1 | MODULE p4zfechem |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p4zfechem *** |
---|
4 | !! TOP : PISCES Compute iron chemistry and scavenging |
---|
5 | !!====================================================================== |
---|
6 | !! History : 3.5 ! 2012-07 (O. Aumont, A. Tagliabue, C. Ethe) Original code |
---|
7 | !! 3.6 ! 2015-05 (O. Aumont) PISCES quota |
---|
8 | !!---------------------------------------------------------------------- |
---|
9 | #if defined key_pisces || defined key_pisces_quota |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | !! 'key_top' and TOP models |
---|
12 | !! 'key_pisces*' PISCES bio-model |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | !! p4z_fechem : Compute remineralization/scavenging of iron |
---|
15 | !! p4z_fechem_init : Initialisation of parameters for remineralisation |
---|
16 | !! p4z_fechem_alloc : Allocate remineralisation variables |
---|
17 | !!---------------------------------------------------------------------- |
---|
18 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
19 | USE trc ! passive tracers common variables |
---|
20 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
21 | USE p4zopt ! optical model |
---|
22 | USE p4zche ! chemical model |
---|
23 | USE p4zsbc ! Boundary conditions from sediments |
---|
24 | USE prtctl_trc ! print control for debugging |
---|
25 | USE iom ! I/O manager |
---|
26 | |
---|
27 | IMPLICIT NONE |
---|
28 | PRIVATE |
---|
29 | |
---|
30 | PUBLIC p4z_fechem ! called in p4zbio.F90 |
---|
31 | PUBLIC p4z_fechem_init ! called in trcsms_pisces.F90 |
---|
32 | |
---|
33 | !! * Shared module variables |
---|
34 | LOGICAL :: ln_fechem !: boolean for complex iron chemistry following Tagliabue and voelker |
---|
35 | LOGICAL :: ln_ligvar !: boolean for variable ligand concentration following Tagliabue and voelker |
---|
36 | LOGICAL :: ln_fecolloid !: boolean for variable colloidal fraction |
---|
37 | REAL(wp), PUBLIC :: xlam1 !: scavenging rate of Iron |
---|
38 | REAL(wp), PUBLIC :: xlamdust !: scavenging rate of Iron by dust |
---|
39 | REAL(wp), PUBLIC :: ligand !: ligand concentration in the ocean |
---|
40 | REAL(wp), PUBLIC :: kfep !: rate constant for nanoparticle formation |
---|
41 | |
---|
42 | REAL(wp) :: kl1, kl2, kb1, kb2, ks, kpr, spd, con, kth |
---|
43 | |
---|
44 | !!* Substitution |
---|
45 | # include "top_substitute.h90" |
---|
46 | !!---------------------------------------------------------------------- |
---|
47 | !! NEMO/TOP 3.3 , NEMO Consortium (2010) |
---|
48 | !! $Id: p4zrem.F90 3160 2011-11-20 14:27:18Z cetlod $ |
---|
49 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
50 | !!---------------------------------------------------------------------- |
---|
51 | CONTAINS |
---|
52 | |
---|
53 | SUBROUTINE p4z_fechem( kt, jnt ) |
---|
54 | !!--------------------------------------------------------------------- |
---|
55 | !! *** ROUTINE p4z_fechem *** |
---|
56 | !! |
---|
57 | !! ** Purpose : Compute remineralization/scavenging of iron |
---|
58 | !! |
---|
59 | !! ** Method : 2 different chemistry models are available for iron |
---|
60 | !! (1) The simple chemistry model of Aumont and Bopp (2006) |
---|
61 | !! based on one ligand and one inorganic form |
---|
62 | !! (2) The complex chemistry model of Tagliabue and |
---|
63 | !! Voelker (2009) based on 2 ligands, 2 inorganic forms |
---|
64 | !! and one particulate form (ln_fechem) |
---|
65 | !!--------------------------------------------------------------------- |
---|
66 | ! |
---|
67 | INTEGER, INTENT(in) :: kt, jnt ! ocean time step |
---|
68 | ! |
---|
69 | INTEGER :: ji, jj, jk, jic, jn |
---|
70 | REAL(wp) :: zdep, zlam1a, zlam1b, zlamfac |
---|
71 | REAL(wp) :: zkeq, zfeequi, zfesatur, zfecoll, fe3sol, fe3sol1 |
---|
72 | REAL(wp) :: zdenom1, zscave, zaggdfea, zaggdfeb, zcoag |
---|
73 | REAL(wp) :: ztrc, zdust |
---|
74 | #if ! defined key_kriest |
---|
75 | REAL(wp) :: zdenom2 |
---|
76 | #endif |
---|
77 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zTL1, zFe3, ztotlig, precip |
---|
78 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zFeL1, zFeL2, zTL2, zFe2, zFeP |
---|
79 | REAL(wp), POINTER, DIMENSION(:,: ) :: zstrn, zstrn2 |
---|
80 | REAL(wp) :: zzFeL1, zzFeL2, zzFe2, zzFeP, zzFe3, zzstrn2 |
---|
81 | REAL(wp) :: zrum, zcodel, zargu, zlight |
---|
82 | REAL(wp) :: zkox, zkph1, zkph2, zph, zionic, ztligand |
---|
83 | REAL(wp) :: za, zb, zc, zkappa1, zkappa2, za0, za1, za2 |
---|
84 | REAL(wp) :: zxs, zfunc, zp, zq, zd, zr, zphi, zfff, zp3, zq2 |
---|
85 | REAL(wp) :: ztfe, zoxy, zhplus |
---|
86 | REAL(wp) :: zstep |
---|
87 | #if defined key_ligand |
---|
88 | REAL(wp) :: zaggliga, zaggligb |
---|
89 | REAL(wp) :: dissol, zligco |
---|
90 | #endif |
---|
91 | CHARACTER (len=25) :: charout |
---|
92 | !!--------------------------------------------------------------------- |
---|
93 | ! |
---|
94 | IF( nn_timing == 1 ) CALL timing_start('p4z_fechem') |
---|
95 | ! |
---|
96 | ! Allocate temporary workspace |
---|
97 | CALL wrk_alloc( jpi, jpj, jpk, zFe3, zFeL1, zTL1, ztotlig, precip ) |
---|
98 | zFe3 (:,:,:) = 0. |
---|
99 | zFeL1(:,:,:) = 0. |
---|
100 | zTL1 (:,:,:) = 0. |
---|
101 | IF( ln_fechem ) THEN |
---|
102 | CALL wrk_alloc( jpi, jpj, zstrn, zstrn2 ) |
---|
103 | CALL wrk_alloc( jpi, jpj, jpk, zFe2, zFeL2, zTL2, zFeP ) |
---|
104 | zFe2 (:,:,:) = 0. |
---|
105 | zFeL2(:,:,:) = 0. |
---|
106 | zTL2 (:,:,:) = 0. |
---|
107 | zFeP (:,:,:) = 0. |
---|
108 | ENDIF |
---|
109 | |
---|
110 | ! Total ligand concentration : Ligands can be chosen to be constant or variable |
---|
111 | ! Parameterization from Tagliabue and Voelker (2011) |
---|
112 | ! ------------------------------------------------- |
---|
113 | IF( ln_ligvar ) THEN |
---|
114 | ztotlig(:,:,:) = 0.09 * trb(:,:,:,jpdoc) * 1E6 + ligand * 1E9 |
---|
115 | ztotlig(:,:,:) = MIN( ztotlig(:,:,:), 10. ) |
---|
116 | ELSE |
---|
117 | #if defined key_ligand |
---|
118 | ztotlig(:,:,:) = trb(:,:,:,jplgw) * 1E9 |
---|
119 | #else |
---|
120 | ztotlig(:,:,:) = ligand * 1E9 |
---|
121 | #endif |
---|
122 | ENDIF |
---|
123 | |
---|
124 | IF( ln_fechem ) THEN |
---|
125 | |
---|
126 | ! compute the day length depending on latitude and the day |
---|
127 | zrum = REAL( nday_year - 80, wp ) / REAL( nyear_len(1), wp ) |
---|
128 | zcodel = ASIN( SIN( zrum * rpi * 2._wp ) * SIN( rad * 23.5_wp ) ) |
---|
129 | |
---|
130 | ! day length in hours |
---|
131 | zstrn(:,:) = 0. |
---|
132 | DO jj = 1, jpj |
---|
133 | DO ji = 1, jpi |
---|
134 | zargu = TAN( zcodel ) * TAN( gphit(ji,jj) * rad ) |
---|
135 | zargu = MAX( -1., MIN( 1., zargu ) ) |
---|
136 | zstrn(ji,jj) = MAX( 0.0, 24. - 2. * ACOS( zargu ) / rad / 15. ) |
---|
137 | END DO |
---|
138 | END DO |
---|
139 | |
---|
140 | ! Maximum light intensity |
---|
141 | zstrn2(:,:) = zstrn(:,:) / 24. |
---|
142 | WHERE( zstrn(:,:) < 1.e0 ) zstrn(:,:) = 24. |
---|
143 | zstrn(:,:) = 24. / zstrn(:,:) |
---|
144 | |
---|
145 | ! ------------------------------------------------------------ |
---|
146 | ! NEW FE CHEMISTRY ROUTINE from Tagliabue and Volker (2009) |
---|
147 | ! This model is based on two ligands, Fe2+, Fe3+ and Fep |
---|
148 | ! Chemistry is supposed to be fast enough to be at equilibrium |
---|
149 | ! ------------------------------------------------------------ |
---|
150 | DO jn = 1, 2 |
---|
151 | !CDIR NOVERRCHK |
---|
152 | DO jk = 1, jpkm1 |
---|
153 | !CDIR NOVERRCHK |
---|
154 | DO jj = 1, jpj |
---|
155 | !CDIR NOVERRCHK |
---|
156 | DO ji = 1, jpi |
---|
157 | zlight = etot(ji,jj,jk) * zstrn(ji,jj) * float(2-jn) |
---|
158 | zzstrn2 = zstrn2(ji,jj) * float(2-jn) + (1. - zstrn2(ji,jj) ) * float(jn-1) |
---|
159 | ! Calculate ligand concentrations : assume 2/3rd of excess goes to |
---|
160 | ! strong ligands (L1) and 1/3rd to weak ligands (L2) |
---|
161 | ztligand = ztotlig(ji,jj,jk) - ligand * 1E9 |
---|
162 | zTL1(ji,jj,jk) = 0.000001 + 0.67 * ztligand |
---|
163 | zTL2(ji,jj,jk) = ligand * 1E9 - 0.000001 + 0.33 * ztligand |
---|
164 | ! ionic strength from Millero et al. 1987 |
---|
165 | zph = -LOG10( MAX( hi(ji,jj,jk), rtrn) ) |
---|
166 | zoxy = trb(ji,jj,jk,jpoxy) |
---|
167 | ! Fe2+ oxydation rate from Santana-Casiano et al. (2005) |
---|
168 | zkox = 35.407 - 6.7109 * zph + 0.5342 * zph * zph - 5362.6 / ( tempis(ji,jj,jk) + 273.15 ) & |
---|
169 | & - 0.04406 * SQRT( salinprac(ji,jj,jk) ) - 0.002847 * salinprac(ji,jj,jk) |
---|
170 | zkox = ( 10.** zkox ) * spd |
---|
171 | zkox = zkox * MAX( 1.e-6, zoxy) / ( chemo2(ji,jj,jk) + rtrn ) |
---|
172 | ! PHOTOREDUCTION of complexed iron : Tagliabue and Arrigo (2006) |
---|
173 | zkph2 = MAX( 0., 15. * zlight / ( zlight + 2. ) ) * (1. - fr_i(ji,jj)) |
---|
174 | zkph1 = zkph2 / 5. |
---|
175 | ! pass the dfe concentration from PISCES |
---|
176 | ztfe = trb(ji,jj,jk,jpfer) * 1e9 |
---|
177 | ! ---------------------------------------------------------- |
---|
178 | ! ANALYTICAL SOLUTION OF ROOTS OF THE FE3+ EQUATION |
---|
179 | ! As shown in Tagliabue and Voelker (2009), Fe3+ is the root of a 3rd order polynom. |
---|
180 | ! ---------------------------------------------------------- |
---|
181 | ! calculate some parameters |
---|
182 | za = 1 + ks / kpr |
---|
183 | zb = 1 + ( zkph1 + kth ) / ( zkox + rtrn ) |
---|
184 | zc = 1 + zkph2 / ( zkox + rtrn ) |
---|
185 | zkappa1 = ( kb1 + zkph1 + kth ) / kl1 |
---|
186 | zkappa2 = ( kb2 + zkph2 ) / kl2 |
---|
187 | za2 = zTL1(ji,jj,jk) * zb / za + zTL2(ji,jj,jk) * zc / za + zkappa1 + zkappa2 - ztfe / za |
---|
188 | za1 = zkappa2 * zTL1(ji,jj,jk) * zb / za + zkappa1 * zTL2(ji,jj,jk) * zc / za & |
---|
189 | & + zkappa1 * zkappa2 - ( zkappa1 + zkappa2 ) * ztfe / za |
---|
190 | za0 = -zkappa1 * zkappa2 * ztfe / za |
---|
191 | zp = za1 - za2 * za2 / 3. |
---|
192 | zq = za2 * za2 * za2 * 2. / 27. - za2 * za1 / 3. + za0 |
---|
193 | zp3 = zp / 3. |
---|
194 | zq2 = zq / 2. |
---|
195 | zd = zp3 * zp3 * zp3 + zq2 * zq2 |
---|
196 | zr = zq / ABS( zq ) * SQRT( ABS( zp ) / 3. ) |
---|
197 | ! compute the roots |
---|
198 | IF( zp > 0.) THEN |
---|
199 | ! zphi = ASINH( zq / ( 2. * zr * zr * zr ) ) |
---|
200 | zphi = zq / ( 2. * zr * zr * zr ) |
---|
201 | zphi = LOG( zphi + SQRT( zphi * zphi + 1 ) ) ! asinh(x) = log(x + sqrt(x^2+1)) |
---|
202 | zxs = -2. * zr * SINH( zphi / 3. ) - za1 / 3. |
---|
203 | ELSE |
---|
204 | IF( zd > 0. ) THEN |
---|
205 | zfff = MAX( 1., zq / ( 2. * zr * zr * zr ) ) |
---|
206 | ! zphi = ACOSH( zfff ) |
---|
207 | zphi = LOG( zfff + SQRT( zfff * zfff - 1 ) ) ! acosh(x) = log(x + sqrt(x^2-1)) |
---|
208 | zxs = -2. * zr * COSH( zphi / 3. ) - za1 / 3. |
---|
209 | ELSE |
---|
210 | zfff = MIN( 1., zq / ( 2. * zr * zr * zr ) ) |
---|
211 | zphi = ACOS( zfff ) |
---|
212 | DO jic = 1, 3 |
---|
213 | zfunc = -2 * zr * COS( zphi / 3. + 2. * FLOAT( jic - 1 ) * rpi / 3. ) - za2 / 3. |
---|
214 | IF( zfunc > 0. .AND. zfunc <= ztfe) zxs = zfunc |
---|
215 | END DO |
---|
216 | ENDIF |
---|
217 | ENDIF |
---|
218 | ! solve for the other Fe species |
---|
219 | zzFe3 = MAX( 0., zxs ) |
---|
220 | zzFep = MAX( 0., ( ks * zzFe3 / kpr ) ) |
---|
221 | zkappa2 = ( kb2 + zkph2 ) / kl2 |
---|
222 | zzFeL2 = MAX( 0., ( zzFe3 * zTL2(ji,jj,jk) ) / ( zkappa2 + zzFe3 ) ) |
---|
223 | zzFeL1 = MAX( 0., ( ztfe / zb - za / zb * zzFe3 - zc / zb * zzFeL2 ) ) |
---|
224 | zzFe2 = MAX( 0., ( ( zkph1 * zzFeL1 + zkph2 * zzFeL2 ) / zkox ) ) |
---|
225 | zFe3(ji,jj,jk) = zFe3(ji,jj,jk) + zzFe3 * zzstrn2 |
---|
226 | zFe2(ji,jj,jk) = zFe2(ji,jj,jk) + zzFe2 * zzstrn2 |
---|
227 | zFeL2(ji,jj,jk) = zFeL2(ji,jj,jk) + zzFeL2 * zzstrn2 |
---|
228 | zFeL1(ji,jj,jk) = zFeL1(ji,jj,jk) + zzFeL1 * zzstrn2 |
---|
229 | zFeP(ji,jj,jk) = zFeP(ji,jj,jk) + zzFeP * zzstrn2 |
---|
230 | END DO |
---|
231 | END DO |
---|
232 | END DO |
---|
233 | END DO |
---|
234 | ELSE |
---|
235 | ! ------------------------------------------------------------ |
---|
236 | ! OLD FE CHEMISTRY ROUTINE from Aumont and Bopp (2006) |
---|
237 | ! This model is based on one ligand and Fe' |
---|
238 | ! Chemistry is supposed to be fast enough to be at equilibrium |
---|
239 | ! ------------------------------------------------------------ |
---|
240 | !CDIR NOVERRCHK |
---|
241 | DO jk = 1, jpkm1 |
---|
242 | !CDIR NOVERRCHK |
---|
243 | DO jj = 1, jpj |
---|
244 | !CDIR NOVERRCHK |
---|
245 | DO ji = 1, jpi |
---|
246 | zTL1(ji,jj,jk) = ztotlig(ji,jj,jk) |
---|
247 | zkeq = fekeq(ji,jj,jk) |
---|
248 | zfesatur = zTL1(ji,jj,jk) * 1E-9 |
---|
249 | ztfe = trb(ji,jj,jk,jpfer) |
---|
250 | ! Fe' is the root of a 2nd order polynom |
---|
251 | zFe3 (ji,jj,jk) = ( -( 1. + zfesatur * zkeq - zkeq * ztfe ) & |
---|
252 | & + SQRT( ( 1. + zfesatur * zkeq - zkeq * ztfe )**2 & |
---|
253 | & + 4. * ztfe * zkeq) ) / ( 2. * zkeq ) |
---|
254 | zFe3 (ji,jj,jk) = zFe3(ji,jj,jk) * 1E9 |
---|
255 | zFeL1(ji,jj,jk) = MAX( 0., trb(ji,jj,jk,jpfer) * 1E9 - zFe3(ji,jj,jk) ) |
---|
256 | END DO |
---|
257 | END DO |
---|
258 | END DO |
---|
259 | ! |
---|
260 | ENDIF |
---|
261 | |
---|
262 | zdust = 0. ! if no dust available |
---|
263 | !CDIR NOVERRCHK |
---|
264 | DO jk = 1, jpkm1 |
---|
265 | !CDIR NOVERRCHK |
---|
266 | DO jj = 1, jpj |
---|
267 | !CDIR NOVERRCHK |
---|
268 | DO ji = 1, jpi |
---|
269 | zstep = xstep |
---|
270 | # if defined key_degrad |
---|
271 | zstep = zstep * facvol(ji,jj,jk) |
---|
272 | # endif |
---|
273 | ! Scavenging rate of iron. This scavenging rate depends on the load of particles of sea water. |
---|
274 | ! This parameterization assumes a simple second order kinetics (k[Particles][Fe]). |
---|
275 | ! Scavenging onto dust is also included as evidenced from the DUNE experiments. |
---|
276 | ! -------------------------------------------------------------------------------------- |
---|
277 | IF( ln_fechem ) THEN |
---|
278 | zfeequi = ( zFe3(ji,jj,jk) + zFe2(ji,jj,jk) + zFeP(ji,jj,jk) ) * 1E-9 |
---|
279 | zfecoll = ( 0.3 * zFeL1(ji,jj,jk) + 0.5 * zFeL2(ji,jj,jk) ) * 1E-9 |
---|
280 | ELSE |
---|
281 | zfeequi = zFe3(ji,jj,jk) * 1E-9 |
---|
282 | IF (ln_fecolloid) THEN |
---|
283 | zhplus = max( rtrn, hi(ji,jj,jk) ) |
---|
284 | fe3sol = fesol(ji,jj,jk,1) * ( zhplus**3 + fesol(ji,jj,jk,2) * zhplus**2 & |
---|
285 | & + fesol(ji,jj,jk,3) * zhplus + fesol(ji,jj,jk,4) & |
---|
286 | & + fesol(ji,jj,jk,5) / zhplus ) |
---|
287 | zfecoll = max( ( 0.1 * zFeL1(ji,jj,jk) * 1E-9 ), ( zFeL1(ji,jj,jk) * 1E-9 -fe3sol ) ) |
---|
288 | #if defined key_ligand |
---|
289 | zligco = max( ( 0.1 * trn(ji,jj,jk,jplgw) ), ( trn(ji,jj,jk,jplgw) - fe3sol ) ) |
---|
290 | #endif |
---|
291 | ELSE |
---|
292 | zfecoll = 0.5 * zFeL1(ji,jj,jk) * 1E-9 |
---|
293 | #if defined key_ligand |
---|
294 | zligco = 0.5 * trn(ji,jj,jk,jplgw) |
---|
295 | #endif |
---|
296 | fe3sol = 0. |
---|
297 | ENDIF |
---|
298 | ENDIF |
---|
299 | #if defined key_kriest |
---|
300 | ztrc = ( trb(ji,jj,jk,jppoc) + trb(ji,jj,jk,jpcal) + trb(ji,jj,jk,jpgsi) ) * 1.e6 |
---|
301 | #else |
---|
302 | ztrc = ( trb(ji,jj,jk,jppoc) + trb(ji,jj,jk,jpgoc) + trb(ji,jj,jk,jpcal) + trb(ji,jj,jk,jpgsi) ) * 1.e6 |
---|
303 | #endif |
---|
304 | IF( ln_dust ) zdust = dust(ji,jj) / ( wdust / rday ) * tmask(ji,jj,jk) ! dust in kg/m2/s |
---|
305 | zlam1b = 3.e-5 + xlamdust * zdust + xlam1 * ztrc |
---|
306 | zscave = zfeequi * zlam1b * zstep |
---|
307 | |
---|
308 | ! Compute the different ratios for scavenging of iron |
---|
309 | ! to later allocate scavenged iron to the different organic pools |
---|
310 | ! --------------------------------------------------------- |
---|
311 | zdenom1 = xlam1 * trb(ji,jj,jk,jppoc) / zlam1b |
---|
312 | #if ! defined key_kriest |
---|
313 | zdenom2 = xlam1 * trb(ji,jj,jk,jpgoc) / zlam1b |
---|
314 | #endif |
---|
315 | |
---|
316 | ! Increased scavenging for very high iron concentrations found near the coasts |
---|
317 | ! due to increased lithogenic particles and let say it is unknown processes (precipitation, ...) |
---|
318 | ! ----------------------------------------------------------- |
---|
319 | zlamfac = MAX( 0.e0, ( gphit(ji,jj) + 55.) / 30. ) |
---|
320 | zlamfac = MIN( 1. , zlamfac ) |
---|
321 | zdep = MIN( 1., 1000. / fsdept(ji,jj,jk) ) |
---|
322 | zlam1b = xlam1 * MAX( 0.e0, ( trb(ji,jj,jk,jpfer) * 1.e9 - ztotlig(ji,jj,jk) ) ) |
---|
323 | zcoag = zfeequi * zlam1b * zstep + 1E-4 * ( 1. - zlamfac ) * zdep * zstep * trb(ji,jj,jk,jpfer) |
---|
324 | |
---|
325 | ! Compute the coagulation of colloidal iron. This parameterization |
---|
326 | ! could be thought as an equivalent of colloidal pumping. |
---|
327 | ! It requires certainly some more work as it is very poorly constrained. |
---|
328 | ! ---------------------------------------------------------------- |
---|
329 | zlam1a = ( 0.369 * 0.3 * trb(ji,jj,jk,jpdoc) + 102.4 * trb(ji,jj,jk,jppoc) ) * xdiss(ji,jj,jk) & |
---|
330 | & + ( 114. * 0.3 * trb(ji,jj,jk,jpdoc) ) |
---|
331 | zaggdfea = zlam1a * zstep * zfecoll |
---|
332 | ! |
---|
333 | #if defined key_kriest |
---|
334 | zaggdfeb = 0. |
---|
335 | #else |
---|
336 | zlam1b = 3.53E3 * trb(ji,jj,jk,jpgoc) * xdiss(ji,jj,jk) |
---|
337 | zaggdfeb = zlam1b * zstep * zfecoll |
---|
338 | #endif |
---|
339 | ! precipitation of Fe3+, creation of nanoparticles |
---|
340 | precip(ji,jj,jk) = max( 0., (zfeequi - fe3sol) ) * kfep * zstep |
---|
341 | ! |
---|
342 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - zscave - zaggdfea - zaggdfeb & |
---|
343 | & - zcoag - precip(ji,jj,jk) |
---|
344 | tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + zscave * zdenom1 + zaggdfea |
---|
345 | #if ! defined key_kriest |
---|
346 | tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) + zscave * zdenom2 + zaggdfeb |
---|
347 | #endif |
---|
348 | #if defined key_ligand |
---|
349 | zaggliga = zlam1a * zstep * zligco |
---|
350 | # if defined key_kriest |
---|
351 | zaggligb = 0. |
---|
352 | # else |
---|
353 | zaggligb = zlam1b * zstep * zligco |
---|
354 | # endif |
---|
355 | tra(ji,jj,jk,jpfep) = tra(ji,jj,jk,jpfep) + precip(ji,jj,jk) |
---|
356 | tra(ji,jj,jk,jplgw) = tra(ji,jj,jk,jplgw) - zaggliga - zaggligb |
---|
357 | #endif |
---|
358 | END DO |
---|
359 | END DO |
---|
360 | END DO |
---|
361 | ! |
---|
362 | ! Define the bioavailable fraction of iron |
---|
363 | ! ---------------------------------------- |
---|
364 | IF( ln_fechem ) THEN |
---|
365 | biron(:,:,:) = MAX( 0., trb(:,:,:,jpfer) - zFeP(:,:,:) * 1E-9 ) |
---|
366 | ELSE |
---|
367 | biron(:,:,:) = trb(:,:,:,jpfer) |
---|
368 | ENDIF |
---|
369 | |
---|
370 | #if defined key_ligand |
---|
371 | IF (.NOT. ln_fechem) THEN |
---|
372 | plig(:,:,:) = MAX( 0., ( ( zFeL1(:,:,:) * 1E-9 ) / ( trn(:,:,:,jpfer) +rtrn ) ) ) |
---|
373 | plig(:,:,:) = max(0. , plig(:,:,:) ) |
---|
374 | ENDIF |
---|
375 | #endif |
---|
376 | |
---|
377 | ! Output of some diagnostics variables |
---|
378 | ! --------------------------------- |
---|
379 | IF( ln_diatrc .AND. lk_iomput ) THEN |
---|
380 | IF( jnt == nrdttrc ) THEN |
---|
381 | CALL iom_put("Fe3" , zFe3 (:,:,:) * tmask(:,:,:) ) ! Fe3+ |
---|
382 | CALL iom_put("FeL1" , zFeL1 (:,:,:) * tmask(:,:,:) ) ! FeL1 |
---|
383 | CALL iom_put("TL1" , zTL1 (:,:,:) * tmask(:,:,:) ) ! TL1 |
---|
384 | CALL iom_put("Totlig" , ztotlig(:,:,:) * tmask(:,:,:) ) ! TL |
---|
385 | CALL iom_put("Biron" , biron (:,:,:) * 1e9 * tmask(:,:,:) ) ! biron |
---|
386 | IF( ln_fechem ) THEN |
---|
387 | CALL iom_put("Fe2" , zFe2 (:,:,:) * tmask(:,:,:) ) ! Fe2+ |
---|
388 | CALL iom_put("FeL2", zFeL2 (:,:,:) * tmask(:,:,:) ) ! FeL2 |
---|
389 | CALL iom_put("FeP" , zFeP (:,:,:) * tmask(:,:,:) ) ! FeP |
---|
390 | CALL iom_put("TL2" , zTL2 (:,:,:) * tmask(:,:,:) ) ! TL2 |
---|
391 | ENDIF |
---|
392 | ENDIF |
---|
393 | ENDIF |
---|
394 | |
---|
395 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
396 | WRITE(charout, FMT="('fechem')") |
---|
397 | CALL prt_ctl_trc_info(charout) |
---|
398 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
399 | ENDIF |
---|
400 | ! |
---|
401 | CALL wrk_dealloc( jpi, jpj, jpk, zFe3, zFeL1, zTL1, ztotlig, precip ) |
---|
402 | IF( ln_fechem ) THEN |
---|
403 | CALL wrk_dealloc( jpi, jpj, zstrn, zstrn2 ) |
---|
404 | CALL wrk_dealloc( jpi, jpj, jpk, zFe2, zFeL2, zTL2, zFeP ) |
---|
405 | ENDIF |
---|
406 | ! |
---|
407 | IF( nn_timing == 1 ) CALL timing_stop('p4z_fechem') |
---|
408 | ! |
---|
409 | END SUBROUTINE p4z_fechem |
---|
410 | |
---|
411 | |
---|
412 | SUBROUTINE p4z_fechem_init |
---|
413 | !!---------------------------------------------------------------------- |
---|
414 | !! *** ROUTINE p4z_fechem_init *** |
---|
415 | !! |
---|
416 | !! ** Purpose : Initialization of iron chemistry parameters |
---|
417 | !! |
---|
418 | !! ** Method : Read the nampisfer namelist and check the parameters |
---|
419 | !! called at the first timestep |
---|
420 | !! |
---|
421 | !! ** input : Namelist nampisfer |
---|
422 | !! |
---|
423 | !!---------------------------------------------------------------------- |
---|
424 | NAMELIST/nampisfer/ ln_fechem, ln_ligvar, ln_fecolloid, xlam1, xlamdust, ligand, kfep |
---|
425 | INTEGER :: ios ! Local integer output status for namelist read |
---|
426 | |
---|
427 | REWIND( numnatp_ref ) ! Namelist nampisfer in reference namelist : Pisces iron chemistry |
---|
428 | READ ( numnatp_ref, nampisfer, IOSTAT = ios, ERR = 901) |
---|
429 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisfer in reference namelist', lwp ) |
---|
430 | |
---|
431 | REWIND( numnatp_cfg ) ! Namelist nampisfer in configuration namelist : Pisces iron chemistry |
---|
432 | READ ( numnatp_cfg, nampisfer, IOSTAT = ios, ERR = 902 ) |
---|
433 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisfer in configuration namelist', lwp ) |
---|
434 | IF(lwm) WRITE ( numonp, nampisfer ) |
---|
435 | |
---|
436 | IF(lwp) THEN ! control print |
---|
437 | WRITE(numout,*) ' ' |
---|
438 | WRITE(numout,*) ' Namelist parameters for Iron chemistry, nampisfer' |
---|
439 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
440 | WRITE(numout,*) ' enable complex iron chemistry scheme ln_fechem =', ln_fechem |
---|
441 | WRITE(numout,*) ' variable concentration of ligand ln_ligvar =', ln_ligvar |
---|
442 | WRITE(numout,*) ' Variable colloidal fraction of Fe3+ ln_fecolloid =', ln_fecolloid |
---|
443 | WRITE(numout,*) ' scavenging rate of Iron xlam1 =', xlam1 |
---|
444 | WRITE(numout,*) ' scavenging rate of Iron by dust xlamdust =', xlamdust |
---|
445 | WRITE(numout,*) ' ligand concentration in the ocean ligand =', ligand |
---|
446 | WRITE(numout,*) ' rate constant for nanoparticle formation kfep =', kfep |
---|
447 | ENDIF |
---|
448 | ! |
---|
449 | IF( ln_fechem ) THEN |
---|
450 | ! initialization of some constants used by the complexe chemistry scheme |
---|
451 | ! ---------------------------------------------------------------------- |
---|
452 | spd = 3600. * 24. |
---|
453 | con = 1.E9 |
---|
454 | ! LIGAND KINETICS (values from Witter et al. 2000) |
---|
455 | ! Weak (L2) ligands |
---|
456 | ! Phaeophytin |
---|
457 | kl2 = 12.2E5 * spd / con |
---|
458 | kb2 = 12.3E-6 * spd |
---|
459 | ! Strong (L1) ligands |
---|
460 | ! Saccharides |
---|
461 | ! kl1 = 12.2E5 * spd / con |
---|
462 | ! kb1 = 12.3E-6 * spd |
---|
463 | ! DFOB- |
---|
464 | kl1 = 19.6e5 * spd / con |
---|
465 | kb1 = 1.5e-6 * spd |
---|
466 | ! pcp and remin of Fe3p |
---|
467 | ks = 0.075 |
---|
468 | kpr = 0.05 |
---|
469 | ! thermal reduction of Fe3 |
---|
470 | kth = 0.0048 * 24. |
---|
471 | ! |
---|
472 | ENDIF |
---|
473 | ! |
---|
474 | END SUBROUTINE p4z_fechem_init |
---|
475 | |
---|
476 | #else |
---|
477 | !!====================================================================== |
---|
478 | !! Dummy module : No PISCES bio-model |
---|
479 | !!====================================================================== |
---|
480 | CONTAINS |
---|
481 | SUBROUTINE p4z_fechem ! Empty routine |
---|
482 | END SUBROUTINE p4z_fechem |
---|
483 | #endif |
---|
484 | |
---|
485 | !!====================================================================== |
---|
486 | END MODULE p4zfechem |
---|