1 | MODULE p4zprod |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p4zprod *** |
---|
4 | !! TOP : Growth Rate of the two phytoplanktons groups |
---|
5 | !!====================================================================== |
---|
6 | !! History : 1.0 ! 2004 (O. Aumont) Original code |
---|
7 | !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 |
---|
8 | !! 3.4 ! 2011-05 (O. Aumont, C. Ethe) New parameterization of light limitation |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | #if defined key_pisces |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! 'key_pisces' PISCES bio-model |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | !! p4z_prod : Compute the growth Rate of the two phytoplanktons groups |
---|
15 | !! p4z_prod_init : Initialization of the parameters for growth |
---|
16 | !! p4z_prod_alloc : Allocate variables for growth |
---|
17 | !!---------------------------------------------------------------------- |
---|
18 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
19 | USE trc ! passive tracers common variables |
---|
20 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
21 | USE p4zopt ! optical model |
---|
22 | USE p4zlim ! Co-limitations of differents nutrients |
---|
23 | USE prtctl_trc ! print control for debugging |
---|
24 | USE iom ! I/O manager |
---|
25 | |
---|
26 | IMPLICIT NONE |
---|
27 | PRIVATE |
---|
28 | |
---|
29 | PUBLIC p4z_prod ! called in p4zbio.F90 |
---|
30 | PUBLIC p4z_prod_init ! called in trcsms_pisces.F90 |
---|
31 | PUBLIC p4z_prod_alloc |
---|
32 | |
---|
33 | !! * Shared module variables |
---|
34 | LOGICAL , PUBLIC :: ln_newprod !: |
---|
35 | REAL(wp), PUBLIC :: pislopen !: |
---|
36 | REAL(wp), PUBLIC :: pisloped !: |
---|
37 | REAL(wp), PUBLIC :: xadap !: |
---|
38 | REAL(wp), PUBLIC :: excretn !: |
---|
39 | REAL(wp), PUBLIC :: excretd !: |
---|
40 | REAL(wp), PUBLIC :: bresp !: |
---|
41 | REAL(wp), PUBLIC :: chlcnm !: |
---|
42 | REAL(wp), PUBLIC :: chlcdm !: |
---|
43 | REAL(wp), PUBLIC :: chlcmin !: |
---|
44 | REAL(wp), PUBLIC :: fecnm !: |
---|
45 | REAL(wp), PUBLIC :: fecdm !: |
---|
46 | REAL(wp), PUBLIC :: grosip !: |
---|
47 | |
---|
48 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: prmax !: optimal production = f(temperature) |
---|
49 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: quotan !: proxy of N quota in Nanophyto |
---|
50 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: quotad !: proxy of N quota in diatomee |
---|
51 | |
---|
52 | REAL(wp) :: r1_rday !: 1 / rday |
---|
53 | REAL(wp) :: texcretn !: 1 - excretn |
---|
54 | REAL(wp) :: texcretd !: 1 - excretd |
---|
55 | |
---|
56 | |
---|
57 | !!* Substitution |
---|
58 | # include "top_substitute.h90" |
---|
59 | !!---------------------------------------------------------------------- |
---|
60 | !! NEMO/TOP 3.3 , NEMO Consortium (2010) |
---|
61 | !! $Id: p4zprod.F90 3160 2011-11-20 14:27:18Z cetlod $ |
---|
62 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
63 | !!---------------------------------------------------------------------- |
---|
64 | CONTAINS |
---|
65 | |
---|
66 | SUBROUTINE p4z_prod( kt , knt ) |
---|
67 | !!--------------------------------------------------------------------- |
---|
68 | !! *** ROUTINE p4z_prod *** |
---|
69 | !! |
---|
70 | !! ** Purpose : Compute the phytoplankton production depending on |
---|
71 | !! light, temperature and nutrient availability |
---|
72 | !! |
---|
73 | !! ** Method : - ??? |
---|
74 | !!--------------------------------------------------------------------- |
---|
75 | ! |
---|
76 | INTEGER, INTENT(in) :: kt, knt |
---|
77 | ! |
---|
78 | INTEGER :: ji, jj, jk |
---|
79 | REAL(wp) :: zsilfac, znanotot, zdiattot, zconctemp, zconctemp2 |
---|
80 | REAL(wp) :: zratio, zmax, zsilim, ztn, zadap, zlim, zsilfac2, zsiborn |
---|
81 | REAL(wp) :: zprod, zproreg, zproreg2, zprochln, zprochld |
---|
82 | REAL(wp) :: zmaxday, zdocprod, zpislopen, zpisloped |
---|
83 | REAL(wp) :: zmxltst, zmxlday |
---|
84 | REAL(wp) :: zrum, zcodel, zargu, zval, zfeup, chlcnm_n, chlcdm_n |
---|
85 | REAL(wp) :: zfact |
---|
86 | CHARACTER (len=25) :: charout |
---|
87 | REAL(wp), POINTER, DIMENSION(:,: ) :: zstrn, zw2d, zmixnano, zmixdiat |
---|
88 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zpislopeadn, zpislopeadd, zprdia, zprbio, zprdch, zprnch, zysopt, zw3d |
---|
89 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zprorcan, zprorcad, zprofed, zprofen, zpronewn, zpronewd |
---|
90 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zmxl_fac, zmxl_chl |
---|
91 | #if defined key_ligand |
---|
92 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zpligprod, zpligprod2 |
---|
93 | #endif |
---|
94 | !!--------------------------------------------------------------------- |
---|
95 | ! |
---|
96 | IF( nn_timing == 1 ) CALL timing_start('p4z_prod') |
---|
97 | ! |
---|
98 | ! Allocate temporary workspace |
---|
99 | CALL wrk_alloc( jpi, jpj, zmixnano, zmixdiat, zstrn ) |
---|
100 | CALL wrk_alloc( jpi, jpj, jpk, zpislopeadn, zpislopeadd, zprdia, zprbio, zprdch, zprnch, zysopt ) |
---|
101 | CALL wrk_alloc( jpi, jpj, jpk, zmxl_fac, zmxl_chl ) |
---|
102 | CALL wrk_alloc( jpi, jpj, jpk, zprorcan, zprorcad, zprofed, zprofen, zpronewn, zpronewd ) |
---|
103 | #if defined key_ligand |
---|
104 | CALL wrk_alloc( jpi, jpj, jpk, zpligprod, zpligprod2 ) |
---|
105 | #endif |
---|
106 | ! |
---|
107 | zprorcan(:,:,:) = 0._wp ; zprorcad(:,:,:) = 0._wp ; zprofed (:,:,:) = 0._wp |
---|
108 | zprofen (:,:,:) = 0._wp ; zysopt (:,:,:) = 0._wp |
---|
109 | zpronewn(:,:,:) = 0._wp ; zpronewd(:,:,:) = 0._wp ; zprdia (:,:,:) = 0._wp |
---|
110 | zprbio (:,:,:) = 0._wp ; zprdch (:,:,:) = 0._wp ; zprnch (:,:,:) = 0._wp |
---|
111 | |
---|
112 | ! Computation of the optimal production |
---|
113 | prmax(:,:,:) = 0.8_wp * r1_rday * tgfunc(:,:,:) |
---|
114 | IF( lk_degrad ) prmax(:,:,:) = prmax(:,:,:) * facvol(:,:,:) |
---|
115 | |
---|
116 | ! compute the day length depending on latitude and the day |
---|
117 | zrum = REAL( nday_year - 80, wp ) / REAL( nyear_len(1), wp ) |
---|
118 | zcodel = ASIN( SIN( zrum * rpi * 2._wp ) * SIN( rad * 23.5_wp ) ) |
---|
119 | |
---|
120 | ! day length in hours |
---|
121 | zstrn(:,:) = 0. |
---|
122 | DO jj = 1, jpj |
---|
123 | DO ji = 1, jpi |
---|
124 | zargu = TAN( zcodel ) * TAN( gphit(ji,jj) * rad ) |
---|
125 | zargu = MAX( -1., MIN( 1., zargu ) ) |
---|
126 | zstrn(ji,jj) = MAX( 0.0, 24. - 2. * ACOS( zargu ) / rad / 15. ) |
---|
127 | END DO |
---|
128 | END DO |
---|
129 | |
---|
130 | ! Impact of the day duration and light intermittency on phytoplankton growth |
---|
131 | DO jk = 1, jpkm1 |
---|
132 | DO jj = 1 ,jpj |
---|
133 | DO ji = 1, jpi |
---|
134 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
135 | zval = MAX( 1., zstrn(ji,jj) ) |
---|
136 | IF( fsdept(ji,jj,jk) <= hmld(ji,jj) ) THEN |
---|
137 | zval = zval * MIN(1., heup_01(ji,jj) / ( hmld(ji,jj) + rtrn )) |
---|
138 | ENDIF |
---|
139 | zmxl_chl(ji,jj,jk) = zval / 24. |
---|
140 | zmxl_fac(ji,jj,jk) = 1.5 * zval / ( 12. + zval ) |
---|
141 | ENDIF |
---|
142 | END DO |
---|
143 | END DO |
---|
144 | END DO |
---|
145 | |
---|
146 | zprbio(:,:,:) = prmax(:,:,:) * zmxl_fac(:,:,:) |
---|
147 | zprdia(:,:,:) = zprbio(:,:,:) |
---|
148 | |
---|
149 | ! Maximum light intensity |
---|
150 | WHERE( zstrn(:,:) < 1.e0 ) zstrn(:,:) = 24. |
---|
151 | |
---|
152 | ! Computation of the P-I slope for nanos and diatoms |
---|
153 | DO jk = 1, jpkm1 |
---|
154 | !CDIR NOVERRCHK |
---|
155 | DO jj = 1, jpj |
---|
156 | !CDIR NOVERRCHK |
---|
157 | DO ji = 1, jpi |
---|
158 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
159 | ztn = MAX( 0., tsn(ji,jj,jk,jp_tem) - 15. ) |
---|
160 | zadap = xadap * ztn / ( 2.+ ztn ) |
---|
161 | zconctemp = MAX( 0.e0 , trb(ji,jj,jk,jpdia) - xsizedia ) |
---|
162 | zconctemp2 = trb(ji,jj,jk,jpdia) - zconctemp |
---|
163 | ! |
---|
164 | zpislopeadn(ji,jj,jk) = pislopen * ( 1.+ zadap * EXP( -0.25 * enano(ji,jj,jk) ) ) & |
---|
165 | & * trb(ji,jj,jk,jpnch) /( trb(ji,jj,jk,jpphy) * 12. + rtrn) |
---|
166 | ! |
---|
167 | zpislopeadd(ji,jj,jk) = (pislopen * zconctemp2 + pisloped * zconctemp) / ( trb(ji,jj,jk,jpdia) + rtrn ) & |
---|
168 | & * trb(ji,jj,jk,jpdch) /( trb(ji,jj,jk,jpdia) * 12. + rtrn) |
---|
169 | ENDIF |
---|
170 | END DO |
---|
171 | END DO |
---|
172 | END DO |
---|
173 | |
---|
174 | IF( ln_newprod ) THEN |
---|
175 | DO jk = 1, jpkm1 |
---|
176 | DO jj = 1, jpj |
---|
177 | DO ji = 1, jpi |
---|
178 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
179 | ! Computation of production function for Carbon |
---|
180 | ! --------------------------------------------- |
---|
181 | zpislopen = zpislopeadn(ji,jj,jk) / ( ( r1_rday + bresp * r1_rday ) & |
---|
182 | & * zmxl_fac(ji,jj,jk) * rday + rtrn) |
---|
183 | zpisloped = zpislopeadd(ji,jj,jk) / ( ( r1_rday + bresp * r1_rday ) & |
---|
184 | & * zmxl_fac(ji,jj,jk) * rday + rtrn) |
---|
185 | zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * ( 1.- EXP( -zpislopen * enano(ji,jj,jk) ) ) |
---|
186 | zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * ( 1.- EXP( -zpisloped * ediat(ji,jj,jk) ) ) |
---|
187 | ! Computation of production function for Chlorophyll |
---|
188 | !-------------------------------------------------- |
---|
189 | zpislopen = zpislopeadn(ji,jj,jk) / ( prmax(ji,jj,jk) * zmxl_chl(ji,jj,jk) * rday + rtrn ) |
---|
190 | zpisloped = zpislopeadd(ji,jj,jk) / ( prmax(ji,jj,jk) * zmxl_chl(ji,jj,jk) * rday + rtrn ) |
---|
191 | zprnch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislopen * enano(ji,jj,jk) ) ) |
---|
192 | zprdch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpisloped * ediat(ji,jj,jk) ) ) |
---|
193 | ENDIF |
---|
194 | END DO |
---|
195 | END DO |
---|
196 | END DO |
---|
197 | ELSE |
---|
198 | DO jk = 1, jpkm1 |
---|
199 | DO jj = 1, jpj |
---|
200 | DO ji = 1, jpi |
---|
201 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
202 | ! Computation of production function for Carbon |
---|
203 | ! --------------------------------------------- |
---|
204 | zpislopen = zpislopeadn(ji,jj,jk) / ( zprbio(ji,jj,jk) * rday * xlimphy(ji,jj,jk) + rtrn ) |
---|
205 | zpisloped = zpislopeadd(ji,jj,jk) / ( zprdia(ji,jj,jk) * rday * xlimdia(ji,jj,jk) + rtrn ) |
---|
206 | zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * ( 1.- EXP( -zpislopen * enano(ji,jj,jk) ) ) |
---|
207 | zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * ( 1.- EXP( -zpisloped * ediat(ji,jj,jk) ) ) |
---|
208 | ! Computation of production function for Chlorophyll |
---|
209 | !-------------------------------------------------- |
---|
210 | zpislopen = zpislopen * zmxl_fac(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
211 | zpisloped = zpisloped * zmxl_fac(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
212 | zprnch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpislopen * enano(ji,jj,jk) ) ) |
---|
213 | zprdch(ji,jj,jk) = prmax(ji,jj,jk) * ( 1.- EXP( -zpisloped * ediat(ji,jj,jk) ) ) |
---|
214 | ENDIF |
---|
215 | END DO |
---|
216 | END DO |
---|
217 | END DO |
---|
218 | ENDIF |
---|
219 | |
---|
220 | ! Computation of a proxy of the N/C ratio |
---|
221 | ! --------------------------------------- |
---|
222 | DO jk = 1, jpkm1 |
---|
223 | DO jj = 1, jpj |
---|
224 | DO ji = 1, jpi |
---|
225 | zval = MIN( xnanopo4(ji,jj,jk), ( xnanonh4(ji,jj,jk) + xnanono3(ji,jj,jk) ) ) & |
---|
226 | & * prmax(ji,jj,jk) / ( zprbio(ji,jj,jk) + rtrn ) |
---|
227 | quotan(ji,jj,jk) = MIN( 1., 0.2 + 0.8 * zval ) |
---|
228 | zval = MIN( xdiatpo4(ji,jj,jk), ( xdiatnh4(ji,jj,jk) + xdiatno3(ji,jj,jk) ) ) & |
---|
229 | & * prmax(ji,jj,jk) / ( zprdia(ji,jj,jk) + rtrn ) |
---|
230 | quotad(ji,jj,jk) = MIN( 1., 0.2 + 0.8 * zval ) |
---|
231 | END DO |
---|
232 | END DO |
---|
233 | END DO |
---|
234 | |
---|
235 | |
---|
236 | DO jk = 1, jpkm1 |
---|
237 | DO jj = 1, jpj |
---|
238 | DO ji = 1, jpi |
---|
239 | |
---|
240 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
241 | ! Si/C of diatoms |
---|
242 | ! ------------------------ |
---|
243 | ! Si/C increases with iron stress and silicate availability |
---|
244 | ! Si/C is arbitrariliy increased for very high Si concentrations |
---|
245 | ! to mimic the very high ratios observed in the Southern Ocean (silpot2) |
---|
246 | zlim = trb(ji,jj,jk,jpsil) / ( trb(ji,jj,jk,jpsil) + xksi1 ) |
---|
247 | zsilim = MIN( zprdia(ji,jj,jk) / ( prmax(ji,jj,jk) + rtrn ), xlimsi(ji,jj,jk) ) |
---|
248 | zsilfac = 4.4 * EXP( -4.23 * zsilim ) * MAX( 0.e0, MIN( 1., 2.2 * ( zlim - 0.5 ) ) ) + 1.e0 |
---|
249 | zsiborn = trb(ji,jj,jk,jpsil) * trb(ji,jj,jk,jpsil) * trb(ji,jj,jk,jpsil) |
---|
250 | IF (gphit(ji,jj) < -30 ) THEN |
---|
251 | zsilfac2 = 1. + 2. * zsiborn / ( zsiborn + xksi2**3 ) |
---|
252 | ELSE |
---|
253 | zsilfac2 = 1. + zsiborn / ( zsiborn + xksi2**3 ) |
---|
254 | ENDIF |
---|
255 | zysopt(ji,jj,jk) = grosip * zlim * zsilfac * zsilfac2 |
---|
256 | ENDIF |
---|
257 | END DO |
---|
258 | END DO |
---|
259 | END DO |
---|
260 | |
---|
261 | ! Mixed-layer effect on production |
---|
262 | ! Sea-ice effect on production |
---|
263 | |
---|
264 | DO jk = 1, jpkm1 |
---|
265 | DO jj = 1, jpj |
---|
266 | DO ji = 1, jpi |
---|
267 | zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * ( 1. - fr_i(ji,jj) ) |
---|
268 | zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * ( 1. - fr_i(ji,jj) ) |
---|
269 | END DO |
---|
270 | END DO |
---|
271 | END DO |
---|
272 | |
---|
273 | ! Computation of the various production terms |
---|
274 | !CDIR NOVERRCHK |
---|
275 | DO jk = 1, jpkm1 |
---|
276 | !CDIR NOVERRCHK |
---|
277 | DO jj = 1, jpj |
---|
278 | !CDIR NOVERRCHK |
---|
279 | DO ji = 1, jpi |
---|
280 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
281 | ! production terms for nanophyto. (C) |
---|
282 | zprorcan(ji,jj,jk) = zprbio(ji,jj,jk) * xlimphy(ji,jj,jk) * trb(ji,jj,jk,jpphy) * rfact2 |
---|
283 | zpronewn(ji,jj,jk) = zprorcan(ji,jj,jk)* xnanono3(ji,jj,jk) / ( xnanono3(ji,jj,jk) + xnanonh4(ji,jj,jk) + rtrn ) |
---|
284 | ! |
---|
285 | zratio = trb(ji,jj,jk,jpnfe) / ( trb(ji,jj,jk,jpphy) * fecnm + rtrn ) |
---|
286 | zmax = MAX( 0., ( 1. - zratio ) / ABS( 1.05 - zratio ) ) |
---|
287 | zprofen(ji,jj,jk) = fecnm * prmax(ji,jj,jk) * ( 1.0 - fr_i(ji,jj) ) & |
---|
288 | & * ( 4. - 4.5 * xlimnfe(ji,jj,jk) / ( xlimnfe(ji,jj,jk) + 0.5 ) ) & |
---|
289 | & * biron(ji,jj,jk) / ( biron(ji,jj,jk) + concnfe(ji,jj,jk) ) & |
---|
290 | & * zmax * trb(ji,jj,jk,jpphy) * rfact2 |
---|
291 | ! production terms for diatoms (C) |
---|
292 | zprorcad(ji,jj,jk) = zprdia(ji,jj,jk) * xlimdia(ji,jj,jk) * trb(ji,jj,jk,jpdia) * rfact2 |
---|
293 | zpronewd(ji,jj,jk) = zprorcad(ji,jj,jk) * xdiatno3(ji,jj,jk) / ( xdiatno3(ji,jj,jk) + xdiatnh4(ji,jj,jk) + rtrn ) |
---|
294 | ! |
---|
295 | zratio = trb(ji,jj,jk,jpdfe) / ( trb(ji,jj,jk,jpdia) * fecdm + rtrn ) |
---|
296 | zmax = MAX( 0., ( 1. - zratio ) / ABS( 1.05 - zratio ) ) |
---|
297 | zprofed(ji,jj,jk) = fecdm * prmax(ji,jj,jk) * ( 1.0 - fr_i(ji,jj) ) & |
---|
298 | & * ( 4. - 4.5 * xlimdfe(ji,jj,jk) / ( xlimdfe(ji,jj,jk) + 0.5 ) ) & |
---|
299 | & * biron(ji,jj,jk) / ( biron(ji,jj,jk) + concdfe(ji,jj,jk) ) & |
---|
300 | & * zmax * trb(ji,jj,jk,jpdia) * rfact2 |
---|
301 | ENDIF |
---|
302 | END DO |
---|
303 | END DO |
---|
304 | END DO |
---|
305 | |
---|
306 | ! Computation of the chlorophyll production terms |
---|
307 | DO jk = 1, jpkm1 |
---|
308 | DO jj = 1, jpj |
---|
309 | DO ji = 1, jpi |
---|
310 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
311 | ! production terms for nanophyto. ( chlorophyll ) |
---|
312 | znanotot = enano(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
313 | zprod = rday * zprorcan(ji,jj,jk) * zprnch(ji,jj,jk) * xlimphy(ji,jj,jk) |
---|
314 | zprochln = chlcmin * 12. * zprorcan (ji,jj,jk) |
---|
315 | chlcnm_n = MIN ( chlcnm, ( chlcnm / (1. - 1.14 / 43.4 *tsn(ji,jj,jk,jp_tem))) * (1. - 1.14 / 43.4 * 20.)) |
---|
316 | zprochln = zprochln + (chlcnm_n-chlcmin) * 12. * zprod / & |
---|
317 | & ( zpislopeadn(ji,jj,jk) * znanotot +rtrn) |
---|
318 | ! production terms for diatoms ( chlorophyll ) |
---|
319 | zdiattot = ediat(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) |
---|
320 | zprod = rday * zprorcad(ji,jj,jk) * zprdch(ji,jj,jk) * xlimdia(ji,jj,jk) |
---|
321 | zprochld = chlcmin * 12. * zprorcad(ji,jj,jk) |
---|
322 | chlcdm_n = MIN ( chlcdm, ( chlcdm / (1. - 1.14 / 43.4 * tsn(ji,jj,jk,jp_tem))) * (1. - 1.14 / 43.4 * 20.)) |
---|
323 | zprochld = zprochld + (chlcdm_n-chlcmin) * 12. * zprod / & |
---|
324 | & ( zpislopeadd(ji,jj,jk) * zdiattot +rtrn ) |
---|
325 | ! Update the arrays TRA which contain the Chla sources and sinks |
---|
326 | tra(ji,jj,jk,jpnch) = tra(ji,jj,jk,jpnch) + zprochln * texcretn |
---|
327 | tra(ji,jj,jk,jpdch) = tra(ji,jj,jk,jpdch) + zprochld * texcretd |
---|
328 | ENDIF |
---|
329 | END DO |
---|
330 | END DO |
---|
331 | END DO |
---|
332 | |
---|
333 | ! Update the arrays TRA which contain the biological sources and sinks |
---|
334 | DO jk = 1, jpkm1 |
---|
335 | DO jj = 1, jpj |
---|
336 | DO ji =1 ,jpi |
---|
337 | IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN |
---|
338 | zproreg = zprorcan(ji,jj,jk) - zpronewn(ji,jj,jk) |
---|
339 | zproreg2 = zprorcad(ji,jj,jk) - zpronewd(ji,jj,jk) |
---|
340 | zdocprod = excretd * zprorcad(ji,jj,jk) + excretn * zprorcan(ji,jj,jk) |
---|
341 | tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) - zprorcan(ji,jj,jk) - zprorcad(ji,jj,jk) |
---|
342 | tra(ji,jj,jk,jpno3) = tra(ji,jj,jk,jpno3) - zpronewn(ji,jj,jk) - zpronewd(ji,jj,jk) |
---|
343 | tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) - zproreg - zproreg2 |
---|
344 | tra(ji,jj,jk,jpphy) = tra(ji,jj,jk,jpphy) + zprorcan(ji,jj,jk) * texcretn |
---|
345 | tra(ji,jj,jk,jpnfe) = tra(ji,jj,jk,jpnfe) + zprofen(ji,jj,jk) * texcretn |
---|
346 | tra(ji,jj,jk,jpdia) = tra(ji,jj,jk,jpdia) + zprorcad(ji,jj,jk) * texcretd |
---|
347 | tra(ji,jj,jk,jpdfe) = tra(ji,jj,jk,jpdfe) + zprofed(ji,jj,jk) * texcretd |
---|
348 | tra(ji,jj,jk,jpdsi) = tra(ji,jj,jk,jpdsi) + zprorcad(ji,jj,jk) * zysopt(ji,jj,jk) * texcretd |
---|
349 | tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + zdocprod |
---|
350 | zfeup = texcretn * zprofen(ji,jj,jk) + texcretd * zprofed(ji,jj,jk) |
---|
351 | #if defined key_ligand |
---|
352 | tra(ji,jj,jk,jplgw) = tra(ji,jj,jk,jplgw) + zdocprod * ldocp - zfeup * plig(ji,jj,jk) * lthet |
---|
353 | zpligprod(ji,jj,jk) = zdocprod * ldocp |
---|
354 | zpligprod2(ji,jj,jk) = zfeup * plig(ji,jj,jk) * lthet |
---|
355 | #endif |
---|
356 | tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) + o2ut * ( zproreg + zproreg2) & |
---|
357 | & + ( o2ut + o2nit ) * ( zpronewn(ji,jj,jk) + zpronewd(ji,jj,jk) ) |
---|
358 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - zfeup |
---|
359 | tra(ji,jj,jk,jpsil) = tra(ji,jj,jk,jpsil) - texcretd * zprorcad(ji,jj,jk) * zysopt(ji,jj,jk) |
---|
360 | tra(ji,jj,jk,jpdic) = tra(ji,jj,jk,jpdic) - zprorcan(ji,jj,jk) - zprorcad(ji,jj,jk) |
---|
361 | tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + rno3 * ( zpronewn(ji,jj,jk) + zpronewd(ji,jj,jk) ) & |
---|
362 | & - rno3 * ( zproreg + zproreg2 ) |
---|
363 | ENDIF |
---|
364 | END DO |
---|
365 | END DO |
---|
366 | END DO |
---|
367 | |
---|
368 | |
---|
369 | ! Total primary production per year |
---|
370 | IF( iom_use( "tintpp" ) .OR. ( ln_check_mass .AND. kt == nitend .AND. knt == nrdttrc ) ) & |
---|
371 | & tpp = glob_sum( ( zprorcan(:,:,:) + zprorcad(:,:,:) ) * cvol(:,:,:) ) |
---|
372 | |
---|
373 | IF( lk_iomput ) THEN |
---|
374 | IF( knt == nrdttrc ) THEN |
---|
375 | CALL wrk_alloc( jpi, jpj, zw2d ) |
---|
376 | CALL wrk_alloc( jpi, jpj, jpk, zw3d ) |
---|
377 | zfact = 1.e+3 * rfact2r ! conversion from mol/l/kt to mol/m3/s |
---|
378 | ! |
---|
379 | IF( iom_use( "PPPHY" ) .OR. iom_use( "PPPHY2" ) ) THEN |
---|
380 | zw3d(:,:,:) = zprorcan(:,:,:) * zfact * tmask(:,:,:) ! primary production by nanophyto |
---|
381 | CALL iom_put( "PPPHY" , zw3d ) |
---|
382 | ! |
---|
383 | zw3d(:,:,:) = zprorcad(:,:,:) * zfact * tmask(:,:,:) ! primary production by diatomes |
---|
384 | CALL iom_put( "PPPHY2" , zw3d ) |
---|
385 | ENDIF |
---|
386 | IF( iom_use( "PPNEWN" ) .OR. iom_use( "PPNEWD" ) ) THEN |
---|
387 | zw3d(:,:,:) = zpronewn(:,:,:) * zfact * tmask(:,:,:) ! new primary production by nanophyto |
---|
388 | CALL iom_put( "PPNEWN" , zw3d ) |
---|
389 | ! |
---|
390 | zw3d(:,:,:) = zpronewd(:,:,:) * zfact * tmask(:,:,:) ! new primary production by diatomes |
---|
391 | CALL iom_put( "PPNEWD" , zw3d ) |
---|
392 | ENDIF |
---|
393 | IF( iom_use( "PBSi" ) ) THEN |
---|
394 | zw3d(:,:,:) = zprorcad(:,:,:) * zfact * tmask(:,:,:) * zysopt(:,:,:) ! biogenic silica production |
---|
395 | CALL iom_put( "PBSi" , zw3d ) |
---|
396 | ENDIF |
---|
397 | IF( iom_use( "PFeN" ) .OR. iom_use( "PFeD" ) ) THEN |
---|
398 | zw3d(:,:,:) = zprofen(:,:,:) * zfact * tmask(:,:,:) ! biogenic iron production by nanophyto |
---|
399 | CALL iom_put( "PFeN" , zw3d ) |
---|
400 | ! |
---|
401 | zw3d(:,:,:) = zprofed(:,:,:) * zfact * tmask(:,:,:) ! biogenic iron production by diatomes |
---|
402 | CALL iom_put( "PFeD" , zw3d ) |
---|
403 | ENDIF |
---|
404 | IF( iom_use( "Mumax" ) ) THEN |
---|
405 | zw3d(:,:,:) = prmax(:,:,:) * tmask(:,:,:) ! Maximum growth rate |
---|
406 | CALL iom_put( "Mumax" , zw3d ) |
---|
407 | ENDIF |
---|
408 | IF( iom_use( "MuN" ) .OR. iom_use( "MuD" ) ) THEN |
---|
409 | zw3d(:,:,:) = zprbio(:,:,:) * xlimphy(:,:,:) * tmask(:,:,:) ! Realized growth rate for nanophyto |
---|
410 | CALL iom_put( "MuN" , zw3d ) |
---|
411 | ! |
---|
412 | zw3d(:,:,:) = zprdia(:,:,:) * xlimdia(:,:,:) * tmask(:,:,:) ! Realized growth rate for diatoms |
---|
413 | CALL iom_put( "MuD" , zw3d ) |
---|
414 | ENDIF |
---|
415 | IF( iom_use( "LNlight" ) .OR. iom_use( "LDlight" ) ) THEN |
---|
416 | zw3d(:,:,:) = zprbio (:,:,:) / (prmax(:,:,:) + rtrn) * tmask(:,:,:) ! light limitation term |
---|
417 | CALL iom_put( "LNlight" , zw3d ) |
---|
418 | ! |
---|
419 | zw3d(:,:,:) = zprdia (:,:,:) / (prmax(:,:,:) + rtrn) * tmask(:,:,:) ! light limitation term |
---|
420 | CALL iom_put( "LDlight" , zw3d ) |
---|
421 | ENDIF |
---|
422 | IF( iom_use( "TPP" ) ) THEN |
---|
423 | zw3d(:,:,:) = ( zprorcan(:,:,:) + zprorcad(:,:,:) ) * zfact * tmask(:,:,:) ! total primary production |
---|
424 | CALL iom_put( "TPP" , zw3d ) |
---|
425 | ENDIF |
---|
426 | IF( iom_use( "TPNEW" ) ) THEN |
---|
427 | zw3d(:,:,:) = ( zpronewn(:,:,:) + zpronewd(:,:,:) ) * zfact * tmask(:,:,:) ! total new production |
---|
428 | CALL iom_put( "TPNEW" , zw3d ) |
---|
429 | ENDIF |
---|
430 | IF( iom_use( "TPBFE" ) ) THEN |
---|
431 | zw3d(:,:,:) = ( zprofen(:,:,:) + zprofed(:,:,:) ) * zfact * tmask(:,:,:) ! total biogenic iron production |
---|
432 | CALL iom_put( "TPBFE" , zw3d ) |
---|
433 | ENDIF |
---|
434 | #if defined key_ligand |
---|
435 | IF( iom_use( "LPRODP" ) ) THEN |
---|
436 | zw3d(:,:,:) = zpligprod(:,:,:) * 1e9 * zfact * tmask(:,:,:) |
---|
437 | CALL iom_put( "LPRODP" , zw3d ) |
---|
438 | ENDIF |
---|
439 | IF( iom_use( "LDETP" ) ) THEN |
---|
440 | zw3d(:,:,:) = zpligprod2(:,:,:) * 1e9 * zfact * tmask(:,:,:) |
---|
441 | CALL iom_put( "LDETP" , zw3d ) |
---|
442 | ENDIF |
---|
443 | #endif |
---|
444 | IF( iom_use( "INTPPPHY" ) .OR. iom_use( "INTPPPHY2" ) ) THEN |
---|
445 | zw2d(:,:) = 0. |
---|
446 | DO jk = 1, jpkm1 |
---|
447 | zw2d(:,:) = zw2d(:,:) + zprorcan(:,:,jk) * fse3t(:,:,jk) * zfact * tmask(:,:,jk) ! vert. integrated primary produc. by nano |
---|
448 | ENDDO |
---|
449 | CALL iom_put( "INTPPPHY" , zw2d ) |
---|
450 | ! |
---|
451 | zw2d(:,:) = 0. |
---|
452 | DO jk = 1, jpkm1 |
---|
453 | zw2d(:,:) = zw2d(:,:) + zprorcad(:,:,jk) * fse3t(:,:,jk) * zfact * tmask(:,:,jk) ! vert. integrated primary produc. by diatom |
---|
454 | ENDDO |
---|
455 | CALL iom_put( "INTPPPHY2" , zw2d ) |
---|
456 | ENDIF |
---|
457 | IF( iom_use( "INTPP" ) ) THEN |
---|
458 | zw2d(:,:) = 0. |
---|
459 | DO jk = 1, jpkm1 |
---|
460 | zw2d(:,:) = zw2d(:,:) + ( zprorcan(:,:,jk) + zprorcad(:,:,jk) ) * fse3t(:,:,jk) * zfact * tmask(:,:,jk) ! vert. integrated pp |
---|
461 | ENDDO |
---|
462 | CALL iom_put( "INTPP" , zw2d ) |
---|
463 | ENDIF |
---|
464 | IF( iom_use( "INTPNEW" ) ) THEN |
---|
465 | zw2d(:,:) = 0. |
---|
466 | DO jk = 1, jpkm1 |
---|
467 | zw2d(:,:) = zw2d(:,:) + ( zpronewn(:,:,jk) + zpronewd(:,:,jk) ) * fse3t(:,:,jk) * zfact * tmask(:,:,jk) ! vert. integrated new prod |
---|
468 | ENDDO |
---|
469 | CALL iom_put( "INTPNEW" , zw2d ) |
---|
470 | ENDIF |
---|
471 | IF( iom_use( "INTPBFE" ) ) THEN ! total biogenic iron production ( vertically integrated ) |
---|
472 | zw2d(:,:) = 0. |
---|
473 | DO jk = 1, jpkm1 |
---|
474 | zw2d(:,:) = zw2d(:,:) + ( zprofen(:,:,jk) + zprofed(:,:,jk) ) * fse3t(:,:,jk) * zfact * tmask(:,:,jk) ! vert integr. bfe prod |
---|
475 | ENDDO |
---|
476 | CALL iom_put( "INTPBFE" , zw2d ) |
---|
477 | ENDIF |
---|
478 | IF( iom_use( "INTPBSI" ) ) THEN ! total biogenic silica production ( vertically integrated ) |
---|
479 | zw2d(:,:) = 0. |
---|
480 | DO jk = 1, jpkm1 |
---|
481 | zw2d(:,:) = zw2d(:,:) + zprorcad(:,:,jk) * zysopt(:,:,jk) * fse3t(:,:,jk) * zfact * tmask(:,:,jk) ! vert integr. bsi prod |
---|
482 | ENDDO |
---|
483 | CALL iom_put( "INTPBSI" , zw2d ) |
---|
484 | ENDIF |
---|
485 | IF( iom_use( "tintpp" ) ) CALL iom_put( "tintpp" , tpp * zfact ) ! global total integrated primary production molC/s |
---|
486 | ! |
---|
487 | CALL wrk_dealloc( jpi, jpj, zw2d ) |
---|
488 | CALL wrk_dealloc( jpi, jpj, jpk, zw3d ) |
---|
489 | ENDIF |
---|
490 | ELSE |
---|
491 | IF( ln_diatrc ) THEN |
---|
492 | zfact = 1.e+3 * rfact2r |
---|
493 | trc3d(:,:,:,jp_pcs0_3d + 4) = zprorcan(:,:,:) * zfact * tmask(:,:,:) |
---|
494 | trc3d(:,:,:,jp_pcs0_3d + 5) = zprorcad(:,:,:) * zfact * tmask(:,:,:) |
---|
495 | trc3d(:,:,:,jp_pcs0_3d + 6) = zpronewn(:,:,:) * zfact * tmask(:,:,:) |
---|
496 | trc3d(:,:,:,jp_pcs0_3d + 7) = zpronewd(:,:,:) * zfact * tmask(:,:,:) |
---|
497 | trc3d(:,:,:,jp_pcs0_3d + 8) = zprorcad(:,:,:) * zfact * tmask(:,:,:) * zysopt(:,:,:) |
---|
498 | trc3d(:,:,:,jp_pcs0_3d + 9) = zprofed (:,:,:) * zfact * tmask(:,:,:) |
---|
499 | # if ! defined key_kriest |
---|
500 | trc3d(:,:,:,jp_pcs0_3d + 10) = zprofen (:,:,:) * zfact * tmask(:,:,:) |
---|
501 | # endif |
---|
502 | ENDIF |
---|
503 | ENDIF |
---|
504 | |
---|
505 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
506 | WRITE(charout, FMT="('prod')") |
---|
507 | CALL prt_ctl_trc_info(charout) |
---|
508 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
509 | ENDIF |
---|
510 | ! |
---|
511 | CALL wrk_dealloc( jpi, jpj, zmixnano, zmixdiat, zstrn ) |
---|
512 | CALL wrk_dealloc( jpi, jpj, jpk, zpislopeadn, zpislopeadd, zprdia, zprbio, zprdch, zprnch, zysopt ) |
---|
513 | CALL wrk_dealloc( jpi, jpj, jpk, zmxl_fac, zmxl_chl ) |
---|
514 | CALL wrk_dealloc( jpi, jpj, jpk, zprorcan, zprorcad, zprofed, zprofen, zpronewn, zpronewd ) |
---|
515 | #if defined key_ligand |
---|
516 | CALL wrk_dealloc( jpi, jpj, jpk, zpligprod, zpligprod2 ) |
---|
517 | #endif |
---|
518 | ! |
---|
519 | IF( nn_timing == 1 ) CALL timing_stop('p4z_prod') |
---|
520 | ! |
---|
521 | END SUBROUTINE p4z_prod |
---|
522 | |
---|
523 | |
---|
524 | SUBROUTINE p4z_prod_init |
---|
525 | !!---------------------------------------------------------------------- |
---|
526 | !! *** ROUTINE p4z_prod_init *** |
---|
527 | !! |
---|
528 | !! ** Purpose : Initialization of phytoplankton production parameters |
---|
529 | !! |
---|
530 | !! ** Method : Read the nampisprod namelist and check the parameters |
---|
531 | !! called at the first timestep (nittrc000) |
---|
532 | !! |
---|
533 | !! ** input : Namelist nampisprod |
---|
534 | !!---------------------------------------------------------------------- |
---|
535 | ! |
---|
536 | NAMELIST/nampisprod/ pislopen, pisloped, xadap, ln_newprod, bresp, excretn, excretd, & |
---|
537 | & chlcnm, chlcdm, chlcmin, fecnm, fecdm, grosip |
---|
538 | INTEGER :: ios ! Local integer output status for namelist read |
---|
539 | !!---------------------------------------------------------------------- |
---|
540 | |
---|
541 | REWIND( numnatp_ref ) ! Namelist nampisprod in reference namelist : Pisces phytoplankton production |
---|
542 | READ ( numnatp_ref, nampisprod, IOSTAT = ios, ERR = 901) |
---|
543 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisprod in reference namelist', lwp ) |
---|
544 | |
---|
545 | REWIND( numnatp_cfg ) ! Namelist nampisprod in configuration namelist : Pisces phytoplankton production |
---|
546 | READ ( numnatp_cfg, nampisprod, IOSTAT = ios, ERR = 902 ) |
---|
547 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisprod in configuration namelist', lwp ) |
---|
548 | IF(lwm) WRITE ( numonp, nampisprod ) |
---|
549 | |
---|
550 | IF(lwp) THEN ! control print |
---|
551 | WRITE(numout,*) ' ' |
---|
552 | WRITE(numout,*) ' Namelist parameters for phytoplankton growth, nampisprod' |
---|
553 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
554 | WRITE(numout,*) ' Enable new parame. of production (T/F) ln_newprod =', ln_newprod |
---|
555 | WRITE(numout,*) ' mean Si/C ratio grosip =', grosip |
---|
556 | WRITE(numout,*) ' P-I slope pislopen =', pislopen |
---|
557 | WRITE(numout,*) ' Acclimation factor to low light xadap =', xadap |
---|
558 | WRITE(numout,*) ' excretion ratio of nanophytoplankton excretn =', excretn |
---|
559 | WRITE(numout,*) ' excretion ratio of diatoms excretd =', excretd |
---|
560 | IF( ln_newprod ) THEN |
---|
561 | WRITE(numout,*) ' basal respiration in phytoplankton bresp =', bresp |
---|
562 | WRITE(numout,*) ' Maximum Chl/C in phytoplankton chlcmin =', chlcmin |
---|
563 | ENDIF |
---|
564 | WRITE(numout,*) ' P-I slope for diatoms pisloped =', pisloped |
---|
565 | WRITE(numout,*) ' Minimum Chl/C in nanophytoplankton chlcnm =', chlcnm |
---|
566 | WRITE(numout,*) ' Minimum Chl/C in diatoms chlcdm =', chlcdm |
---|
567 | WRITE(numout,*) ' Maximum Fe/C in nanophytoplankton fecnm =', fecnm |
---|
568 | WRITE(numout,*) ' Minimum Fe/C in diatoms fecdm =', fecdm |
---|
569 | ENDIF |
---|
570 | ! |
---|
571 | r1_rday = 1._wp / rday |
---|
572 | texcretn = 1._wp - excretn |
---|
573 | texcretd = 1._wp - excretd |
---|
574 | tpp = 0._wp |
---|
575 | ! |
---|
576 | END SUBROUTINE p4z_prod_init |
---|
577 | |
---|
578 | |
---|
579 | INTEGER FUNCTION p4z_prod_alloc() |
---|
580 | !!---------------------------------------------------------------------- |
---|
581 | !! *** ROUTINE p4z_prod_alloc *** |
---|
582 | !!---------------------------------------------------------------------- |
---|
583 | ALLOCATE( prmax(jpi,jpj,jpk), quotan(jpi,jpj,jpk), quotad(jpi,jpj,jpk), STAT = p4z_prod_alloc ) |
---|
584 | ! |
---|
585 | IF( p4z_prod_alloc /= 0 ) CALL ctl_warn('p4z_prod_alloc : failed to allocate arrays.') |
---|
586 | ! |
---|
587 | END FUNCTION p4z_prod_alloc |
---|
588 | |
---|
589 | #else |
---|
590 | !!====================================================================== |
---|
591 | !! Dummy module : No PISCES bio-model |
---|
592 | !!====================================================================== |
---|
593 | CONTAINS |
---|
594 | SUBROUTINE p4z_prod ! Empty routine |
---|
595 | END SUBROUTINE p4z_prod |
---|
596 | #endif |
---|
597 | |
---|
598 | !!====================================================================== |
---|
599 | END MODULE p4zprod |
---|