1 | MODULE p4zrem |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p4zrem *** |
---|
4 | !! TOP : PISCES Compute remineralization/dissolution of organic compounds |
---|
5 | !!========================================================================= |
---|
6 | !! History : 1.0 ! 2004 (O. Aumont) Original code |
---|
7 | !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 |
---|
8 | !! 3.4 ! 2011-06 (O. Aumont, C. Ethe) Quota model for iron |
---|
9 | !! 3.6 ! 2016-03 (O. Aumont) Quota model and reorganization |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | #if defined key_pisces |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! 'key_top' and TOP models |
---|
14 | !! 'key_pisces' PISCES bio-model |
---|
15 | !!---------------------------------------------------------------------- |
---|
16 | !! p4z_rem : Compute remineralization/dissolution of organic compounds |
---|
17 | !! p4z_rem_init : Initialisation of parameters for remineralisation |
---|
18 | !! p4z_rem_alloc : Allocate remineralisation variables |
---|
19 | !!---------------------------------------------------------------------- |
---|
20 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
21 | USE trc ! passive tracers common variables |
---|
22 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
23 | USE p4zopt ! optical model |
---|
24 | USE p4zche ! chemical model |
---|
25 | USE p4zlim ! Phytoplankton limitation factors |
---|
26 | USE p4zprod ! Growth rate of the 2 phyto groups |
---|
27 | USE p4zsink ! Sinking of particles |
---|
28 | USE prtctl_trc ! print control for debugging |
---|
29 | USE iom ! I/O manager |
---|
30 | |
---|
31 | |
---|
32 | IMPLICIT NONE |
---|
33 | PRIVATE |
---|
34 | |
---|
35 | PUBLIC p4z_rem ! called in p4zbio.F90 |
---|
36 | PUBLIC p4z_rem_init ! called in trcsms_pisces.F90 |
---|
37 | PUBLIC p4z_rem_alloc |
---|
38 | |
---|
39 | !! * Shared module variables |
---|
40 | REAL(wp), PUBLIC :: xremik !: remineralisation rate of DOC |
---|
41 | REAL(wp), PUBLIC :: nitrif !: NH4 nitrification rate |
---|
42 | REAL(wp), PUBLIC :: xsirem !: remineralisation rate of BSi |
---|
43 | REAL(wp), PUBLIC :: xsiremlab !: fast remineralisation rate of BSi |
---|
44 | REAL(wp), PUBLIC :: xsilab !: fraction of labile biogenic silica |
---|
45 | REAL(wp), PUBLIC :: oxymin !: halk saturation constant for anoxia |
---|
46 | REAL(wp), PUBLIC :: oxymin2 !: Minimum O2 concentration for oxic remin. |
---|
47 | REAL(wp), PUBLIC :: feratb !: Fe/C quota in bacteria |
---|
48 | REAL(wp), PUBLIC :: xkferb !: Half-saturation constant for bacteria Fe/C |
---|
49 | |
---|
50 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: denitr !: denitrification array |
---|
51 | |
---|
52 | |
---|
53 | !!* Substitution |
---|
54 | # include "top_substitute.h90" |
---|
55 | !!---------------------------------------------------------------------- |
---|
56 | !! NEMO/TOP 3.3 , NEMO Consortium (2010) |
---|
57 | !! $Id: p4zrem.F90 3160 2011-11-20 14:27:18Z cetlod $ |
---|
58 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
59 | !!---------------------------------------------------------------------- |
---|
60 | CONTAINS |
---|
61 | |
---|
62 | SUBROUTINE p4z_rem( kt, jnt ) |
---|
63 | !!--------------------------------------------------------------------- |
---|
64 | !! *** ROUTINE p4z_rem *** |
---|
65 | !! |
---|
66 | !! ** Purpose : Compute remineralization/scavenging of organic compounds |
---|
67 | !! |
---|
68 | !! ** Method : - ??? |
---|
69 | !!--------------------------------------------------------------------- |
---|
70 | ! |
---|
71 | INTEGER, INTENT(in) :: kt, jnt ! ocean time step |
---|
72 | ! |
---|
73 | INTEGER :: ji, jj, jk |
---|
74 | REAL(wp) :: zremik, zsiremin |
---|
75 | REAL(wp) :: zsatur, zsatur2, znusil, znusil2, zdep, zdepmin, zfactdep |
---|
76 | REAL(wp) :: zbactfer, zolimit, zdenitnh4 |
---|
77 | REAL(wp) :: zosil, ztem,ztoto,zpuis |
---|
78 | REAL(wp) :: zonitr, zstep, zrfact2 |
---|
79 | CHARACTER (len=25) :: charout |
---|
80 | REAL(wp), POINTER, DIMENSION(:,: ) :: ztempbac |
---|
81 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zdepbac, zolimi, zdepprod, zfacsi, zfacsib, znitr |
---|
82 | !!--------------------------------------------------------------------- |
---|
83 | ! |
---|
84 | IF( nn_timing == 1 ) CALL timing_start('p4z_rem') |
---|
85 | ! |
---|
86 | ! Allocate temporary workspace |
---|
87 | CALL wrk_alloc( jpi, jpj, ztempbac ) |
---|
88 | CALL wrk_alloc( jpi, jpj, jpk, zdepbac, zdepprod, zolimi, znitr, zfacsi, zfacsib ) |
---|
89 | |
---|
90 | ! Initialization of local variables |
---|
91 | ! --------------------------------- |
---|
92 | |
---|
93 | ! Initialisation of temprary arrys |
---|
94 | zdepprod(:,:,:) = 1._wp |
---|
95 | ztempbac(:,:) = 0._wp |
---|
96 | zfacsib(:,:,:) = xsilab / ( 1.0 - xsilab ) |
---|
97 | zfacsi(:,:,:) = xsilab |
---|
98 | |
---|
99 | ! Computation of the mean phytoplankton concentration as |
---|
100 | ! a crude estimate of the bacterial biomass |
---|
101 | ! this parameterization has been deduced from a model version |
---|
102 | ! that was modeling explicitely bacteria |
---|
103 | ! ------------------------------------------------------- |
---|
104 | DO jk = 1, jpkm1 |
---|
105 | DO jj = 1, jpj |
---|
106 | DO ji = 1, jpi |
---|
107 | zdep = MAX( hmld(ji,jj), heup(ji,jj) ) |
---|
108 | IF( fsdept(ji,jj,jk) < zdep ) THEN |
---|
109 | zdepbac(ji,jj,jk) = MIN( 0.7 * ( trb(ji,jj,jk,jpzoo) + 2.* trb(ji,jj,jk,jpmes) ), 4.e-6 ) |
---|
110 | ztempbac(ji,jj) = zdepbac(ji,jj,jk) |
---|
111 | ELSE |
---|
112 | zdepmin = MIN( 1., zdep / fsdept(ji,jj,jk) ) |
---|
113 | zdepbac (ji,jj,jk) = zdepmin**0.683 * ztempbac(ji,jj) |
---|
114 | zdepprod(ji,jj,jk) = zdepmin**0.273 |
---|
115 | ENDIF |
---|
116 | END DO |
---|
117 | END DO |
---|
118 | END DO |
---|
119 | |
---|
120 | DO jk = 1, jpkm1 |
---|
121 | DO jj = 1, jpj |
---|
122 | DO ji = 1, jpi |
---|
123 | ! denitrification factor computed from O2 levels |
---|
124 | ! ---------------------------------------------- |
---|
125 | nitrfac(ji,jj,jk) = MAX( 0.e0, 0.4 * ( oxymin2 - trb(ji,jj,jk,jpoxy) ) & |
---|
126 | & / ( oxymin + trb(ji,jj,jk,jpoxy) ) ) |
---|
127 | nitrfac(ji,jj,jk) = MIN( 1., nitrfac(ji,jj,jk) ) |
---|
128 | END DO |
---|
129 | END DO |
---|
130 | END DO |
---|
131 | |
---|
132 | DO jk = 1, jpkm1 |
---|
133 | DO jj = 1, jpj |
---|
134 | DO ji = 1, jpi |
---|
135 | zstep = xstep |
---|
136 | # if defined key_degrad |
---|
137 | zstep = zstep * facvol(ji,jj,jk) |
---|
138 | # endif |
---|
139 | ! DOC ammonification. Depends on depth, phytoplankton biomass |
---|
140 | ! and a limitation term which is supposed to be a parameterization |
---|
141 | ! of the bacterial activity. |
---|
142 | zremik = xremik * zstep / 1.e-6 * xlimbac(ji,jj,jk) * zdepbac(ji,jj,jk) |
---|
143 | zremik = MAX( zremik, 2.74e-4 * xstep ) |
---|
144 | ! Ammonification in oxic waters with oxygen consumption |
---|
145 | ! ----------------------------------------------------- |
---|
146 | zolimit = zremik * ( 1.- nitrfac(ji,jj,jk) ) * trb(ji,jj,jk,jpdoc) |
---|
147 | zolimi(ji,jj,jk) = MIN( ( trb(ji,jj,jk,jpoxy) - rtrn ) / o2ut, zolimit ) |
---|
148 | ! Ammonification in suboxic waters with denitrification |
---|
149 | ! ------------------------------------------------------- |
---|
150 | denitr(ji,jj,jk) = MIN( ( trb(ji,jj,jk,jpno3) - rtrn ) / rdenit, & |
---|
151 | & zremik * nitrfac(ji,jj,jk) * trb(ji,jj,jk,jpdoc) ) |
---|
152 | ! |
---|
153 | zolimi (ji,jj,jk) = MAX( 0.e0, zolimi (ji,jj,jk) ) |
---|
154 | denitr (ji,jj,jk) = MAX( 0.e0, denitr (ji,jj,jk) ) |
---|
155 | ! Update of the tracers trends |
---|
156 | ! ---------------------------- |
---|
157 | tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) + zolimi (ji,jj,jk) + denitr(ji,jj,jk) |
---|
158 | tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) + zolimi (ji,jj,jk) + denitr(ji,jj,jk) |
---|
159 | tra(ji,jj,jk,jpno3) = tra(ji,jj,jk,jpno3) - denitr (ji,jj,jk) * rdenit |
---|
160 | tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) - zolimi (ji,jj,jk) - denitr(ji,jj,jk) |
---|
161 | tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) - zolimi (ji,jj,jk) * o2ut |
---|
162 | tra(ji,jj,jk,jpdic) = tra(ji,jj,jk,jpdic) + zolimi (ji,jj,jk) + denitr(ji,jj,jk) |
---|
163 | tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + rno3 * ( zolimi(ji,jj,jk) & |
---|
164 | & + ( rdenit + 1.) * denitr(ji,jj,jk) ) |
---|
165 | END DO |
---|
166 | END DO |
---|
167 | END DO |
---|
168 | |
---|
169 | |
---|
170 | DO jk = 1, jpkm1 |
---|
171 | DO jj = 1, jpj |
---|
172 | DO ji = 1, jpi |
---|
173 | zstep = xstep |
---|
174 | # if defined key_degrad |
---|
175 | zstep = zstep * facvol(ji,jj,jk) |
---|
176 | # endif |
---|
177 | ! NH4 nitrification to NO3. Ceased for oxygen concentrations |
---|
178 | ! below 2 umol/L. Inhibited at strong light |
---|
179 | ! ---------------------------------------------------------- |
---|
180 | zonitr = nitrif * zstep * trb(ji,jj,jk,jpnh4) * ( 1.- nitrfac(ji,jj,jk) ) & |
---|
181 | & / ( 1.+ emoy(ji,jj,jk) ) * ( 1. + fr_i(ji,jj) * emoy(ji,jj,jk) ) |
---|
182 | zdenitnh4 = nitrif * zstep * trb(ji,jj,jk,jpnh4) * nitrfac(ji,jj,jk) |
---|
183 | ! Update of the tracers trends |
---|
184 | ! ---------------------------- |
---|
185 | tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) - zonitr - zdenitnh4 |
---|
186 | tra(ji,jj,jk,jpno3) = tra(ji,jj,jk,jpno3) + zonitr - rdenita * zdenitnh4 |
---|
187 | tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) - o2nit * zonitr |
---|
188 | tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) - 2 * rno3 * zonitr + rno3 * ( rdenita - 1. ) * zdenitnh4 |
---|
189 | znitr(ji,jj,jk) = zonitr |
---|
190 | END DO |
---|
191 | END DO |
---|
192 | END DO |
---|
193 | |
---|
194 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
195 | WRITE(charout, FMT="('rem1')") |
---|
196 | CALL prt_ctl_trc_info(charout) |
---|
197 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
198 | ENDIF |
---|
199 | |
---|
200 | DO jk = 1, jpkm1 |
---|
201 | DO jj = 1, jpj |
---|
202 | DO ji = 1, jpi |
---|
203 | |
---|
204 | ! Bacterial uptake of iron. No iron is available in DOC. So |
---|
205 | ! Bacteries are obliged to take up iron from the water. Some |
---|
206 | ! studies (especially at Papa) have shown this uptake to be significant |
---|
207 | ! ---------------------------------------------------------- |
---|
208 | zbactfer = feratb * rfact2 * prmax(ji,jj,jk) * xlimbacl(ji,jj,jk) & |
---|
209 | & * trb(ji,jj,jk,jpfer) / ( xkferb + trb(ji,jj,jk,jpfer) ) & |
---|
210 | & * zdepprod(ji,jj,jk) * zdepbac(ji,jj,jk) |
---|
211 | #if defined key_kriest |
---|
212 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - zbactfer*0.05 |
---|
213 | tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + zbactfer*0.05 |
---|
214 | #else |
---|
215 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - zbactfer*0.16 |
---|
216 | tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + zbactfer*0.12 |
---|
217 | tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) + zbactfer*0.04 |
---|
218 | #endif |
---|
219 | END DO |
---|
220 | END DO |
---|
221 | END DO |
---|
222 | |
---|
223 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
224 | WRITE(charout, FMT="('rem2')") |
---|
225 | CALL prt_ctl_trc_info(charout) |
---|
226 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
227 | ENDIF |
---|
228 | |
---|
229 | ! Initialization of the array which contains the labile fraction |
---|
230 | ! of bSi. Set to a constant in the upper ocean |
---|
231 | ! --------------------------------------------------------------- |
---|
232 | |
---|
233 | DO jk = 1, jpkm1 |
---|
234 | DO jj = 1, jpj |
---|
235 | DO ji = 1, jpi |
---|
236 | zstep = xstep |
---|
237 | # if defined key_degrad |
---|
238 | zstep = zstep * facvol(ji,jj,jk) |
---|
239 | # endif |
---|
240 | zdep = MAX( hmld(ji,jj), heup_01(ji,jj) ) |
---|
241 | zsatur = MAX( rtrn, ( sio3eq(ji,jj,jk) - trb(ji,jj,jk,jpsil) ) / ( sio3eq(ji,jj,jk) + rtrn ) ) |
---|
242 | zsatur2 = ( 1. + tsn(ji,jj,jk,jp_tem) / 400.)**37 |
---|
243 | znusil = 0.225 * ( 1. + tsn(ji,jj,jk,jp_tem) / 15.) * zsatur + 0.775 * zsatur2 * zsatur**9.25 |
---|
244 | |
---|
245 | ! Remineralization rate of BSi depedant on T and saturation |
---|
246 | ! --------------------------------------------------------- |
---|
247 | IF ( fsdept(ji,jj,jk) > zdep ) THEN |
---|
248 | zfacsib(ji,jj,jk) = zfacsib(ji,jj,jk-1) * EXP( -0.5 * ( xsiremlab - xsirem ) & |
---|
249 | & * znusil * fse3t(ji,jj,jk) / wsbio4(ji,jj,jk) ) |
---|
250 | zfacsi(ji,jj,jk) = zfacsib(ji,jj,jk) / ( 1.0 + zfacsib(ji,jj,jk) ) |
---|
251 | zfacsib(ji,jj,jk) = zfacsib(ji,jj,jk) * EXP( -0.5 * ( xsiremlab - xsirem ) & |
---|
252 | & * znusil * fse3t(ji,jj,jk) / wsbio4(ji,jj,jk) ) |
---|
253 | ENDIF |
---|
254 | zsiremin = ( xsiremlab * zfacsi(ji,jj,jk) + xsirem * ( 1. - zfacsi(ji,jj,jk) ) ) * zstep * znusil |
---|
255 | zosil = zsiremin * trb(ji,jj,jk,jpgsi) |
---|
256 | ! |
---|
257 | tra(ji,jj,jk,jpgsi) = tra(ji,jj,jk,jpgsi) - zosil |
---|
258 | tra(ji,jj,jk,jpsil) = tra(ji,jj,jk,jpsil) + zosil |
---|
259 | END DO |
---|
260 | END DO |
---|
261 | END DO |
---|
262 | |
---|
263 | |
---|
264 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
265 | WRITE(charout, FMT="('rem3')") |
---|
266 | CALL prt_ctl_trc_info(charout) |
---|
267 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
268 | ENDIF |
---|
269 | |
---|
270 | IF( ln_diatrc .AND. lk_iomput .AND. jnt == nrdttrc ) THEN |
---|
271 | zrfact2 = 1.e3 * rfact2r |
---|
272 | CALL iom_put( "REMIN" , zolimi(:,:,:) * tmask(:,:,:) * zrfact2 ) ! Remineralisation rate |
---|
273 | CALL iom_put( "DENIT" , denitr(:,:,:) * rdenit * rno3 * tmask(:,:,:) * zrfact2 ) ! Denitrification |
---|
274 | CALL iom_put( "NIT" , znitr(:,:,:) * rno3 * tmask(:,:,:) * zrfact2 ) ! |
---|
275 | CALL iom_put( "BACT", zdepbac(:,:,:) * 1.E6 * tmask(:,:,:) ) ! Bacterial biomass |
---|
276 | |
---|
277 | ENDIF |
---|
278 | ! |
---|
279 | CALL wrk_dealloc( jpi, jpj, ztempbac ) |
---|
280 | CALL wrk_dealloc( jpi, jpj, jpk, zdepbac, zdepprod, zolimi, zfacsi, zfacsib, znitr ) |
---|
281 | ! |
---|
282 | IF( nn_timing == 1 ) CALL timing_stop('p4z_rem') |
---|
283 | ! |
---|
284 | END SUBROUTINE p4z_rem |
---|
285 | |
---|
286 | |
---|
287 | SUBROUTINE p4z_rem_init |
---|
288 | !!---------------------------------------------------------------------- |
---|
289 | !! *** ROUTINE p4z_rem_init *** |
---|
290 | !! |
---|
291 | !! ** Purpose : Initialization of remineralization parameters |
---|
292 | !! |
---|
293 | !! ** Method : Read the nampisrem namelist and check the parameters |
---|
294 | !! called at the first timestep |
---|
295 | !! |
---|
296 | !! ** input : Namelist nampisrem |
---|
297 | !! |
---|
298 | !!---------------------------------------------------------------------- |
---|
299 | NAMELIST/nampisrem/ xremik, nitrif, xsirem, xsiremlab, xsilab, & |
---|
300 | & oxymin, oxymin2, feratb, xkferb |
---|
301 | INTEGER :: ios ! Local integer output status for namelist read |
---|
302 | |
---|
303 | REWIND( numnatp_ref ) ! Namelist nampisrem in reference namelist : Pisces remineralization |
---|
304 | READ ( numnatp_ref, nampisrem, IOSTAT = ios, ERR = 901) |
---|
305 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisrem in reference namelist', lwp ) |
---|
306 | |
---|
307 | REWIND( numnatp_cfg ) ! Namelist nampisrem in configuration namelist : Pisces remineralization |
---|
308 | READ ( numnatp_cfg, nampisrem, IOSTAT = ios, ERR = 902 ) |
---|
309 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisrem in configuration namelist', lwp ) |
---|
310 | IF(lwm) WRITE ( numonp, nampisrem ) |
---|
311 | |
---|
312 | IF(lwp) THEN ! control print |
---|
313 | WRITE(numout,*) ' ' |
---|
314 | WRITE(numout,*) ' Namelist parameters for remineralization, nampisrem' |
---|
315 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
316 | WRITE(numout,*) ' remineralization rate of DOC xremik =', xremik |
---|
317 | WRITE(numout,*) ' remineralization rate of Si xsirem =', xsirem |
---|
318 | WRITE(numout,*) ' fast remineralization rate of Si xsiremlab =', xsiremlab |
---|
319 | WRITE(numout,*) ' fraction of labile biogenic silica xsilab =', xsilab |
---|
320 | WRITE(numout,*) ' NH4 nitrification rate nitrif =', nitrif |
---|
321 | WRITE(numout,*) ' halk saturation constant for anoxia oxymin =', oxymin |
---|
322 | WRITE(numout,*) ' Minimum O2 concentration for oxic remin. oxymin2 =', oxymin2 |
---|
323 | WRITE(numout,*) ' Bacterial Fe/C ratio feratb =', feratb |
---|
324 | WRITE(numout,*) ' Half-saturation constant for bact. Fe/C xkferb =', xkferb |
---|
325 | ENDIF |
---|
326 | ! |
---|
327 | nitrfac (:,:,:) = 0._wp |
---|
328 | denitr (:,:,:) = 0._wp |
---|
329 | |
---|
330 | END SUBROUTINE p4z_rem_init |
---|
331 | |
---|
332 | |
---|
333 | INTEGER FUNCTION p4z_rem_alloc() |
---|
334 | !!---------------------------------------------------------------------- |
---|
335 | !! *** ROUTINE p4z_rem_alloc *** |
---|
336 | !!---------------------------------------------------------------------- |
---|
337 | ALLOCATE( denitr(jpi,jpj,jpk), STAT=p4z_rem_alloc ) |
---|
338 | ! |
---|
339 | IF( p4z_rem_alloc /= 0 ) CALL ctl_warn('p4z_rem_alloc: failed to allocate arrays') |
---|
340 | ! |
---|
341 | END FUNCTION p4z_rem_alloc |
---|
342 | |
---|
343 | #else |
---|
344 | !!====================================================================== |
---|
345 | !! Dummy module : No PISCES bio-model |
---|
346 | !!====================================================================== |
---|
347 | CONTAINS |
---|
348 | SUBROUTINE p4z_rem ! Empty routine |
---|
349 | END SUBROUTINE p4z_rem |
---|
350 | #endif |
---|
351 | |
---|
352 | !!====================================================================== |
---|
353 | END MODULE p4zrem |
---|