---|
106 | ! computation of friction velocity at T points |
---|
107 | !---------------------------------------------! |
---|
108 | IF( ln_limdyn ) THEN |
---|
109 | zu_io(:,:) = u_ice(:,:) - ssu_m(:,:) |
---|
110 | zv_io(:,:) = v_ice(:,:) - ssv_m(:,:) |
---|
111 | DO jj = 2, jpjm1 |
---|
112 | DO ji = fs_2, fs_jpim1 |
---|
113 | zfric(ji,jj) = rn_cio * ( 0.5_wp * & |
---|
114 | & ( zu_io(ji,jj) * zu_io(ji,jj) + zu_io(ji-1,jj) * zu_io(ji-1,jj) & |
---|
115 | & + zv_io(ji,jj) * zv_io(ji,jj) + zv_io(ji,jj-1) * zv_io(ji,jj-1) ) ) * tmask(ji,jj,1) |
---|
116 | END DO |
---|
117 | END DO |
---|
118 | ELSE ! if no ice dynamics => transmit directly the atmospheric stress to the ocean |
---|
119 | DO jj = 2, jpjm1 |
---|
120 | DO ji = fs_2, fs_jpim1 |
---|
121 | zfric(ji,jj) = r1_rau0 * SQRT( 0.5_wp * & |
---|
122 | & ( utau(ji,jj) * utau(ji,jj) + utau(ji-1,jj) * utau(ji-1,jj) & |
---|
123 | & + vtau(ji,jj) * vtau(ji,jj) + vtau(ji,jj-1) * vtau(ji,jj-1) ) ) * tmask(ji,jj,1) |
---|
124 | END DO |
---|
125 | END DO |
---|
126 | ENDIF |
---|
127 | CALL lbc_lnk( zfric, 'T', 1. ) |
---|
128 | ! |
---|
129 | ftr_ice(:,:,:) = 0._wp ! initialization (part of solar radiation transmitted through the ice) |
---|
130 | |
---|
131 | !--------------------------------------------------------------------! |
---|
132 | ! Partial computation of forcing for the thermodynamic sea ice model |
---|
133 | !--------------------------------------------------------------------! |
---|
134 | DO jj = 1, jpj |
---|
135 | DO ji = 1, jpi |
---|
136 | rswitch = tmask(ji,jj,1) * MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi10 ) ) ! 0 if no ice |
---|
137 | ! |
---|
138 | ! ! solar irradiance transmission at the mixed layer bottom and used in the lead heat budget |
---|
139 | ! ! practically no "direct lateral ablation" |
---|
140 | ! |
---|
141 | ! ! net downward heat flux from the ice to the ocean, expressed as a function of ocean |
---|
142 | ! ! temperature and turbulent mixing (McPhee, 1992) |
---|
143 | ! |
---|
144 | ! --- Energy received in the lead, zqld is defined everywhere (J.m-2) --- ! |
---|
145 | zqld = tmask(ji,jj,1) * rdt_ice * & |
---|
146 | & ( ( 1._wp - at_i_b(ji,jj) ) * qsr_oce(ji,jj) * frq_m(ji,jj) + & |
---|
147 | & ( 1._wp - at_i_b(ji,jj) ) * qns_oce(ji,jj) + qemp_oce(ji,jj) ) |
---|
148 | |
---|
149 | ! --- Energy needed to bring ocean surface layer until its freezing (<0, J.m-2) --- ! |
---|
150 | ! includes supercooling potential energy (>0) or "above-freezing" energy (<0) |
---|
151 | zqfr = tmask(ji,jj,1) * rau0 * rcp * e3t_m(ji,jj) * ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ) |
---|
152 | |
---|
153 | ! --- Above-freezing sensible heat content (J/m2 grid) |
---|
154 | zqfr_neg = tmask(ji,jj,1) * rau0 * rcp * e3t_m(ji,jj) * MIN( ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ), 0._wp ) |
---|
155 | |
---|
156 | ! --- Sensible ocean-to-ice heat flux (W/m2) |
---|
157 | zfric_u = MAX( SQRT( zfric(ji,jj) ), zfric_umin ) |
---|
158 | fhtur(ji,jj) = rswitch * rau0 * rcp * zch * zfric_u * ( ( sst_m(ji,jj) + rt0 ) - t_bo(ji,jj) ) ! W.m-2 |
---|
159 | |
---|
160 | fhtur(ji,jj) = rswitch * MIN( fhtur(ji,jj), - zqfr_neg * r1_rdtice / MAX( at_i(ji,jj), epsi10 ) ) |
---|
161 | ! upper bound for fhtur: the heat retrieved from the ocean must be smaller than the heat necessary to reach |
---|
162 | ! the freezing point, so that we do not have SST < T_freeze |
---|
163 | ! This implies: - ( fhtur(ji,jj) * at_i(ji,jj) * rtdice ) - zqfr >= 0 |
---|
164 | |
---|
165 | !-- Energy Budget of the leads (J.m-2), source of lateral accretion. Must be < 0 to form ice |
---|
166 | qlead(ji,jj) = MIN( 0._wp , zqld - ( fhtur(ji,jj) * at_i(ji,jj) * rdt_ice ) - zqfr ) |
---|
167 | |
---|
168 | ! If there is ice and leads are warming, then transfer energy from the lead budget and use it for bottom melting |
---|
169 | IF( zqld > 0._wp ) THEN |
---|
170 | fhld (ji,jj) = rswitch * zqld * r1_rdtice / MAX( at_i(ji,jj), epsi10 ) ! divided by at_i since this is (re)multiplied by a_i in icethd_dh.F90 |
---|
171 | qlead(ji,jj) = 0._wp |
---|
172 | ELSE |
---|
173 | fhld (ji,jj) = 0._wp |
---|
174 | ENDIF |
---|
175 | ! |
---|
176 | ! Net heat flux on top of the ice-ocean [W.m-2] |
---|
177 | ! --------------------------------------------- |
---|
178 | hfx_in(ji,jj) = qns_tot(ji,jj) + qsr_tot(ji,jj) |
---|
179 | END DO |
---|
180 | END DO |
---|
181 | |
---|
182 | ! In case we bypass open-water ice formation |
---|
183 | IF( .NOT. ln_limdO ) qlead(:,:) = 0._wp |
---|
184 | ! In case we bypass growing/melting from top and bottom: we suppose ice is impermeable => ocean is isolated from atmosphere |
---|
185 | IF( .NOT. ln_limdH ) hfx_in(:,:) = ( 1._wp - at_i_b(:,:) ) * ( qns_oce(:,:) + qsr_oce(:,:) ) + qemp_oce(:,:) |
---|
186 | IF( .NOT. ln_limdH ) fhtur (:,:) = 0._wp ; fhld (:,:) = 0._wp |
---|
187 | |
---|
188 | ! --------------------------------------------------------------------- |
---|
189 | ! Net heat flux on top of the ocean after ice thermo (1st step) [W.m-2] |
---|
190 | ! --------------------------------------------------------------------- |
---|
191 | ! First step here : non solar + precip - qlead - qturb |
---|
192 | ! Second step in icethd_dh : heat remaining if total melt (zq_rema) |
---|
193 | ! Third step in iceupdate.F90 : heat from ice-ocean mass exchange (zf_mass) + solar |
---|
194 | DO jj = 1, jpj |
---|
195 | DO ji = 1, jpi |
---|
196 | hfx_out(ji,jj) = ( 1._wp - at_i_b(ji,jj) ) * qns_oce(ji,jj) + qemp_oce(ji,jj) & ! Non solar heat flux received by the ocean |
---|
197 | & - qlead(ji,jj) * r1_rdtice & ! heat flux taken from the ocean where there is open water ice formation |
---|
198 | & - at_i(ji,jj) * fhtur(ji,jj) & ! heat flux taken by turbulence |
---|
199 | & - at_i(ji,jj) * fhld(ji,jj) ! heat flux taken during bottom growth/melt |
---|
200 | ! (fhld should be 0 while bott growth) |
---|
201 | END DO |
---|
202 | END DO |
---|
203 | |
---|
204 | !-------------------------------------------------------------------------------------------! |
---|
205 | ! Thermodynamic computation (only on grid points covered by ice) => loop over ice categories |
---|
206 | !-------------------------------------------------------------------------------------------! |
---|
207 | DO jl = 1, jpl |
---|
208 | |
---|
209 | ! select ice covered grid points |
---|
210 | nidx = 0 ; idxice(:) = 0 |
---|
211 | DO jj = 1, jpj |
---|
212 | DO ji = 1, jpi |
---|
213 | IF ( a_i(ji,jj,jl) > epsi10 ) THEN |
---|
214 | nidx = nidx + 1 |
---|
215 | idxice(nidx) = (jj - 1) * jpi + ji |
---|
216 | ENDIF |
---|
217 | END DO |
---|
218 | END DO |
---|
219 | |
---|
220 | IF( lk_mpp ) CALL mpp_ini_ice( nidx , numout ) |
---|
221 | |
---|
222 | IF( nidx > 0 ) THEN ! If there is no ice, do nothing. |
---|
223 | ! |
---|
224 | CALL ice_thd_1d2d( jl, 1 ) ! --- Move to 1D arrays --- ! |
---|
225 | ! ! --- & Change units of e_i, e_s from J/m2 to J/m3 --- ! |
---|
226 | ! |
---|
227 | s_i_new (1:nidx) = 0._wp ; dh_s_tot (1:nidx) = 0._wp ! --- some init --- ! (important to have them here) |
---|
228 | dh_i_surf (1:nidx) = 0._wp ; dh_i_bott(1:nidx) = 0._wp |
---|
229 | dh_snowice(1:nidx) = 0._wp ; dh_i_sub (1:nidx) = 0._wp |
---|
230 | ! |
---|
231 | IF( ln_limdH ) CALL ice_thd_dif ! --- Ice/Snow Temperature profile --- ! |
---|
232 | ! |
---|
233 | IF( ln_limdH ) CALL ice_thd_dh ! --- Ice/Snow thickness --- ! |
---|
234 | ! |
---|
235 | IF( ln_limdH ) CALL ice_thd_ent( e_i_1d(1:nidx,:) ) ! --- Ice enthalpy remapping --- ! |
---|
236 | ! |
---|
237 | CALL ice_thd_sal ! --- Ice salinity --- ! |
---|
238 | ! |
---|
239 | CALL ice_thd_temp ! --- temperature update --- ! |
---|
240 | ! |
---|
241 | IF( ln_limdH ) THEN |
---|
242 | IF ( ( nn_monocat == 1 .OR. nn_monocat == 4 ) .AND. jpl == 1 ) THEN |
---|
243 | CALL ice_thd_lam ! --- extra lateral melting if monocat --- ! |
---|
244 | END IF |
---|
245 | END IF |
---|
246 | ! |
---|
247 | IF( ln_limdA ) CALL ice_thd_da ! --- lateral melting --- ! |
---|
248 | ! |
---|
249 | CALL ice_thd_1d2d( jl, 2 ) ! --- Change units of e_i, e_s from J/m3 to J/m2 --- ! |
---|
250 | ! ! --- & Move to 2D arrays --- ! |
---|
251 | ! |
---|
252 | IF( lk_mpp ) CALL mpp_comm_free( ncomm_ice ) !RB necessary ?? |
---|
253 | ENDIF |
---|
254 | ! |
---|
255 | END DO |
---|
256 | ! update ice age (in case a_i changed, i.e. becomes 0 or lateral melting) |
---|
257 | oa_i(:,:,:) = o_i(:,:,:) * a_i(:,:,:) |
---|
258 | |
---|
259 | IF( ln_limdiachk ) CALL ice_cons_hsm(1, 'icethd', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) |
---|
260 | ! |
---|
261 | CALL ice_var_zapsmall ! --- remove very small ice concentration (<1e-10) --- ! |
---|
262 | ! ! & make sure at_i=SUM(a_i) & ato_i=1 where at_i=0 |
---|
263 | ! |
---|
264 | IF( jpl > 1 ) CALL ice_itd_rem( kt ) ! --- Transport ice between thickness categories --- ! |
---|
265 | ! |
---|
266 | IF( ln_limdO ) CALL ice_thd_lac ! --- frazil ice growing in leads --- ! |
---|
267 | ! |
---|
268 | IF( ln_limctl ) CALL ice_prt( kt, iiceprt, jiceprt, 1, ' - ice thermodyn. - ' ) ! control print |
---|
269 | IF( ln_ctl ) CALL ice_prt3D( 'icethd' ) ! Control print |
---|
270 | ! |
---|
271 | IF( nn_timing == 1 ) CALL timing_stop('icethd') |
---|
272 | |
---|
273 | END SUBROUTINE ice_thd |
---|
274 | |
---|
275 | |
---|
276 | SUBROUTINE ice_thd_temp |
---|
277 | !!----------------------------------------------------------------------- |
---|
278 | !! *** ROUTINE ice_thd_temp *** |
---|
279 | !! |
---|
280 | !! ** Purpose : Computes sea ice temperature (Kelvin) from enthalpy |
---|
281 | !! |
---|
282 | !! ** Method : Formula (Bitz and Lipscomb, 1999) |
---|
283 | !!------------------------------------------------------------------- |
---|
284 | INTEGER :: ji, jk ! dummy loop indices |
---|
285 | REAL(wp) :: ztmelts, zaaa, zbbb, zccc, zdiscrim ! local scalar |
---|
286 | !!------------------------------------------------------------------- |
---|
287 | ! Recover ice temperature |
---|
288 | DO jk = 1, nlay_i |
---|
289 | DO ji = 1, nidx |
---|
290 | ztmelts = -tmut * s_i_1d(ji,jk) + rt0 |
---|
291 | ! Conversion q(S,T) -> T (second order equation) |
---|
292 | zaaa = cpic |
---|
293 | zbbb = ( rcp - cpic ) * ( ztmelts - rt0 ) + e_i_1d(ji,jk) * r1_rhoic - lfus |
---|
294 | zccc = lfus * ( ztmelts - rt0 ) |
---|
295 | zdiscrim = SQRT( MAX( zbbb * zbbb - 4._wp * zaaa * zccc, 0._wp ) ) |
---|
296 | t_i_1d(ji,jk) = rt0 - ( zbbb + zdiscrim ) / ( 2._wp * zaaa ) |
---|
297 | |
---|
298 | ! mask temperature |
---|
299 | rswitch = 1._wp - MAX( 0._wp , SIGN( 1._wp , - ht_i_1d(ji) ) ) |
---|
300 | t_i_1d(ji,jk) = rswitch * t_i_1d(ji,jk) + ( 1._wp - rswitch ) * rt0 |
---|
301 | END DO |
---|
302 | END DO |
---|
303 | ! |
---|
304 | END SUBROUTINE ice_thd_temp |
---|
305 | |
---|
306 | |
---|
307 | SUBROUTINE ice_thd_lam |
---|
308 | !!----------------------------------------------------------------------- |
---|
309 | !! *** ROUTINE ice_thd_lam *** |
---|
310 | !! |
---|
311 | !! ** Purpose : Lateral melting in case monocategory |
---|
312 | !! ( dA = A/2h dh ) |
---|
313 | !!----------------------------------------------------------------------- |
---|
314 | INTEGER :: ji ! dummy loop indices |
---|
315 | REAL(wp) :: zhi_bef ! ice thickness before thermo |
---|
316 | REAL(wp) :: zdh_mel, zda_mel ! net melting |
---|
317 | REAL(wp) :: zvi, zvs ! ice/snow volumes |
---|
318 | !!----------------------------------------------------------------------- |
---|
319 | ! |
---|
320 | DO ji = 1, nidx |
---|
321 | zdh_mel = MIN( 0._wp, dh_i_surf(ji) + dh_i_bott(ji) + dh_snowice(ji) + dh_i_sub(ji) ) |
---|
322 | IF( zdh_mel < 0._wp .AND. a_i_1d(ji) > 0._wp ) THEN |
---|
323 | zvi = a_i_1d(ji) * ht_i_1d(ji) |
---|
324 | zvs = a_i_1d(ji) * ht_s_1d(ji) |
---|
325 | ! lateral melting = concentration change |
---|
326 | zhi_bef = ht_i_1d(ji) - zdh_mel |
---|
327 | rswitch = MAX( 0._wp , SIGN( 1._wp , zhi_bef - epsi20 ) ) |
---|
328 | zda_mel = rswitch * a_i_1d(ji) * zdh_mel / ( 2._wp * MAX( zhi_bef, epsi20 ) ) |
---|
329 | a_i_1d(ji) = MAX( epsi20, a_i_1d(ji) + zda_mel ) |
---|
330 | ! adjust thickness |
---|
331 | ht_i_1d(ji) = zvi / a_i_1d(ji) |
---|
332 | ht_s_1d(ji) = zvs / a_i_1d(ji) |
---|
333 | ! retrieve total concentration |
---|
334 | at_i_1d(ji) = a_i_1d(ji) |
---|
335 | END IF |
---|
336 | END DO |
---|
337 | ! |
---|
338 | END SUBROUTINE ice_thd_lam |
---|
339 | |
---|
340 | |
---|
341 | SUBROUTINE ice_thd_1d2d( jl, kn ) |
---|
342 | !!----------------------------------------------------------------------- |
---|
343 | !! *** ROUTINE ice_thd_1d2d *** |
---|
344 | !! |
---|
345 | !! ** Purpose : move arrays from 1d to 2d and the reverse |
---|
346 | !!----------------------------------------------------------------------- |
---|
347 | INTEGER, INTENT(in) :: jl ! ice cat |
---|
348 | INTEGER, INTENT(in) :: kn ! 1= from 2D to 1D ; 2= from 1D to 2D |
---|
349 | ! |
---|
350 | INTEGER :: jk ! dummy loop indices |
---|
351 | !!----------------------------------------------------------------------- |
---|
352 | ! |
---|
353 | SELECT CASE( kn ) |
---|
354 | ! |
---|
355 | CASE( 1 ) ! from 2D to 1D |
---|
356 | ! |
---|
357 | CALL tab_2d_1d( nidx, idxice(1:nidx), at_i_1d(1:nidx), at_i ) |
---|
358 | CALL tab_2d_1d( nidx, idxice(1:nidx), a_i_1d (1:nidx), a_i(:,:,jl) ) |
---|
359 | CALL tab_2d_1d( nidx, idxice(1:nidx), ht_i_1d(1:nidx), ht_i(:,:,jl) ) |
---|
360 | CALL tab_2d_1d( nidx, idxice(1:nidx), ht_s_1d(1:nidx), ht_s(:,:,jl) ) |
---|
361 | CALL tab_2d_1d( nidx, idxice(1:nidx), t_su_1d(1:nidx), t_su(:,:,jl) ) |
---|
362 | CALL tab_2d_1d( nidx, idxice(1:nidx), sm_i_1d(1:nidx), sm_i(:,:,jl) ) |
---|
363 | DO jk = 1, nlay_s |
---|
364 | CALL tab_2d_1d( nidx, idxice(1:nidx), t_s_1d(1:nidx,jk), t_s(:,:,jk,jl) ) |
---|
365 | CALL tab_2d_1d( nidx, idxice(1:nidx), e_s_1d(1:nidx,jk), e_s(:,:,jk,jl) ) |
---|
366 | END DO |
---|
367 | DO jk = 1, nlay_i |
---|
368 | CALL tab_2d_1d( nidx, idxice(1:nidx), t_i_1d(1:nidx,jk), t_i(:,:,jk,jl) ) |
---|
369 | CALL tab_2d_1d( nidx, idxice(1:nidx), e_i_1d(1:nidx,jk), e_i(:,:,jk,jl) ) |
---|
370 | CALL tab_2d_1d( nidx, idxice(1:nidx), s_i_1d(1:nidx,jk), s_i(:,:,jk,jl) ) |
---|
371 | END DO |
---|
372 | ! |
---|
373 | CALL tab_2d_1d( nidx, idxice(1:nidx), qprec_ice_1d(1:nidx), qprec_ice ) |
---|
374 | CALL tab_2d_1d( nidx, idxice(1:nidx), qsr_ice_1d (1:nidx), qsr_ice(:,:,jl) ) |
---|
375 | CALL tab_2d_1d( nidx, idxice(1:nidx), fr1_i0_1d (1:nidx), fr1_i0 ) |
---|
376 | CALL tab_2d_1d( nidx, idxice(1:nidx), fr2_i0_1d (1:nidx), fr2_i0 ) |
---|
377 | CALL tab_2d_1d( nidx, idxice(1:nidx), qns_ice_1d (1:nidx), qns_ice(:,:,jl) ) |
---|
378 | CALL tab_2d_1d( nidx, idxice(1:nidx), ftr_ice_1d (1:nidx), ftr_ice(:,:,jl) ) |
---|
379 | CALL tab_2d_1d( nidx, idxice(1:nidx), evap_ice_1d (1:nidx), evap_ice(:,:,jl) ) |
---|
380 | CALL tab_2d_1d( nidx, idxice(1:nidx), dqns_ice_1d (1:nidx), dqns_ice(:,:,jl) ) |
---|
381 | CALL tab_2d_1d( nidx, idxice(1:nidx), t_bo_1d (1:nidx), t_bo ) |
---|
382 | CALL tab_2d_1d( nidx, idxice(1:nidx), sprecip_1d (1:nidx), sprecip ) |
---|
383 | CALL tab_2d_1d( nidx, idxice(1:nidx), fhtur_1d (1:nidx), fhtur ) |
---|
384 | CALL tab_2d_1d( nidx, idxice(1:nidx), fhld_1d (1:nidx), fhld ) |
---|
385 | ! |
---|
386 | CALL tab_2d_1d( nidx, idxice(1:nidx), wfx_snw_sni_1d(1:nidx), wfx_snw_sni ) |
---|
387 | CALL tab_2d_1d( nidx, idxice(1:nidx), wfx_snw_sum_1d(1:nidx), wfx_snw_sum ) |
---|
388 | CALL tab_2d_1d( nidx, idxice(1:nidx), wfx_sub_1d (1:nidx), wfx_sub ) |
---|
389 | CALL tab_2d_1d( nidx, idxice(1:nidx), wfx_snw_sub_1d(1:nidx), wfx_snw_sub ) |
---|
390 | CALL tab_2d_1d( nidx, idxice(1:nidx), wfx_ice_sub_1d(1:nidx), wfx_ice_sub ) |
---|
391 | CALL tab_2d_1d( nidx, idxice(1:nidx), wfx_err_sub_1d(1:nidx), wfx_err_sub ) |
---|
392 | ! |
---|
393 | CALL tab_2d_1d( nidx, idxice(1:nidx), wfx_bog_1d (1:nidx), wfx_bog ) |
---|
394 | CALL tab_2d_1d( nidx, idxice(1:nidx), wfx_bom_1d (1:nidx), wfx_bom ) |
---|
395 | CALL tab_2d_1d( nidx, idxice(1:nidx), wfx_sum_1d (1:nidx), wfx_sum ) |
---|
396 | CALL tab_2d_1d( nidx, idxice(1:nidx), wfx_sni_1d (1:nidx), wfx_sni ) |
---|
397 | CALL tab_2d_1d( nidx, idxice(1:nidx), wfx_res_1d (1:nidx), wfx_res ) |
---|
398 | CALL tab_2d_1d( nidx, idxice(1:nidx), wfx_spr_1d (1:nidx), wfx_spr ) |
---|
399 | CALL tab_2d_1d( nidx, idxice(1:nidx), wfx_lam_1d (1:nidx), wfx_lam ) |
---|
400 | ! |
---|
401 | CALL tab_2d_1d( nidx, idxice(1:nidx), sfx_bog_1d (1:nidx), sfx_bog ) |
---|
402 | CALL tab_2d_1d( nidx, idxice(1:nidx), sfx_bom_1d (1:nidx), sfx_bom ) |
---|
403 | CALL tab_2d_1d( nidx, idxice(1:nidx), sfx_sum_1d (1:nidx), sfx_sum ) |
---|
404 | CALL tab_2d_1d( nidx, idxice(1:nidx), sfx_sni_1d (1:nidx), sfx_sni ) |
---|
405 | CALL tab_2d_1d( nidx, idxice(1:nidx), sfx_bri_1d (1:nidx), sfx_bri ) |
---|
406 | CALL tab_2d_1d( nidx, idxice(1:nidx), sfx_res_1d (1:nidx), sfx_res ) |
---|
407 | CALL tab_2d_1d( nidx, idxice(1:nidx), sfx_sub_1d (1:nidx), sfx_sub ) |
---|
408 | CALL tab_2d_1d( nidx, idxice(1:nidx), sfx_lam_1d (1:nidx), sfx_lam ) |
---|
409 | ! |
---|
410 | CALL tab_2d_1d( nidx, idxice(1:nidx), hfx_thd_1d (1:nidx), hfx_thd ) |
---|
411 | CALL tab_2d_1d( nidx, idxice(1:nidx), hfx_spr_1d (1:nidx), hfx_spr ) |
---|
412 | CALL tab_2d_1d( nidx, idxice(1:nidx), hfx_sum_1d (1:nidx), hfx_sum ) |
---|
413 | CALL tab_2d_1d( nidx, idxice(1:nidx), hfx_bom_1d (1:nidx), hfx_bom ) |
---|
414 | CALL tab_2d_1d( nidx, idxice(1:nidx), hfx_bog_1d (1:nidx), hfx_bog ) |
---|
415 | CALL tab_2d_1d( nidx, idxice(1:nidx), hfx_dif_1d (1:nidx), hfx_dif ) |
---|
416 | CALL tab_2d_1d( nidx, idxice(1:nidx), hfx_opw_1d (1:nidx), hfx_opw ) |
---|
417 | CALL tab_2d_1d( nidx, idxice(1:nidx), hfx_snw_1d (1:nidx), hfx_snw ) |
---|
418 | CALL tab_2d_1d( nidx, idxice(1:nidx), hfx_sub_1d (1:nidx), hfx_sub ) |
---|
419 | CALL tab_2d_1d( nidx, idxice(1:nidx), hfx_err_1d (1:nidx), hfx_err ) |
---|
420 | CALL tab_2d_1d( nidx, idxice(1:nidx), hfx_res_1d (1:nidx), hfx_res ) |
---|
421 | CALL tab_2d_1d( nidx, idxice(1:nidx), hfx_err_dif_1d(1:nidx), hfx_err_dif ) |
---|
422 | CALL tab_2d_1d( nidx, idxice(1:nidx), hfx_err_rem_1d(1:nidx), hfx_err_rem ) |
---|
423 | CALL tab_2d_1d( nidx, idxice(1:nidx), hfx_out_1d (1:nidx), hfx_out ) |
---|
424 | ! |
---|
425 | ! SIMIP diagnostics |
---|
426 | CALL tab_2d_1d( nidx, idxice(1:nidx), diag_fc_bo_1d(1:nidx), diag_fc_bo ) |
---|
427 | CALL tab_2d_1d( nidx, idxice(1:nidx), diag_fc_su_1d(1:nidx), diag_fc_su ) |
---|
428 | ! ocean surface fields |
---|
429 | CALL tab_2d_1d( nidx, idxice(1:nidx), sst_1d(1:nidx), sst_m ) |
---|
430 | CALL tab_2d_1d( nidx, idxice(1:nidx), sss_1d(1:nidx), sss_m ) |
---|
431 | |
---|
432 | ! --- Change units of e_i, e_s from J/m2 to J/m3 --- ! |
---|
433 | DO jk = 1, nlay_i |
---|
434 | WHERE( ht_i_1d(1:nidx)>0._wp ) e_i_1d(1:nidx,jk) = e_i_1d(1:nidx,jk) / (ht_i_1d(1:nidx) * a_i_1d(1:nidx)) * nlay_i |
---|
435 | ENDDO |
---|
436 | DO jk = 1, nlay_s |
---|
437 | WHERE( ht_s_1d(1:nidx)>0._wp ) e_s_1d(1:nidx,jk) = e_s_1d(1:nidx,jk) / (ht_s_1d(1:nidx) * a_i_1d(1:nidx)) * nlay_s |
---|
438 | ENDDO |
---|
439 | ! |
---|
440 | CASE( 2 ) ! from 1D to 2D |
---|
441 | ! |
---|
442 | ! --- Change units of e_i, e_s from J/m3 to J/m2 --- ! |
---|
443 | DO jk = 1, nlay_i |
---|
444 | e_i_1d(1:nidx,jk) = e_i_1d(1:nidx,jk) * ht_i_1d(1:nidx) * a_i_1d(1:nidx) * r1_nlay_i |
---|
445 | ENDDO |
---|
446 | DO jk = 1, nlay_s |
---|
447 | e_s_1d(1:nidx,jk) = e_s_1d(1:nidx,jk) * ht_s_1d(1:nidx) * a_i_1d(1:nidx) * r1_nlay_s |
---|
448 | ENDDO |
---|
449 | ! |
---|
450 | ! Change thickness to volume |
---|
451 | v_i_1d(1:nidx) = ht_i_1d(1:nidx) * a_i_1d(1:nidx) |
---|
452 | v_s_1d(1:nidx) = ht_s_1d(1:nidx) * a_i_1d(1:nidx) |
---|
453 | smv_i_1d(1:nidx) = sm_i_1d(1:nidx) * v_i_1d(1:nidx) |
---|
454 | |
---|
455 | CALL tab_1d_2d( nidx, idxice(1:nidx), at_i_1d(1:nidx), at_i ) |
---|
456 | CALL tab_1d_2d( nidx, idxice(1:nidx), a_i_1d (1:nidx), a_i(:,:,jl) ) |
---|
457 | CALL tab_1d_2d( nidx, idxice(1:nidx), ht_i_1d(1:nidx), ht_i(:,:,jl) ) |
---|
458 | CALL tab_1d_2d( nidx, idxice(1:nidx), ht_s_1d(1:nidx), ht_s(:,:,jl) ) |
---|
459 | CALL tab_1d_2d( nidx, idxice(1:nidx), t_su_1d(1:nidx), t_su(:,:,jl) ) |
---|
460 | CALL tab_1d_2d( nidx, idxice(1:nidx), sm_i_1d(1:nidx), sm_i(:,:,jl) ) |
---|
461 | DO jk = 1, nlay_s |
---|
462 | CALL tab_1d_2d( nidx, idxice(1:nidx), t_s_1d(1:nidx,jk), t_s(:,:,jk,jl) ) |
---|
463 | CALL tab_1d_2d( nidx, idxice(1:nidx), e_s_1d(1:nidx,jk), e_s(:,:,jk,jl) ) |
---|
464 | END DO |
---|
465 | DO jk = 1, nlay_i |
---|
466 | CALL tab_1d_2d( nidx, idxice(1:nidx), t_i_1d(1:nidx,jk), t_i(:,:,jk,jl) ) |
---|
467 | CALL tab_1d_2d( nidx, idxice(1:nidx), e_i_1d(1:nidx,jk), e_i(:,:,jk,jl) ) |
---|
468 | CALL tab_1d_2d( nidx, idxice(1:nidx), s_i_1d(1:nidx,jk), s_i(:,:,jk,jl) ) |
---|
469 | END DO |
---|
470 | ! |
---|
471 | CALL tab_1d_2d( nidx, idxice(1:nidx), wfx_snw_sni_1d(1:nidx), wfx_snw_sni ) |
---|
472 | CALL tab_1d_2d( nidx, idxice(1:nidx), wfx_snw_sum_1d(1:nidx), wfx_snw_sum ) |
---|
473 | CALL tab_1d_2d( nidx, idxice(1:nidx), wfx_sub_1d (1:nidx), wfx_sub ) |
---|
474 | CALL tab_1d_2d( nidx, idxice(1:nidx), wfx_snw_sub_1d(1:nidx), wfx_snw_sub ) |
---|
475 | CALL tab_1d_2d( nidx, idxice(1:nidx), wfx_ice_sub_1d(1:nidx), wfx_ice_sub ) |
---|
476 | CALL tab_1d_2d( nidx, idxice(1:nidx), wfx_err_sub_1d(1:nidx), wfx_err_sub ) |
---|
477 | ! |
---|
478 | CALL tab_1d_2d( nidx, idxice(1:nidx), wfx_bog_1d (1:nidx), wfx_bog ) |
---|
479 | CALL tab_1d_2d( nidx, idxice(1:nidx), wfx_bom_1d (1:nidx), wfx_bom ) |
---|
480 | CALL tab_1d_2d( nidx, idxice(1:nidx), wfx_sum_1d (1:nidx), wfx_sum ) |
---|
481 | CALL tab_1d_2d( nidx, idxice(1:nidx), wfx_sni_1d (1:nidx), wfx_sni ) |
---|
482 | CALL tab_1d_2d( nidx, idxice(1:nidx), wfx_res_1d (1:nidx), wfx_res ) |
---|
483 | CALL tab_1d_2d( nidx, idxice(1:nidx), wfx_spr_1d (1:nidx), wfx_spr ) |
---|
484 | CALL tab_1d_2d( nidx, idxice(1:nidx), wfx_lam_1d (1:nidx), wfx_lam ) |
---|
485 | ! |
---|
486 | CALL tab_1d_2d( nidx, idxice(1:nidx), sfx_bog_1d (1:nidx), sfx_bog ) |
---|
487 | CALL tab_1d_2d( nidx, idxice(1:nidx), sfx_bom_1d (1:nidx), sfx_bom ) |
---|
488 | CALL tab_1d_2d( nidx, idxice(1:nidx), sfx_sum_1d (1:nidx), sfx_sum ) |
---|
489 | CALL tab_1d_2d( nidx, idxice(1:nidx), sfx_sni_1d (1:nidx), sfx_sni ) |
---|
490 | CALL tab_1d_2d( nidx, idxice(1:nidx), sfx_bri_1d (1:nidx), sfx_bri ) |
---|
491 | CALL tab_1d_2d( nidx, idxice(1:nidx), sfx_res_1d (1:nidx), sfx_res ) |
---|
492 | CALL tab_1d_2d( nidx, idxice(1:nidx), sfx_sub_1d (1:nidx), sfx_sub ) |
---|
493 | CALL tab_1d_2d( nidx, idxice(1:nidx), sfx_lam_1d (1:nidx), sfx_lam ) |
---|
494 | ! |
---|
495 | CALL tab_1d_2d( nidx, idxice(1:nidx), hfx_thd_1d (1:nidx), hfx_thd ) |
---|
496 | CALL tab_1d_2d( nidx, idxice(1:nidx), hfx_spr_1d (1:nidx), hfx_spr ) |
---|
497 | CALL tab_1d_2d( nidx, idxice(1:nidx), hfx_sum_1d (1:nidx), hfx_sum ) |
---|
498 | CALL tab_1d_2d( nidx, idxice(1:nidx), hfx_bom_1d (1:nidx), hfx_bom ) |
---|
499 | CALL tab_1d_2d( nidx, idxice(1:nidx), hfx_bog_1d (1:nidx), hfx_bog ) |
---|
500 | CALL tab_1d_2d( nidx, idxice(1:nidx), hfx_dif_1d (1:nidx), hfx_dif ) |
---|
501 | CALL tab_1d_2d( nidx, idxice(1:nidx), hfx_opw_1d (1:nidx), hfx_opw ) |
---|
502 | CALL tab_1d_2d( nidx, idxice(1:nidx), hfx_snw_1d (1:nidx), hfx_snw ) |
---|
503 | CALL tab_1d_2d( nidx, idxice(1:nidx), hfx_sub_1d (1:nidx), hfx_sub ) |
---|
504 | CALL tab_1d_2d( nidx, idxice(1:nidx), hfx_err_1d (1:nidx), hfx_err ) |
---|
505 | CALL tab_1d_2d( nidx, idxice(1:nidx), hfx_res_1d (1:nidx), hfx_res ) |
---|
506 | CALL tab_1d_2d( nidx, idxice(1:nidx), hfx_err_dif_1d(1:nidx), hfx_err_dif ) |
---|
507 | CALL tab_1d_2d( nidx, idxice(1:nidx), hfx_err_rem_1d(1:nidx), hfx_err_rem ) |
---|
508 | CALL tab_1d_2d( nidx, idxice(1:nidx), hfx_out_1d (1:nidx), hfx_out ) |
---|
509 | ! |
---|
510 | CALL tab_1d_2d( nidx, idxice(1:nidx), qns_ice_1d (1:nidx), qns_ice(:,:,jl) ) |
---|
511 | CALL tab_1d_2d( nidx, idxice(1:nidx), ftr_ice_1d (1:nidx), ftr_ice(:,:,jl) ) |
---|
512 | ! |
---|
513 | ! SIMIP diagnostics |
---|
514 | CALL tab_1d_2d( nidx, idxice(1:nidx), t_si_1d (1:nidx), t_si(:,:,jl) ) |
---|
515 | CALL tab_1d_2d( nidx, idxice(1:nidx), diag_fc_bo_1d(1:nidx), diag_fc_bo ) |
---|
516 | CALL tab_1d_2d( nidx, idxice(1:nidx), diag_fc_su_1d(1:nidx), diag_fc_su ) |
---|
517 | ! extensive variables |
---|
518 | CALL tab_1d_2d( nidx, idxice(1:nidx), v_i_1d (1:nidx), v_i (:,:,jl) ) |
---|
519 | CALL tab_1d_2d( nidx, idxice(1:nidx), v_s_1d (1:nidx), v_s (:,:,jl) ) |
---|
520 | CALL tab_1d_2d( nidx, idxice(1:nidx), smv_i_1d(1:nidx), smv_i(:,:,jl) ) |
---|
521 | END SELECT |
---|
522 | ! |
---|
523 | END SUBROUTINE ice_thd_1d2d |
---|
524 | |
---|
525 | |
---|
526 | SUBROUTINE ice_thd_init |
---|
527 | !!----------------------------------------------------------------------- |
---|
528 | !! *** ROUTINE ice_thd_init *** |
---|
529 | !! |
---|
530 | !! ** Purpose : Physical constants and parameters linked to the ice |
---|
531 | !! thermodynamics |
---|
532 | !! |
---|
533 | !! ** Method : Read the namicethd namelist and check the ice-thermo |
---|
534 | !! parameter values called at the first timestep (nit000) |
---|
535 | !! |
---|
536 | !! ** input : Namelist namicether |
---|
537 | !!------------------------------------------------------------------- |
---|
538 | INTEGER :: ios ! Local integer output status for namelist read |
---|
539 | NAMELIST/namicethd/ rn_kappa_i, nn_ice_thcon, ln_dqnsice, rn_cdsn, & |
---|
540 | & ln_limdH, rn_betas, & |
---|
541 | & ln_limdA, rn_beta, rn_dmin, & |
---|
542 | & ln_limdO, rn_hnewice, ln_frazil, rn_maxfrazb, rn_vfrazb, rn_Cfrazb, rn_himin, & |
---|
543 | & nn_limflx |
---|
544 | !!------------------------------------------------------------------- |
---|
545 | ! |
---|
546 | REWIND( numnam_ice_ref ) ! Namelist namicethd in reference namelist : Ice thermodynamics |
---|
547 | READ ( numnam_ice_ref, namicethd, IOSTAT = ios, ERR = 901) |
---|
548 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicethd in reference namelist', lwp ) |
---|
549 | |
---|
550 | REWIND( numnam_ice_cfg ) ! Namelist namicethd in configuration namelist : Ice thermodynamics |
---|
551 | READ ( numnam_ice_cfg, namicethd, IOSTAT = ios, ERR = 902 ) |
---|
552 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicethd in configuration namelist', lwp ) |
---|
553 | IF(lwm) WRITE ( numoni, namicethd ) |
---|
554 | ! |
---|
555 | ! |
---|
556 | IF(lwp) THEN ! control print |
---|
557 | WRITE(numout,*) 'ice_thd_init : Ice Thermodynamics' |
---|
558 | WRITE(numout,*) '~~~~~~~~~~~~~' |
---|
559 | WRITE(numout,*)' -- icethd_dif --' |
---|
560 | WRITE(numout,*)' extinction radiation parameter in sea ice rn_kappa_i = ', rn_kappa_i |
---|
561 | WRITE(numout,*)' switch for comp. of thermal conductivity in the ice nn_ice_thcon = ', nn_ice_thcon |
---|
562 | WRITE(numout,*)' change the surface non-solar flux with Tsu or not ln_dqnsice = ', ln_dqnsice |
---|
563 | WRITE(numout,*)' thermal conductivity of the snow rn_cdsn = ', rn_cdsn |
---|
564 | WRITE(numout,*)' -- icethd_dh --' |
---|
565 | WRITE(numout,*)' activate ice thick change from top/bot (T) or not (F) ln_limdH = ', ln_limdH |
---|
566 | WRITE(numout,*)' coefficient for ice-lead partition of snowfall rn_betas = ', rn_betas |
---|
567 | WRITE(numout,*)' -- icethd_da --' |
---|
568 | WRITE(numout,*)' activate lateral melting (T) or not (F) ln_limdA = ', ln_limdA |
---|
569 | WRITE(numout,*)' Coef. beta for lateral melting param. rn_beta = ', rn_beta |
---|
570 | WRITE(numout,*)' Minimum floe diameter for lateral melting param. rn_dmin = ', rn_dmin |
---|
571 | WRITE(numout,*)' -- icethd_lac --' |
---|
572 | WRITE(numout,*)' activate ice growth in open-water (T) or not (F) ln_limdO = ', ln_limdO |
---|
573 | WRITE(numout,*)' ice thick. for lateral accretion rn_hnewice = ', rn_hnewice |
---|
574 | WRITE(numout,*)' Frazil ice thickness as a function of wind or not ln_frazil = ', ln_frazil |
---|
575 | WRITE(numout,*)' Maximum proportion of frazil ice collecting at bottom rn_maxfrazb = ', rn_maxfrazb |
---|
576 | WRITE(numout,*)' Thresold relative drift speed for collection of frazil rn_vfrazb = ', rn_vfrazb |
---|
577 | WRITE(numout,*)' Squeezing coefficient for collection of frazil rn_Cfrazb = ', rn_Cfrazb |
---|
578 | WRITE(numout,*)' -- iceitd --' |
---|
579 | WRITE(numout,*)' minimum ice thickness rn_himin = ', rn_himin |
---|
580 | WRITE(numout,*)' -- icestp --' |
---|
581 | WRITE(numout,*)' Multicategory heat flux formulation nn_limflx = ', nn_limflx |
---|
582 | ENDIF |
---|
583 | ! |
---|
584 | IF ( rn_hnewice < rn_himin ) CALL ctl_stop( 'STOP', 'ice_thd_init : rn_hnewice should be >= rn_himin' ) |
---|
585 | ! |
---|
586 | IF(lwp) WRITE(numout,*) |
---|
587 | SELECT CASE( nn_limflx ) ! LIM3 Multi-category heat flux formulation |
---|
588 | CASE ( -1 ) |
---|
589 | IF(lwp) WRITE(numout,*) ' LIM3: use per-category fluxes (nn_limflx = -1) ' |
---|
590 | IF( ln_cpl ) CALL ctl_stop( 'sbc_init : the chosen nn_limflx for LIM3 in coupled mode must be 0 or 2' ) |
---|
591 | CASE ( 0 ) |
---|
592 | IF(lwp) WRITE(numout,*) ' LIM3: use average per-category fluxes (nn_limflx = 0) ' |
---|
593 | CASE ( 1 ) |
---|
594 | IF(lwp) WRITE(numout,*) ' LIM3: use average then redistribute per-category fluxes (nn_limflx = 1) ' |
---|
595 | IF( ln_cpl ) CALL ctl_stop( 'sbc_init : the chosen nn_limflx for LIM3 in coupled mode must be 0 or 2' ) |
---|
596 | CASE ( 2 ) |
---|
597 | IF(lwp) WRITE(numout,*) ' LIM3: Redistribute a single flux over categories (nn_limflx = 2) ' |
---|
598 | IF( .NOT. ln_cpl ) CALL ctl_stop( 'sbc_init : the chosen nn_limflx for LIM3 in forced mode cannot be 2' ) |
---|
599 | CASE DEFAULT |
---|
600 | CALL ctl_stop( 'sbcmod: LIM3 option, nn_limflx, should be between -1 and 2' ) |
---|
601 | END SELECT |
---|
602 | ! |
---|
603 | END SUBROUTINE ice_thd_init |
---|
604 | |
---|
605 | #else |
---|
606 | !!---------------------------------------------------------------------- |
---|
607 | !! Default option Dummy module NO LIM3 sea-ice model |
---|
608 | !!---------------------------------------------------------------------- |
---|
609 | #endif |
---|
610 | |
---|
611 | !!====================================================================== |
---|
612 | END MODULE icethd |
---|