1 | MODULE p4zprod |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p4zprod *** |
---|
4 | !! TOP : Growth Rate of the two phytoplanktons groups |
---|
5 | !!====================================================================== |
---|
6 | !! History : 1.0 ! 2004 (O. Aumont) Original code |
---|
7 | !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 |
---|
8 | !! 3.4 ! 2011-05 (O. Aumont, C. Ethe) New parameterization of light limitation |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | #if defined key_pisces |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! 'key_pisces' PISCES bio-model |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | !! p4z_prod : Compute the growth Rate of the two phytoplanktons groups |
---|
15 | !! p4z_prod_init : Initialization of the parameters for growth |
---|
16 | !! p4z_prod_alloc : Allocate variables for growth |
---|
17 | !!---------------------------------------------------------------------- |
---|
18 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
19 | USE trc ! passive tracers common variables |
---|
20 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
21 | USE p4zopt ! optical model |
---|
22 | USE p4zlim ! Co-limitations of differents nutrients |
---|
23 | USE prtctl_trc ! print control for debugging |
---|
24 | USE iom ! I/O manager |
---|
25 | |
---|
26 | IMPLICIT NONE |
---|
27 | PRIVATE |
---|
28 | |
---|
29 | PUBLIC p4z_prod ! called in p4zbio.F90 |
---|
30 | PUBLIC p4z_prod_init ! called in trcsms_pisces.F90 |
---|
31 | PUBLIC p4z_prod_alloc |
---|
32 | |
---|
33 | !! * Shared module variables |
---|
34 | LOGICAL , PUBLIC :: ln_newprod !: |
---|
35 | REAL(wp), PUBLIC :: pislopen !: |
---|
36 | REAL(wp), PUBLIC :: pisloped !: |
---|
37 | REAL(wp), PUBLIC :: xadap !: |
---|
38 | REAL(wp), PUBLIC :: excretn !: |
---|
39 | REAL(wp), PUBLIC :: excretd !: |
---|
40 | REAL(wp), PUBLIC :: bresp !: |
---|
41 | REAL(wp), PUBLIC :: chlcnm !: |
---|
42 | REAL(wp), PUBLIC :: chlcdm !: |
---|
43 | REAL(wp), PUBLIC :: chlcmin !: |
---|
44 | REAL(wp), PUBLIC :: fecnm !: |
---|
45 | REAL(wp), PUBLIC :: fecdm !: |
---|
46 | REAL(wp), PUBLIC :: grosip !: |
---|
47 | |
---|
48 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: prmax !: optimal production = f(temperature) |
---|
49 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: quotan !: proxy of N quota in Nanophyto |
---|
50 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: quotad !: proxy of N quota in diatomee |
---|
51 | |
---|
52 | REAL(wp) :: r1_rday !: 1 / rday |
---|
53 | REAL(wp) :: texcretn !: 1 - excretn |
---|
54 | REAL(wp) :: texcretd !: 1 - excretd |
---|
55 | |
---|
56 | |
---|
57 | !!* Substitution |
---|
58 | # include "top_substitute.h90" |
---|
59 | !!---------------------------------------------------------------------- |
---|
60 | !! NEMO/TOP 3.3 , NEMO Consortium (2010) |
---|
61 | !! $Id: p4zprod.F90 3160 2011-11-20 14:27:18Z cetlod $ |
---|
62 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
63 | !!---------------------------------------------------------------------- |
---|
64 | CONTAINS |
---|
65 | |
---|
66 | SUBROUTINE p4z_prod( kt , knt ) |
---|
67 | !!--------------------------------------------------------------------- |
---|
68 | !! *** ROUTINE p4z_prod *** |
---|
69 | !! |
---|
70 | !! ** Purpose : Compute the phytoplankton production depending on |
---|
71 | !! light, temperature and nutrient availability |
---|
72 | !! |
---|
73 | !! ** Method : - ??? |
---|
74 | !!--------------------------------------------------------------------- |
---|
75 | ! |
---|
76 | INTEGER, INTENT(in) :: kt, knt |
---|
77 | ! |
---|
78 | INTEGER :: ji, jj, jk |
---|
79 | REAL(wp) :: zsilfac, znanotot, zdiattot, zconctemp, zconctemp2 |
---|
80 | REAL(wp) :: zratio, zmax, zsilim, ztn, zadap, zlim, zsilfac2, zsiborn |
---|
81 | REAL(wp) :: zprod, zproreg, zproreg2, zprochln, zprochld |
---|
82 | REAL(wp) :: zmaxday, zdocprod, zpislopen, zpisloped |
---|
83 | REAL(wp) :: zmxltst, zmxlday |
---|
84 | REAL(wp) :: zrum, zcodel, zargu, zval, zfeup, chlcnm_n, chlcdm_n |
---|
85 | REAL(wp) :: zfact |
---|
86 | CHARACTER (len=25) :: charout |
---|
87 | REAL(wp), POINTER, DIMENSION(:,: ) :: zstrn, zw2d, zmixnano, zmixdiat |
---|
88 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zpislopeadn, zpislopeadd, zprdia, zprbio, zprdch, zprnch, zysopt, zw3d |
---|
89 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zprorcan, zprorcad, zprofed, zprofen, zpronewn, zpronewd |
---|
90 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zmxl_fac, zmxl_chl |
---|
91 | !!--------------------------------------------------------------------- |
---|
92 | ! |
---|
93 | IF( nn_timing == 1 ) CALL timing_start('p4z_prod') |
---|
94 | ! |
---|
95 | ! Allocate temporary workspace |
---|
96 | CALL wrk_alloc( jpi, jpj, zmixnano, zmixdiat, zstrn ) |
---|
97 | CALL wrk_alloc( jpi, jpj, jpk, zpislopeadn, zpislopeadd, zprdia, zprbio, zprdch, zprnch, zysopt ) |
---|
98 | CALL wrk_alloc( jpi, jpj, jpk, zmxl_fac, zmxl_chl ) |
---|
99 | CALL wrk_alloc( jpi, jpj, jpk, zprorcan, zprorcad, zprofed, zprofen, zpronewn, zpronewd ) |
---|
100 | ! |
---|
101 | zprorcan(:,:,:) = 0._wp ; zprorcad(:,:,:) = 0._wp ; zprofed (:,:,:) = 0._wp |
---|
102 | zprofen (:,:,:) = 0._wp ; zysopt (:,:,:) = 0._wp |
---|
103 | zpronewn(:,:,:) = 0._wp ; zpronewd(:,:,:) = 0._wp ; zprdia (:,:,:) = 0._wp |
---|
104 | zprbio (:,:,:) = 0._wp ; zprdch (:,:,:) = 0._wp ; zprnch (:,:,:) = 0._wp |
---|
105 | |
---|
106 | ! Computation of the optimal production |
---|
107 | prmax(:,:,:) = 0.8_wp * r1_rday * tgfunc(:,:,:) |
---|
108 | IF( lk_degrad ) prmax(:,:,:) = prmax(:,:,:) * facvol(:,:,:) |
---|
109 | |
---|
110 | ! compute the day length depending on latitude and the day |
---|
111 | zrum = REAL( nday_year - 80, wp ) / REAL( nyear_len(1), wp ) |
---|
112 | zcodel = ASIN( SIN( zrum * rpi * 2._wp ) * SIN( rad * 23.5_wp ) ) |
---|
113 | |
---|
114 | ! day length in hours |
---|
115 | zstrn(:,:) = 0. |
---|
116 | DO jj = 1, jpj |
---|
117 | DO ji = 1, jpi |
---|
118 | zargu = TAN( zcodel ) * TAN( gphit(ji,jj) * rad ) |
---|
119 | zargu = MAX( -1., MIN( 1., zargu ) ) |
---|
120 | zstrn(ji,jj) = MAX( 0.0, 24. - 2. * ACOS( zargu ) / rad / 15. ) |
---|
121 | END DO |
---|
122 | END DO |
---|
123 | |
---|
124 | ! Impact of the day duration and light intermittency on phytoplankton growth |
---|
125 | DO jk = 1, jpkm1 |
---|
126 | DO jj = 1 ,jpj |
---|
127 | DO ji = 1, jpi |
---|
128 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
129 | zval = MAX( 1., zstrn(ji,jj) ) |
---|
130 | IF( fsdept(ji,jj,jk) <= hmld(ji,jj) ) THEN |
---|
131 | zval = zval * MIN(1., heup_01(ji,jj) / ( hmld(ji,jj) + rtrn )) |
---|
132 | ENDIF |
---|
133 | zmxl_chl(ji,jj,jk) = zval / 24. |
---|
134 | zmxl_fac(ji,jj,jk) = 1.5 * zval / ( 12. + zval ) |
---|
135 | ENDIF |
---|
136 | END DO |
---|
137 | END DO |
---|
138 | END DO |
---|
139 | |
---|
140 | zprbio(:,:,:) = prmax(:,:,:) * zmxl_fac(:,:,:) |
---|
141 | zprdia(:,:,:) = zprbio(:,:,:) |
---|
142 | |
---|
143 | ! Maximum light intensity |
---|
144 | WHERE( zstrn(:,:) < 1.e0 ) zstrn(:,:) = 24. |
---|
145 | |
---|
146 | ! Computation of the P-I slope for nanos and diatoms |
---|
147 | DO jk = 1, jpkm1 |
---|
148 | !CDIR NOVERRCHK |
---|
149 | DO jj = 1, jpj |
---|
150 | !CDIR NOVERRCHK |
---|
151 | DO ji = 1, jpi |
---|
152 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
153 | ztn = MAX( 0., tsn(ji,jj,jk,jp_tem) - 15. ) |
---|
154 | zadap = xadap * ztn / ( 2.+ ztn ) |
---|
155 | zconctemp = MAX( 0.e0 , trb(ji,jj,jk,jpdia) - xsizedia ) |
---|
156 | zconctemp2 = trb(ji,jj,jk,jpdia) - zconctemp |
---|
157 | ! |
---|
158 | zpislopeadn(ji,jj,jk) = pislopen * ( 1.+ zadap * EXP( -0.25 * enano(ji,jj,jk) ) ) & |
---|
159 | & * trb(ji,jj,jk,jpnch) /( trb(ji,jj,jk,jpphy) * 12. + rtrn) |
---|
160 | ! |
---|
161 | zpislopeadd(ji,jj,jk) = (pislopen * zconctemp2 + pisloped * zconctemp) / ( trb(ji,jj,jk,jpdia) + rtrn ) & |
---|
162 | & * trb(ji,jj,jk,jpdch) /( trb(ji,jj,jk,jpdia) * 12. + rtrn) |
---|
163 | ENDIF |
---|
164 | END DO |
---|
165 | END DO |
---|
166 | END DO |
---|
167 | |
---|
168 | IF( ln_newprod ) THEN |
---|
169 | DO jk = 1, jpkm1 |
---|
170 | DO jj = 1, jpj |
---|
171 | DO ji = 1, jpi |
---|
172 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
173 | ! Computation of production function for Carbon |
---|
174 | ! --------------------------------------------- |
---|
175 | zpislopen = zpislopeadn(ji,jj,jk) / ( ( r1_rday + bresp * r1_rday ) & |
---|
176 | & * zmxl_fac(ji,jj,jk) * rday + rtrn) |
---|
177 | zpisloped = zpislopeadd(ji,jj,jk) / ( ( r1_rday + bresp * r1_rday ) & |
---|
178 | & * zmxl_fac(ji,jj,jk) * rday + rtrn) |
---|
179 | zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * ( 1.- EXP( -zpislopen * enano(ji,jj,jk) ) ) |
---|
180 | zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * ( 1.- EXP( -zpisloped * ediat(ji,jj,jk) ) ) |
---|
181 | ! Computation of production function for Chlorophyll |
---|
182 | !-------------------------------------------------- |
---|
183 | zpislopen = zpislopeadn(ji,jj,jk) / ( prmax(ji,jj,jk) * zmxl_chl(ji,jj,jk) * rday + rtrn ) |
---|
184 | zpisloped = zpislopeadd(ji,jj,jk) / ( prmax(ji,jj,jk) * zmxl_chl(ji,jj,jk) * rday + rtrn ) |
---|
185 | zprnch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislopen * enano(ji,jj,jk) ) ) |
---|
186 | zprdch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpisloped * ediat(ji,jj,jk) ) ) |
---|
187 | ENDIF |
---|
188 | END DO |
---|
189 | END DO |
---|
190 | END DO |
---|
191 | ELSE |
---|
192 | DO jk = 1, jpkm1 |
---|
193 | DO jj = 1, jpj |
---|
194 | DO ji = 1, jpi |
---|
195 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
196 | ! Computation of production function for Carbon |
---|
197 | ! --------------------------------------------- |
---|
198 | zpislopen = zpislopeadn(ji,jj,jk) / ( zprbio(ji,jj,jk) * rday * xlimphy(ji,jj,jk) + rtrn ) |
---|
199 | zpisloped = zpislopeadd(ji,jj,jk) / ( zprdia(ji,jj,jk) * rday * xlimdia(ji,jj,jk) + rtrn ) |
---|
200 | zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * ( 1.- EXP( -zpislopen * enano(ji,jj,jk) ) ) |
---|
201 | zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * ( 1.- EXP( -zpisloped * ediat(ji,jj,jk) ) ) |
---|
202 | ! Computation of production function for Chlorophyll |
---|
203 | !-------------------------------------------------- |
---|
204 | zpislopen = zpislopen * zmxl_fac(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
205 | zpisloped = zpisloped * zmxl_fac(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
206 | zprnch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislopen * enano(ji,jj,jk) ) ) |
---|
207 | zprdch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpisloped * ediat(ji,jj,jk) ) ) |
---|
208 | ENDIF |
---|
209 | END DO |
---|
210 | END DO |
---|
211 | END DO |
---|
212 | ENDIF |
---|
213 | |
---|
214 | ! Computation of a proxy of the N/C ratio |
---|
215 | ! --------------------------------------- |
---|
216 | DO jk = 1, jpkm1 |
---|
217 | DO jj = 1, jpj |
---|
218 | DO ji = 1, jpi |
---|
219 | zval = MIN( xnanopo4(ji,jj,jk), ( xnanonh4(ji,jj,jk) + xnanono3(ji,jj,jk) ) ) & |
---|
220 | & * prmax(ji,jj,jk) / ( zprbio(ji,jj,jk) + rtrn ) |
---|
221 | quotan(ji,jj,jk) = MIN( 1., 0.2 + 0.8 * zval ) |
---|
222 | zval = MIN( xdiatpo4(ji,jj,jk), ( xdiatnh4(ji,jj,jk) + xdiatno3(ji,jj,jk) ) ) & |
---|
223 | & * prmax(ji,jj,jk) / ( zprdia(ji,jj,jk) + rtrn ) |
---|
224 | quotad(ji,jj,jk) = MIN( 1., 0.2 + 0.8 * zval ) |
---|
225 | END DO |
---|
226 | END DO |
---|
227 | END DO |
---|
228 | |
---|
229 | |
---|
230 | DO jk = 1, jpkm1 |
---|
231 | DO jj = 1, jpj |
---|
232 | DO ji = 1, jpi |
---|
233 | |
---|
234 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
235 | ! Si/C of diatoms |
---|
236 | ! ------------------------ |
---|
237 | ! Si/C increases with iron stress and silicate availability |
---|
238 | ! Si/C is arbitrariliy increased for very high Si concentrations |
---|
239 | ! to mimic the very high ratios observed in the Southern Ocean (silpot2) |
---|
240 | zlim = trb(ji,jj,jk,jpsil) / ( trb(ji,jj,jk,jpsil) + xksi1 ) |
---|
241 | zsilim = MIN( zprdia(ji,jj,jk) / ( prmax(ji,jj,jk) + rtrn ), xlimsi(ji,jj,jk) ) |
---|
242 | zsilfac = 4.4 * EXP( -4.23 * zsilim ) * MAX( 0.e0, MIN( 1., 2.2 * ( zlim - 0.5 ) ) ) + 1.e0 |
---|
243 | zsiborn = trb(ji,jj,jk,jpsil) * trb(ji,jj,jk,jpsil) * trb(ji,jj,jk,jpsil) |
---|
244 | IF (gphit(ji,jj) < -30 ) THEN |
---|
245 | zsilfac2 = 1. + 2. * zsiborn / ( zsiborn + xksi2**3 ) |
---|
246 | ELSE |
---|
247 | zsilfac2 = 1. + zsiborn / ( zsiborn + xksi2**3 ) |
---|
248 | ENDIF |
---|
249 | zysopt(ji,jj,jk) = grosip * zlim * zsilfac * zsilfac2 |
---|
250 | ENDIF |
---|
251 | END DO |
---|
252 | END DO |
---|
253 | END DO |
---|
254 | |
---|
255 | ! Mixed-layer effect on production |
---|
256 | ! Sea-ice effect on production |
---|
257 | |
---|
258 | DO jk = 1, jpkm1 |
---|
259 | DO jj = 1, jpj |
---|
260 | DO ji = 1, jpi |
---|
261 | zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * ( 1. - fr_i(ji,jj) ) |
---|
262 | zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * ( 1. - fr_i(ji,jj) ) |
---|
263 | END DO |
---|
264 | END DO |
---|
265 | END DO |
---|
266 | |
---|
267 | ! Computation of the various production terms |
---|
268 | !CDIR NOVERRCHK |
---|
269 | DO jk = 1, jpkm1 |
---|
270 | !CDIR NOVERRCHK |
---|
271 | DO jj = 1, jpj |
---|
272 | !CDIR NOVERRCHK |
---|
273 | DO ji = 1, jpi |
---|
274 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
275 | ! production terms for nanophyto. (C) |
---|
276 | zprorcan(ji,jj,jk) = zprbio(ji,jj,jk) * xlimphy(ji,jj,jk) * trb(ji,jj,jk,jpphy) * rfact2 |
---|
277 | zpronewn(ji,jj,jk) = zprorcan(ji,jj,jk)* xnanono3(ji,jj,jk) / ( xnanono3(ji,jj,jk) + xnanonh4(ji,jj,jk) + rtrn ) |
---|
278 | ! |
---|
279 | zratio = trb(ji,jj,jk,jpnfe) / ( trb(ji,jj,jk,jpphy) * fecnm + rtrn ) |
---|
280 | zmax = MAX( 0., ( 1. - zratio ) / ABS( 1.05 - zratio ) ) |
---|
281 | zprofen(ji,jj,jk) = fecnm * prmax(ji,jj,jk) * ( 1.0 - fr_i(ji,jj) ) & |
---|
282 | & * ( 4. - 4.5 * xlimnfe(ji,jj,jk) / ( xlimnfe(ji,jj,jk) + 0.5 ) ) & |
---|
283 | & * biron(ji,jj,jk) / ( biron(ji,jj,jk) + concnfe(ji,jj,jk) ) & |
---|
284 | & * zmax * trb(ji,jj,jk,jpphy) * rfact2 |
---|
285 | ! production terms for diatoms (C) |
---|
286 | zprorcad(ji,jj,jk) = zprdia(ji,jj,jk) * xlimdia(ji,jj,jk) * trb(ji,jj,jk,jpdia) * rfact2 |
---|
287 | zpronewd(ji,jj,jk) = zprorcad(ji,jj,jk) * xdiatno3(ji,jj,jk) / ( xdiatno3(ji,jj,jk) + xdiatnh4(ji,jj,jk) + rtrn ) |
---|
288 | ! |
---|
289 | zratio = trb(ji,jj,jk,jpdfe) / ( trb(ji,jj,jk,jpdia) * fecdm + rtrn ) |
---|
290 | zmax = MAX( 0., ( 1. - zratio ) / ABS( 1.05 - zratio ) ) |
---|
291 | zprofed(ji,jj,jk) = fecdm * prmax(ji,jj,jk) * ( 1.0 - fr_i(ji,jj) ) & |
---|
292 | & * ( 4. - 4.5 * xlimdfe(ji,jj,jk) / ( xlimdfe(ji,jj,jk) + 0.5 ) ) & |
---|
293 | & * biron(ji,jj,jk) / ( biron(ji,jj,jk) + concdfe(ji,jj,jk) ) & |
---|
294 | & * zmax * trb(ji,jj,jk,jpdia) * rfact2 |
---|
295 | ENDIF |
---|
296 | END DO |
---|
297 | END DO |
---|
298 | END DO |
---|
299 | |
---|
300 | ! Computation of the chlorophyll production terms |
---|
301 | DO jk = 1, jpkm1 |
---|
302 | DO jj = 1, jpj |
---|
303 | DO ji = 1, jpi |
---|
304 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
305 | ! production terms for nanophyto. ( chlorophyll ) |
---|
306 | znanotot = enano(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
307 | zprod = rday * zprorcan(ji,jj,jk) * zprnch(ji,jj,jk) * xlimphy(ji,jj,jk) |
---|
308 | zprochln = chlcmin * 12. * zprorcan (ji,jj,jk) |
---|
309 | chlcnm_n = MIN ( chlcnm, ( chlcnm / (1. - 1.14 / 43.4 *tsn(ji,jj,jk,jp_tem))) * (1. - 1.14 / 43.4 * 20.)) |
---|
310 | zprochln = zprochln + (chlcnm_n-chlcmin) * 12. * zprod / & |
---|
311 | & ( zpislopeadn(ji,jj,jk) * znanotot +rtrn) |
---|
312 | ! production terms for diatoms ( chlorophyll ) |
---|
313 | zdiattot = ediat(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
314 | zprod = rday * zprorcad(ji,jj,jk) * zprdch(ji,jj,jk) * xlimdia(ji,jj,jk) |
---|
315 | zprochld = chlcmin * 12. * zprorcad(ji,jj,jk) |
---|
316 | chlcdm_n = MIN ( chlcdm, ( chlcdm / (1. - 1.14 / 43.4 * tsn(ji,jj,jk,jp_tem))) * (1. - 1.14 / 43.4 * 20.)) |
---|
317 | zprochld = zprochld + (chlcdm_n-chlcmin) * 12. * zprod / & |
---|
318 | & ( zpislopeadd(ji,jj,jk) * zdiattot +rtrn ) |
---|
319 | ! Update the arrays TRA which contain the Chla sources and sinks |
---|
320 | tra(ji,jj,jk,jpnch) = tra(ji,jj,jk,jpnch) + zprochln * texcretn |
---|
321 | tra(ji,jj,jk,jpdch) = tra(ji,jj,jk,jpdch) + zprochld * texcretd |
---|
322 | ENDIF |
---|
323 | END DO |
---|
324 | END DO |
---|
325 | END DO |
---|
326 | |
---|
327 | ! Update the arrays TRA which contain the biological sources and sinks |
---|
328 | DO jk = 1, jpkm1 |
---|
329 | DO jj = 1, jpj |
---|
330 | DO ji =1 ,jpi |
---|
331 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
332 | zproreg = zprorcan(ji,jj,jk) - zpronewn(ji,jj,jk) |
---|
333 | zproreg2 = zprorcad(ji,jj,jk) - zpronewd(ji,jj,jk) |
---|
334 | zdocprod = excretd * zprorcad(ji,jj,jk) + excretn * zprorcan(ji,jj,jk) |
---|
335 | tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) - zprorcan(ji,jj,jk) - zprorcad(ji,jj,jk) |
---|
336 | tra(ji,jj,jk,jpno3) = tra(ji,jj,jk,jpno3) - zpronewn(ji,jj,jk) - zpronewd(ji,jj,jk) |
---|
337 | tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) - zproreg - zproreg2 |
---|
338 | tra(ji,jj,jk,jpphy) = tra(ji,jj,jk,jpphy) + zprorcan(ji,jj,jk) * texcretn |
---|
339 | tra(ji,jj,jk,jpnfe) = tra(ji,jj,jk,jpnfe) + zprofen(ji,jj,jk) * texcretn |
---|
340 | tra(ji,jj,jk,jpdia) = tra(ji,jj,jk,jpdia) + zprorcad(ji,jj,jk) * texcretd |
---|
341 | tra(ji,jj,jk,jpdfe) = tra(ji,jj,jk,jpdfe) + zprofed(ji,jj,jk) * texcretd |
---|
342 | tra(ji,jj,jk,jpdsi) = tra(ji,jj,jk,jpdsi) + zprorcad(ji,jj,jk) * zysopt(ji,jj,jk) * texcretd |
---|
343 | tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + zdocprod |
---|
344 | zfeup = texcretn * zprofen(ji,jj,jk) + texcretd * zprofed(ji,jj,jk) |
---|
345 | #if defined key_ligand |
---|
346 | tra(ji,jj,jk,jplgw) = tra(ji,jj,jk,jplgw) + zdocprod * ldocp - zfeup * plig(ji,jj,jk) * lthet |
---|
347 | #endif |
---|
348 | tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) + o2ut * ( zproreg + zproreg2) & |
---|
349 | & + ( o2ut + o2nit ) * ( zpronewn(ji,jj,jk) + zpronewd(ji,jj,jk) ) |
---|
350 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - zfeup |
---|
351 | tra(ji,jj,jk,jpsil) = tra(ji,jj,jk,jpsil) - texcretd * zprorcad(ji,jj,jk) * zysopt(ji,jj,jk) |
---|
352 | tra(ji,jj,jk,jpdic) = tra(ji,jj,jk,jpdic) - zprorcan(ji,jj,jk) - zprorcad(ji,jj,jk) |
---|
353 | tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + rno3 * ( zpronewn(ji,jj,jk) + zpronewd(ji,jj,jk) ) & |
---|
354 | & - rno3 * ( zproreg + zproreg2 ) |
---|
355 | ENDIF |
---|
356 | END DO |
---|
357 | END DO |
---|
358 | END DO |
---|
359 | |
---|
360 | |
---|
361 | ! Total primary production per year |
---|
362 | IF( iom_use( "tintpp" ) .OR. ( ln_check_mass .AND. kt == nitend .AND. knt == nrdttrc ) ) & |
---|
363 | & tpp = glob_sum( ( zprorcan(:,:,:) + zprorcad(:,:,:) ) * cvol(:,:,:) ) |
---|
364 | |
---|
365 | IF( lk_iomput ) THEN |
---|
366 | IF( knt == nrdttrc ) THEN |
---|
367 | CALL wrk_alloc( jpi, jpj, zw2d ) |
---|
368 | CALL wrk_alloc( jpi, jpj, jpk, zw3d ) |
---|
369 | zfact = 1.e+3 * rfact2r ! conversion from mol/l/kt to mol/m3/s |
---|
370 | ! |
---|
371 | IF( iom_use( "PPPHY" ) .OR. iom_use( "PPPHY2" ) ) THEN |
---|
372 | zw3d(:,:,:) = zprorcan(:,:,:) * zfact * tmask(:,:,:) ! primary production by nanophyto |
---|
373 | CALL iom_put( "PPPHY" , zw3d ) |
---|
374 | ! |
---|
375 | zw3d(:,:,:) = zprorcad(:,:,:) * zfact * tmask(:,:,:) ! primary production by diatomes |
---|
376 | CALL iom_put( "PPPHY2" , zw3d ) |
---|
377 | ENDIF |
---|
378 | IF( iom_use( "PPNEWN" ) .OR. iom_use( "PPNEWD" ) ) THEN |
---|
379 | zw3d(:,:,:) = zpronewn(:,:,:) * zfact * tmask(:,:,:) ! new primary production by nanophyto |
---|
380 | CALL iom_put( "PPNEWN" , zw3d ) |
---|
381 | ! |
---|
382 | zw3d(:,:,:) = zpronewd(:,:,:) * zfact * tmask(:,:,:) ! new primary production by diatomes |
---|
383 | CALL iom_put( "PPNEWD" , zw3d ) |
---|
384 | ENDIF |
---|
385 | IF( iom_use( "PBSi" ) ) THEN |
---|
386 | zw3d(:,:,:) = zprorcad(:,:,:) * zfact * tmask(:,:,:) * zysopt(:,:,:) ! biogenic silica production |
---|
387 | CALL iom_put( "PBSi" , zw3d ) |
---|
388 | ENDIF |
---|
389 | IF( iom_use( "PFeN" ) .OR. iom_use( "PFeD" ) ) THEN |
---|
390 | zw3d(:,:,:) = zprofen(:,:,:) * zfact * tmask(:,:,:) ! biogenic iron production by nanophyto |
---|
391 | CALL iom_put( "PFeN" , zw3d ) |
---|
392 | ! |
---|
393 | zw3d(:,:,:) = zprofed(:,:,:) * zfact * tmask(:,:,:) ! biogenic iron production by diatomes |
---|
394 | CALL iom_put( "PFeD" , zw3d ) |
---|
395 | ENDIF |
---|
396 | IF( iom_use( "Mumax" ) ) THEN |
---|
397 | zw3d(:,:,:) = prmax(:,:,:) * tmask(:,:,:) ! Maximum growth rate |
---|
398 | CALL iom_put( "Mumax" , zw3d ) |
---|
399 | ENDIF |
---|
400 | IF( iom_use( "MuN" ) .OR. iom_use( "MuD" ) ) THEN |
---|
401 | zw3d(:,:,:) = zprbio(:,:,:) * xlimphy(:,:,:) * tmask(:,:,:) ! Realized growth rate for nanophyto |
---|
402 | CALL iom_put( "MuN" , zw3d ) |
---|
403 | ! |
---|
404 | zw3d(:,:,:) = zprdia(:,:,:) * xlimdia(:,:,:) * tmask(:,:,:) ! Realized growth rate for diatoms |
---|
405 | CALL iom_put( "MuD" , zw3d ) |
---|
406 | ENDIF |
---|
407 | IF( iom_use( "LNlight" ) .OR. iom_use( "LDlight" ) ) THEN |
---|
408 | zw3d(:,:,:) = zprbio (:,:,:) / (prmax(:,:,:) + rtrn) * tmask(:,:,:) ! light limitation term |
---|
409 | CALL iom_put( "LNlight" , zw3d ) |
---|
410 | ! |
---|
411 | zw3d(:,:,:) = zprdia (:,:,:) / (prmax(:,:,:) + rtrn) * tmask(:,:,:) ! light limitation term |
---|
412 | CALL iom_put( "LDlight" , zw3d ) |
---|
413 | ENDIF |
---|
414 | IF( iom_use( "TPP" ) ) THEN |
---|
415 | zw3d(:,:,:) = ( zprorcan(:,:,:) + zprorcad(:,:,:) ) * zfact * tmask(:,:,:) ! total primary production |
---|
416 | CALL iom_put( "TPP" , zw3d ) |
---|
417 | ENDIF |
---|
418 | IF( iom_use( "TPNEW" ) ) THEN |
---|
419 | zw3d(:,:,:) = ( zpronewn(:,:,:) + zpronewd(:,:,:) ) * zfact * tmask(:,:,:) ! total new production |
---|
420 | CALL iom_put( "TPNEW" , zw3d ) |
---|
421 | ENDIF |
---|
422 | IF( iom_use( "TPBFE" ) ) THEN |
---|
423 | zw3d(:,:,:) = ( zprofen(:,:,:) + zprofed(:,:,:) ) * zfact * tmask(:,:,:) ! total biogenic iron production |
---|
424 | CALL iom_put( "TPBFE" , zw3d ) |
---|
425 | ENDIF |
---|
426 | IF( iom_use( "INTPPPHY" ) .OR. iom_use( "INTPPPHY2" ) ) THEN |
---|
427 | zw2d(:,:) = 0. |
---|
428 | DO jk = 1, jpkm1 |
---|
429 | zw2d(:,:) = zw2d(:,:) + zprorcan(:,:,jk) * fse3t(:,:,jk) * zfact * tmask(:,:,jk) ! vert. integrated primary produc. by nano |
---|
430 | ENDDO |
---|
431 | CALL iom_put( "INTPPPHY" , zw2d ) |
---|
432 | ! |
---|
433 | zw2d(:,:) = 0. |
---|
434 | DO jk = 1, jpkm1 |
---|
435 | zw2d(:,:) = zw2d(:,:) + zprorcad(:,:,jk) * fse3t(:,:,jk) * zfact * tmask(:,:,jk) ! vert. integrated primary produc. by diatom |
---|
436 | ENDDO |
---|
437 | CALL iom_put( "INTPPPHY2" , zw2d ) |
---|
438 | ENDIF |
---|
439 | IF( iom_use( "INTPP" ) ) THEN |
---|
440 | zw2d(:,:) = 0. |
---|
441 | DO jk = 1, jpkm1 |
---|
442 | zw2d(:,:) = zw2d(:,:) + ( zprorcan(:,:,jk) + zprorcad(:,:,jk) ) * fse3t(:,:,jk) * zfact * tmask(:,:,jk) ! vert. integrated pp |
---|
443 | ENDDO |
---|
444 | CALL iom_put( "INTPP" , zw2d ) |
---|
445 | ENDIF |
---|
446 | IF( iom_use( "INTPNEW" ) ) THEN |
---|
447 | zw2d(:,:) = 0. |
---|
448 | DO jk = 1, jpkm1 |
---|
449 | zw2d(:,:) = zw2d(:,:) + ( zpronewn(:,:,jk) + zpronewd(:,:,jk) ) * fse3t(:,:,jk) * zfact * tmask(:,:,jk) ! vert. integrated new prod |
---|
450 | ENDDO |
---|
451 | CALL iom_put( "INTPNEW" , zw2d ) |
---|
452 | ENDIF |
---|
453 | IF( iom_use( "INTPBFE" ) ) THEN ! total biogenic iron production ( vertically integrated ) |
---|
454 | zw2d(:,:) = 0. |
---|
455 | DO jk = 1, jpkm1 |
---|
456 | zw2d(:,:) = zw2d(:,:) + ( zprofen(:,:,jk) + zprofed(:,:,jk) ) * fse3t(:,:,jk) * zfact * tmask(:,:,jk) ! vert integr. bfe prod |
---|
457 | ENDDO |
---|
458 | CALL iom_put( "INTPBFE" , zw2d ) |
---|
459 | ENDIF |
---|
460 | IF( iom_use( "INTPBSI" ) ) THEN ! total biogenic silica production ( vertically integrated ) |
---|
461 | zw2d(:,:) = 0. |
---|
462 | DO jk = 1, jpkm1 |
---|
463 | zw2d(:,:) = zw2d(:,:) + zprorcad(:,:,jk) * zysopt(:,:,jk) * fse3t(:,:,jk) * zfact * tmask(:,:,jk) ! vert integr. bsi prod |
---|
464 | ENDDO |
---|
465 | CALL iom_put( "INTPBSI" , zw2d ) |
---|
466 | ENDIF |
---|
467 | IF( iom_use( "tintpp" ) ) CALL iom_put( "tintpp" , tpp * zfact ) ! global total integrated primary production molC/s |
---|
468 | ! |
---|
469 | CALL wrk_dealloc( jpi, jpj, zw2d ) |
---|
470 | CALL wrk_dealloc( jpi, jpj, jpk, zw3d ) |
---|
471 | ENDIF |
---|
472 | ELSE |
---|
473 | IF( ln_diatrc ) THEN |
---|
474 | zfact = 1.e+3 * rfact2r |
---|
475 | trc3d(:,:,:,jp_pcs0_3d + 4) = zprorcan(:,:,:) * zfact * tmask(:,:,:) |
---|
476 | trc3d(:,:,:,jp_pcs0_3d + 5) = zprorcad(:,:,:) * zfact * tmask(:,:,:) |
---|
477 | trc3d(:,:,:,jp_pcs0_3d + 6) = zpronewn(:,:,:) * zfact * tmask(:,:,:) |
---|
478 | trc3d(:,:,:,jp_pcs0_3d + 7) = zpronewd(:,:,:) * zfact * tmask(:,:,:) |
---|
479 | trc3d(:,:,:,jp_pcs0_3d + 8) = zprorcad(:,:,:) * zfact * tmask(:,:,:) * zysopt(:,:,:) |
---|
480 | trc3d(:,:,:,jp_pcs0_3d + 9) = zprofed (:,:,:) * zfact * tmask(:,:,:) |
---|
481 | # if ! defined key_kriest |
---|
482 | trc3d(:,:,:,jp_pcs0_3d + 10) = zprofen (:,:,:) * zfact * tmask(:,:,:) |
---|
483 | # endif |
---|
484 | ENDIF |
---|
485 | ENDIF |
---|
486 | |
---|
487 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
488 | WRITE(charout, FMT="('prod')") |
---|
489 | CALL prt_ctl_trc_info(charout) |
---|
490 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
491 | ENDIF |
---|
492 | ! |
---|
493 | CALL wrk_dealloc( jpi, jpj, zmixnano, zmixdiat, zstrn ) |
---|
494 | CALL wrk_dealloc( jpi, jpj, jpk, zpislopeadn, zpislopeadd, zprdia, zprbio, zprdch, zprnch, zysopt ) |
---|
495 | CALL wrk_dealloc( jpi, jpj, jpk, zmxl_fac, zmxl_chl ) |
---|
496 | CALL wrk_dealloc( jpi, jpj, jpk, zprorcan, zprorcad, zprofed, zprofen, zpronewn, zpronewd ) |
---|
497 | ! |
---|
498 | IF( nn_timing == 1 ) CALL timing_stop('p4z_prod') |
---|
499 | ! |
---|
500 | END SUBROUTINE p4z_prod |
---|
501 | |
---|
502 | |
---|
503 | SUBROUTINE p4z_prod_init |
---|
504 | !!---------------------------------------------------------------------- |
---|
505 | !! *** ROUTINE p4z_prod_init *** |
---|
506 | !! |
---|
507 | !! ** Purpose : Initialization of phytoplankton production parameters |
---|
508 | !! |
---|
509 | !! ** Method : Read the nampisprod namelist and check the parameters |
---|
510 | !! called at the first timestep (nittrc000) |
---|
511 | !! |
---|
512 | !! ** input : Namelist nampisprod |
---|
513 | !!---------------------------------------------------------------------- |
---|
514 | ! |
---|
515 | NAMELIST/nampisprod/ pislopen, pisloped, xadap, ln_newprod, bresp, excretn, excretd, & |
---|
516 | & chlcnm, chlcdm, chlcmin, fecnm, fecdm, grosip |
---|
517 | INTEGER :: ios ! Local integer output status for namelist read |
---|
518 | !!---------------------------------------------------------------------- |
---|
519 | |
---|
520 | REWIND( numnatp_ref ) ! Namelist nampisprod in reference namelist : Pisces phytoplankton production |
---|
521 | READ ( numnatp_ref, nampisprod, IOSTAT = ios, ERR = 901) |
---|
522 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisprod in reference namelist', lwp ) |
---|
523 | |
---|
524 | REWIND( numnatp_cfg ) ! Namelist nampisprod in configuration namelist : Pisces phytoplankton production |
---|
525 | READ ( numnatp_cfg, nampisprod, IOSTAT = ios, ERR = 902 ) |
---|
526 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisprod in configuration namelist', lwp ) |
---|
527 | IF(lwm) WRITE ( numonp, nampisprod ) |
---|
528 | |
---|
529 | IF(lwp) THEN ! control print |
---|
530 | WRITE(numout,*) ' ' |
---|
531 | WRITE(numout,*) ' Namelist parameters for phytoplankton growth, nampisprod' |
---|
532 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
533 | WRITE(numout,*) ' Enable new parame. of production (T/F) ln_newprod =', ln_newprod |
---|
534 | WRITE(numout,*) ' mean Si/C ratio grosip =', grosip |
---|
535 | WRITE(numout,*) ' P-I slope pislopen =', pislopen |
---|
536 | WRITE(numout,*) ' Acclimation factor to low light xadap =', xadap |
---|
537 | WRITE(numout,*) ' excretion ratio of nanophytoplankton excretn =', excretn |
---|
538 | WRITE(numout,*) ' excretion ratio of diatoms excretd =', excretd |
---|
539 | IF( ln_newprod ) THEN |
---|
540 | WRITE(numout,*) ' basal respiration in phytoplankton bresp =', bresp |
---|
541 | WRITE(numout,*) ' Maximum Chl/C in phytoplankton chlcmin =', chlcmin |
---|
542 | ENDIF |
---|
543 | WRITE(numout,*) ' P-I slope for diatoms pisloped =', pisloped |
---|
544 | WRITE(numout,*) ' Minimum Chl/C in nanophytoplankton chlcnm =', chlcnm |
---|
545 | WRITE(numout,*) ' Minimum Chl/C in diatoms chlcdm =', chlcdm |
---|
546 | WRITE(numout,*) ' Maximum Fe/C in nanophytoplankton fecnm =', fecnm |
---|
547 | WRITE(numout,*) ' Minimum Fe/C in diatoms fecdm =', fecdm |
---|
548 | ENDIF |
---|
549 | ! |
---|
550 | r1_rday = 1._wp / rday |
---|
551 | texcretn = 1._wp - excretn |
---|
552 | texcretd = 1._wp - excretd |
---|
553 | tpp = 0._wp |
---|
554 | ! |
---|
555 | END SUBROUTINE p4z_prod_init |
---|
556 | |
---|
557 | |
---|
558 | INTEGER FUNCTION p4z_prod_alloc() |
---|
559 | !!---------------------------------------------------------------------- |
---|
560 | !! *** ROUTINE p4z_prod_alloc *** |
---|
561 | !!---------------------------------------------------------------------- |
---|
562 | ALLOCATE( prmax(jpi,jpj,jpk), quotan(jpi,jpj,jpk), quotad(jpi,jpj,jpk), STAT = p4z_prod_alloc ) |
---|
563 | ! |
---|
564 | IF( p4z_prod_alloc /= 0 ) CALL ctl_warn('p4z_prod_alloc : failed to allocate arrays.') |
---|
565 | ! |
---|
566 | END FUNCTION p4z_prod_alloc |
---|
567 | |
---|
568 | #else |
---|
569 | !!====================================================================== |
---|
570 | !! Dummy module : No PISCES bio-model |
---|
571 | !!====================================================================== |
---|
572 | CONTAINS |
---|
573 | SUBROUTINE p4z_prod ! Empty routine |
---|
574 | END SUBROUTINE p4z_prod |
---|
575 | #endif |
---|
576 | |
---|
577 | !!====================================================================== |
---|
578 | END MODULE p4zprod |
---|