1 | MODULE p4zsbc |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p4sbc *** |
---|
4 | !! TOP : PISCES surface boundary conditions of external inputs of nutrients |
---|
5 | !!====================================================================== |
---|
6 | !! History : 3.5 ! 2012-07 (O. Aumont, C. Ethe) Original code |
---|
7 | !!---------------------------------------------------------------------- |
---|
8 | #if defined key_pisces || defined key_pisces_quota |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | !! 'key_pisces' PISCES bio-model |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! p4z_sbc : Read and interpolate time-varying nutrients fluxes |
---|
13 | !! p4z_sbc_init : Initialization of p4z_sbc |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
16 | USE trc ! passive tracers common variables |
---|
17 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
18 | USE iom ! I/O manager |
---|
19 | USE fldread ! time interpolation |
---|
20 | |
---|
21 | IMPLICIT NONE |
---|
22 | PRIVATE |
---|
23 | |
---|
24 | PUBLIC p4z_sbc |
---|
25 | PUBLIC p4z_sbc_init |
---|
26 | |
---|
27 | !! * Shared module variables |
---|
28 | LOGICAL , PUBLIC :: ln_dust !: boolean for dust input from the atmosphere |
---|
29 | LOGICAL , PUBLIC :: ln_solub !: boolean for variable solubility of atmospheric iron |
---|
30 | LOGICAL , PUBLIC :: ln_river !: boolean for river input of nutrients |
---|
31 | LOGICAL , PUBLIC :: ln_ndepo !: boolean for atmospheric deposition of N |
---|
32 | LOGICAL , PUBLIC :: ln_ironsed !: boolean for Fe input from sediments |
---|
33 | LOGICAL , PUBLIC :: ln_hydrofe !: boolean for Fe input from hydrothermal vents |
---|
34 | LOGICAL , PUBLIC :: ln_ironice !: boolean for Fe input from sea ice |
---|
35 | REAL(wp), PUBLIC :: sedfeinput !: Coastal release of Iron |
---|
36 | REAL(wp), PUBLIC :: dustsolub !: Solubility of the dust |
---|
37 | REAL(wp), PUBLIC :: mfrac !: Mineral Content of the dust |
---|
38 | REAL(wp), PUBLIC :: icefeinput !: Iron concentration in sea ice |
---|
39 | REAL(wp), PUBLIC :: wdust !: Sinking speed of the dust |
---|
40 | REAL(wp), PUBLIC :: nitrfix !: Nitrogen fixation rate |
---|
41 | REAL(wp), PUBLIC :: diazolight !: Nitrogen fixation sensitivty to light |
---|
42 | REAL(wp), PUBLIC :: concfediaz !: Fe half-saturation Cste for diazotrophs |
---|
43 | REAL(wp) :: hratio !: Fe:3He ratio assumed for vent iron supply |
---|
44 | #if defined key_ligand |
---|
45 | REAL(wp), PUBLIC :: fep_rats !: Fep/Fer ratio from sed sources |
---|
46 | REAL(wp), PUBLIC :: fep_rath !: Fep/Fer ratio from hydro sources |
---|
47 | REAL(wp), PUBLIC :: hydrolig !: Lgw/Fer ratio from hydro sources |
---|
48 | #endif |
---|
49 | |
---|
50 | LOGICAL , PUBLIC :: ll_sbc |
---|
51 | |
---|
52 | !! * Module variables |
---|
53 | LOGICAL :: ll_solub |
---|
54 | |
---|
55 | INTEGER , PARAMETER :: jpriv = 7 !: Maximum number of river input fields |
---|
56 | INTEGER , PARAMETER :: jr_dic = 1 !: index of dissolved inorganic carbon |
---|
57 | INTEGER , PARAMETER :: jr_doc = 2 !: index of dissolved organic carbon |
---|
58 | INTEGER , PARAMETER :: jr_din = 3 !: index of dissolved inorganic nitrogen |
---|
59 | INTEGER , PARAMETER :: jr_don = 4 !: index of dissolved organic nitrogen |
---|
60 | INTEGER , PARAMETER :: jr_dip = 5 !: index of dissolved inorganic phosporus |
---|
61 | INTEGER , PARAMETER :: jr_dop = 6 !: index of dissolved organic phosphorus |
---|
62 | INTEGER , PARAMETER :: jr_dsi = 7 !: index of dissolved silicate |
---|
63 | |
---|
64 | |
---|
65 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_dust ! structure of input dust |
---|
66 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_solub ! structure of input dust |
---|
67 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_river ! structure of input riverdic |
---|
68 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_ndepo ! structure of input nitrogen deposition |
---|
69 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_ironsed ! structure of input iron from sediment |
---|
70 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_hydrofe ! structure of input iron from hydrothermal vents |
---|
71 | |
---|
72 | INTEGER , PARAMETER :: nbtimes = 365 !: maximum number of times record in a file |
---|
73 | INTEGER :: ntimes_dust, ntimes_riv, ntimes_ndep ! number of time steps in a file |
---|
74 | INTEGER :: ntimes_solub, ntimes_hydro ! number of time steps in a file |
---|
75 | |
---|
76 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: dust, solub !: dust fields |
---|
77 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rivdic, rivalk !: river input fields |
---|
78 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rivdin, rivdip !: river input fields |
---|
79 | #if defined key_pisces_quota |
---|
80 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rivdon, rivdop !: river input fields |
---|
81 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rivdoc !: river input fields |
---|
82 | #endif |
---|
83 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rivdsi !: river input fields |
---|
84 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: nitdep !: atmospheric N deposition |
---|
85 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ironsed !: Coastal supply of iron |
---|
86 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: hydrofe !: Hydrothermal vent supply of iron |
---|
87 | |
---|
88 | REAL(wp), PUBLIC :: sumdepsi, rivalkinput, rivdicinput, nitdepinput |
---|
89 | REAL(wp), PUBLIC :: rivdininput, rivdipinput, rivdsiinput |
---|
90 | |
---|
91 | !!* Substitution |
---|
92 | # include "top_substitute.h90" |
---|
93 | !!---------------------------------------------------------------------- |
---|
94 | !! NEMO/TOP 3.3 , NEMO Consortium (2010) |
---|
95 | !! $Header:$ |
---|
96 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
97 | !!---------------------------------------------------------------------- |
---|
98 | |
---|
99 | CONTAINS |
---|
100 | |
---|
101 | SUBROUTINE p4z_sbc( kt ) |
---|
102 | !!---------------------------------------------------------------------- |
---|
103 | !! *** routine p4z_sbc *** |
---|
104 | !! |
---|
105 | !! ** purpose : read and interpolate the external sources of nutrients |
---|
106 | !! |
---|
107 | !! ** method : read the files and interpolate the appropriate variables |
---|
108 | !! |
---|
109 | !! ** input : external netcdf files |
---|
110 | !! |
---|
111 | !!---------------------------------------------------------------------- |
---|
112 | !! * arguments |
---|
113 | INTEGER, INTENT( in ) :: kt ! ocean time step |
---|
114 | |
---|
115 | !! * local declarations |
---|
116 | INTEGER :: ji,jj |
---|
117 | REAL(wp) :: zcoef, zyyss |
---|
118 | !!--------------------------------------------------------------------- |
---|
119 | ! |
---|
120 | IF( nn_timing == 1 ) CALL timing_start('p4z_sbc') |
---|
121 | |
---|
122 | ! |
---|
123 | ! Compute dust at nit000 or only if there is more than 1 time record in dust file |
---|
124 | IF( ln_dust ) THEN |
---|
125 | IF( kt == nit000 .OR. ( kt /= nit000 .AND. ntimes_dust > 1 ) ) THEN |
---|
126 | CALL fld_read( kt, 1, sf_dust ) |
---|
127 | IF( nn_ice_tr == -1 .AND. .NOT. ln_ironice ) THEN |
---|
128 | dust(:,:) = sf_dust(1)%fnow(:,:,1) |
---|
129 | ELSE |
---|
130 | dust(:,:) = sf_dust(1)%fnow(:,:,1) * ( 1.0 - fr_i(:,:) ) |
---|
131 | ENDIF |
---|
132 | ENDIF |
---|
133 | ENDIF |
---|
134 | |
---|
135 | IF( ll_solub ) THEN |
---|
136 | IF( kt == nit000 .OR. ( kt /= nit000 .AND. ntimes_solub > 1 ) ) THEN |
---|
137 | CALL fld_read( kt, 1, sf_solub ) |
---|
138 | solub(:,:) = sf_solub(1)%fnow(:,:,1) |
---|
139 | ENDIF |
---|
140 | ENDIF |
---|
141 | |
---|
142 | ! N/P and Si releases due to coastal rivers |
---|
143 | ! Compute river at nit000 or only if there is more than 1 time record in river file |
---|
144 | ! ----------------------------------------- |
---|
145 | IF( ln_river ) THEN |
---|
146 | IF( kt == nit000 .OR. ( kt /= nit000 .AND. ntimes_riv > 1 ) ) THEN |
---|
147 | CALL fld_read( kt, 1, sf_river ) |
---|
148 | DO jj = 1, jpj |
---|
149 | DO ji = 1, jpi |
---|
150 | zcoef = ryyss * cvol(ji,jj,1) |
---|
151 | rivalk(ji,jj) = sf_river(jr_dic)%fnow(ji,jj,1) & |
---|
152 | & * 1.E3 / ( 12. * zcoef + rtrn ) * tmask(ji,jj,1) |
---|
153 | #if defined key_pisces_quota |
---|
154 | rivdic(ji,jj) = ( sf_river(jr_dic)%fnow(ji,jj,1) ) & |
---|
155 | & * 1.E3 / ( 12. * zcoef + rtrn ) * tmask(ji,jj,1) |
---|
156 | rivdin(ji,jj) = ( sf_river(jr_din)%fnow(ji,jj,1) ) & |
---|
157 | & * 1.E3 / rno3 / ( 14. * zcoef + rtrn ) * tmask(ji,jj,1) |
---|
158 | rivdip(ji,jj) = ( sf_river(jr_dip)%fnow(ji,jj,1) ) & |
---|
159 | & * 1.E3 / po4r / ( 31. * zcoef + rtrn ) * tmask(ji,jj,1) |
---|
160 | rivdoc(ji,jj) = ( sf_river(jr_doc)%fnow(ji,jj,1) ) & |
---|
161 | & * 1.E3 / ( 12. * zcoef + rtrn ) * tmask(ji,jj,1) |
---|
162 | rivdon(ji,jj) = ( sf_river(jr_don)%fnow(ji,jj,1) ) & |
---|
163 | & * 1.E3 / rno3 / ( 14. * zcoef + rtrn ) * tmask(ji,jj,1) |
---|
164 | rivdop(ji,jj) = ( sf_river(jr_dop)%fnow(ji,jj,1) ) & |
---|
165 | & * 1.E3 / po4r / ( 31. * zcoef + rtrn ) * tmask(ji,jj,1) |
---|
166 | #else |
---|
167 | rivdic(ji,jj) = ( sf_river(jr_dic)%fnow(ji,jj,1) + sf_river(jr_doc)%fnow(ji,jj,1) ) & |
---|
168 | & * 1.E3 / ( 12. * zcoef + rtrn ) * tmask(ji,jj,1) |
---|
169 | rivdin(ji,jj) = ( sf_river(jr_din)%fnow(ji,jj,1) + sf_river(jr_don)%fnow(ji,jj,1) ) & |
---|
170 | & * 1.E3 / rno3 / ( 14. * zcoef + rtrn ) * tmask(ji,jj,1) |
---|
171 | rivdip(ji,jj) = ( sf_river(jr_dip)%fnow(ji,jj,1) + sf_river(jr_dop)%fnow(ji,jj,1) ) & |
---|
172 | & * 1.E3 / po4r / ( 31. * zcoef + rtrn ) * tmask(ji,jj,1) |
---|
173 | #endif |
---|
174 | rivdsi(ji,jj) = sf_river(jr_dsi)%fnow(ji,jj,1) & |
---|
175 | & * 1.E3 / ( 28.1 * zcoef + rtrn ) * tmask(ji,jj,1) |
---|
176 | END DO |
---|
177 | END DO |
---|
178 | ENDIF |
---|
179 | ENDIF |
---|
180 | |
---|
181 | ! Compute N deposition at nit000 or only if there is more than 1 time record in N deposition file |
---|
182 | IF( ln_ndepo ) THEN |
---|
183 | IF( kt == nit000 .OR. ( kt /= nit000 .AND. ntimes_ndep > 1 ) ) THEN |
---|
184 | CALL fld_read( kt, 1, sf_ndepo ) |
---|
185 | DO jj = 1, jpj |
---|
186 | DO ji = 1, jpi |
---|
187 | nitdep(ji,jj) = sf_ndepo(1)%fnow(ji,jj,1) / rno3 / ( 14E6 * ryyss * fse3t(ji,jj,1) + rtrn ) |
---|
188 | END DO |
---|
189 | END DO |
---|
190 | ENDIF |
---|
191 | ENDIF |
---|
192 | ! |
---|
193 | IF( nn_timing == 1 ) CALL timing_stop('p4z_sbc') |
---|
194 | ! |
---|
195 | END SUBROUTINE p4z_sbc |
---|
196 | |
---|
197 | SUBROUTINE p4z_sbc_init |
---|
198 | |
---|
199 | !!---------------------------------------------------------------------- |
---|
200 | !! *** routine p4z_sbc_init *** |
---|
201 | !! |
---|
202 | !! ** purpose : initialization of the external sources of nutrients |
---|
203 | !! |
---|
204 | !! ** method : read the files and compute the budget |
---|
205 | !! called at the first timestep (nittrc000) |
---|
206 | !! |
---|
207 | !! ** input : external netcdf files |
---|
208 | !! |
---|
209 | !!---------------------------------------------------------------------- |
---|
210 | ! |
---|
211 | INTEGER :: ji, jj, jk, jm, ifpr |
---|
212 | INTEGER :: ii0, ii1, ij0, ij1 |
---|
213 | INTEGER :: numdust, numsolub, numriv, numiron, numdepo, numhydro |
---|
214 | INTEGER :: ierr, ierr1, ierr2, ierr3 |
---|
215 | INTEGER :: ios ! Local integer output status for namelist read |
---|
216 | INTEGER :: ik50 ! last level where depth less than 50 m |
---|
217 | REAL(wp) :: zexpide, zdenitide, zmaskt |
---|
218 | REAL(wp) :: ztimes_dust, ztimes_riv, ztimes_ndep |
---|
219 | REAL(wp), DIMENSION(nbtimes) :: zsteps ! times records |
---|
220 | REAL(wp), DIMENSION(:), ALLOCATABLE :: rivinput |
---|
221 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: zdust, zndepo, zriver, zcmask |
---|
222 | ! |
---|
223 | CHARACTER(len=100) :: cn_dir ! Root directory for location of ssr files |
---|
224 | TYPE(FLD_N), DIMENSION(jpriv) :: slf_river ! array of namelist informations on the fields to read |
---|
225 | TYPE(FLD_N) :: sn_dust, sn_solub, sn_ndepo, sn_ironsed, sn_hydrofe ! informations about the fields to be read |
---|
226 | TYPE(FLD_N) :: sn_riverdoc, sn_riverdic, sn_riverdsi ! informations about the fields to be read |
---|
227 | TYPE(FLD_N) :: sn_riverdin, sn_riverdon, sn_riverdip, sn_riverdop |
---|
228 | ! |
---|
229 | NAMELIST/nampissbc/cn_dir, sn_dust, sn_solub, sn_riverdic, sn_riverdoc, sn_riverdin, sn_riverdon, & |
---|
230 | & sn_riverdip, sn_riverdop, sn_riverdsi, sn_ndepo, sn_ironsed, sn_hydrofe, & |
---|
231 | & ln_dust, ln_solub, ln_river, ln_ndepo, ln_ironsed, ln_ironice, ln_hydrofe, & |
---|
232 | & sedfeinput, dustsolub, icefeinput, wdust, mfrac, nitrfix, diazolight, concfediaz, & |
---|
233 | #if defined key_ligand |
---|
234 | & fep_rats, fep_rath, hydrolig, & |
---|
235 | #endif |
---|
236 | & hratio |
---|
237 | !!---------------------------------------------------------------------- |
---|
238 | ! |
---|
239 | IF( nn_timing == 1 ) CALL timing_start('p4z_sbc_init') |
---|
240 | ! |
---|
241 | ! !* set file information |
---|
242 | REWIND( numnatp_ref ) ! Namelist nampissbc in reference namelist : Pisces external sources of nutrients |
---|
243 | READ ( numnatp_ref, nampissbc, IOSTAT = ios, ERR = 901) |
---|
244 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampissbc in reference namelist', lwp ) |
---|
245 | |
---|
246 | REWIND( numnatp_cfg ) ! Namelist nampissbc in configuration namelist : Pisces external sources of nutrients |
---|
247 | READ ( numnatp_cfg, nampissbc, IOSTAT = ios, ERR = 902 ) |
---|
248 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampissbc in configuration namelist', lwp ) |
---|
249 | IF(lwm) WRITE ( numonp, nampissbc ) |
---|
250 | |
---|
251 | IF(lwp) THEN |
---|
252 | WRITE(numout,*) ' ' |
---|
253 | WRITE(numout,*) ' namelist : nampissbc ' |
---|
254 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~ ' |
---|
255 | WRITE(numout,*) ' dust input from the atmosphere ln_dust = ', ln_dust |
---|
256 | WRITE(numout,*) ' Variable solubility of iron input ln_solub = ', ln_solub |
---|
257 | WRITE(numout,*) ' river input of nutrients ln_river = ', ln_river |
---|
258 | WRITE(numout,*) ' atmospheric deposition of n ln_ndepo = ', ln_ndepo |
---|
259 | WRITE(numout,*) ' Fe input from sediments ln_ironsed = ', ln_ironsed |
---|
260 | WRITE(numout,*) ' Fe input from seaice ln_ironice = ', ln_ironice |
---|
261 | WRITE(numout,*) ' fe input from hydrothermal vents ln_hydrofe = ', ln_hydrofe |
---|
262 | WRITE(numout,*) ' coastal release of iron sedfeinput = ', sedfeinput |
---|
263 | WRITE(numout,*) ' solubility of the dust dustsolub = ', dustsolub |
---|
264 | WRITE(numout,*) ' Mineral Fe content of the dust mfrac = ', mfrac |
---|
265 | WRITE(numout,*) ' Iron concentration in sea ice icefeinput = ', icefeinput |
---|
266 | WRITE(numout,*) ' sinking speed of the dust wdust = ', wdust |
---|
267 | WRITE(numout,*) ' nitrogen fixation rate nitrfix = ', nitrfix |
---|
268 | WRITE(numout,*) ' nitrogen fixation sensitivty to light diazolight = ', diazolight |
---|
269 | WRITE(numout,*) ' fe half-saturation cste for diazotrophs concfediaz = ', concfediaz |
---|
270 | WRITE(numout,*) ' Fe to 3He ratio assumed for vent iron supply hratio = ', hratio |
---|
271 | #if defined key_ligand |
---|
272 | WRITE(numout,*) ' Fep/Fer ratio from sed sources = ', fep_rats |
---|
273 | WRITE(numout,*) ' Fep/Fer ratio from sed hydro sources = ', fep_rath |
---|
274 | WRITE(numout,*) ' Lgw/Fer ratio from sed sources = ', hydrolig |
---|
275 | #endif |
---|
276 | END IF |
---|
277 | |
---|
278 | IF( ln_dust .OR. ln_river .OR. ln_ndepo ) THEN ; ll_sbc = .TRUE. |
---|
279 | ELSE ; ll_sbc = .FALSE. |
---|
280 | ENDIF |
---|
281 | |
---|
282 | IF( ln_dust .AND. ln_solub ) THEN ; ll_solub = .TRUE. |
---|
283 | ELSE ; ll_solub = .FALSE. |
---|
284 | ENDIF |
---|
285 | |
---|
286 | ! set the number of level over which river runoffs are applied |
---|
287 | ! online configuration : computed in sbcrnf |
---|
288 | IF( lk_offline ) THEN |
---|
289 | nk_rnf(:,:) = 1 |
---|
290 | h_rnf (:,:) = fse3t(:,:,1) |
---|
291 | ENDIF |
---|
292 | |
---|
293 | ! dust input from the atmosphere |
---|
294 | ! ------------------------------ |
---|
295 | IF( ln_dust ) THEN |
---|
296 | ! |
---|
297 | IF(lwp) WRITE(numout,*) ' initialize dust input from atmosphere ' |
---|
298 | IF(lwp) WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ' |
---|
299 | ! |
---|
300 | ALLOCATE( dust(jpi,jpj) ) ! allocation |
---|
301 | ! |
---|
302 | ALLOCATE( sf_dust(1), STAT=ierr ) !* allocate and fill sf_sst (forcing structure) with sn_sst |
---|
303 | IF( ierr > 0 ) CALL ctl_stop( 'STOP', 'p4z_sed_init: unable to allocate sf_dust structure' ) |
---|
304 | ! |
---|
305 | CALL fld_fill( sf_dust, (/ sn_dust /), cn_dir, 'p4z_sed_init', 'Atmospheric dust deposition', 'nampissed' ) |
---|
306 | ALLOCATE( sf_dust(1)%fnow(jpi,jpj,1) ) |
---|
307 | IF( sn_dust%ln_tint ) ALLOCATE( sf_dust(1)%fdta(jpi,jpj,1,2) ) |
---|
308 | ! |
---|
309 | IF( Agrif_Root() ) THEN ! Only on the master grid |
---|
310 | ! Get total input dust ; need to compute total atmospheric supply of Si in a year |
---|
311 | CALL iom_open ( TRIM( sn_dust%clname ) , numdust ) |
---|
312 | CALL iom_gettime( numdust, zsteps, kntime=ntimes_dust) ! get number of record in file |
---|
313 | ALLOCATE( zdust(jpi,jpj,ntimes_dust) ) |
---|
314 | DO jm = 1, ntimes_dust |
---|
315 | CALL iom_get( numdust, jpdom_data, TRIM( sn_dust%clvar ), zdust(:,:,jm), jm ) |
---|
316 | END DO |
---|
317 | CALL iom_close( numdust ) |
---|
318 | ztimes_dust = 1._wp / FLOAT( ntimes_dust ) |
---|
319 | sumdepsi = 0.e0 |
---|
320 | DO jm = 1, ntimes_dust |
---|
321 | sumdepsi = sumdepsi + glob_sum( zdust(:,:,jm) * e1e2t(:,:) * tmask(:,:,1) * ztimes_dust ) |
---|
322 | ENDDO |
---|
323 | sumdepsi = sumdepsi / ( nyear_len(1) * rday ) * 12. * 8.8 * 0.075 * mfrac / 28.1 |
---|
324 | DEALLOCATE( zdust) |
---|
325 | ENDIF |
---|
326 | ELSE |
---|
327 | sumdepsi = 0._wp |
---|
328 | END IF |
---|
329 | |
---|
330 | ! Solubility of dust deposition of iron |
---|
331 | ! Only if ln_dust and ln_solubility set to true (ll_solub = .true.) |
---|
332 | ! ----------------------------------------------------------------- |
---|
333 | IF( ll_solub ) THEN |
---|
334 | ! |
---|
335 | IF(lwp) WRITE(numout,*) ' initialize variable solubility of Fe ' |
---|
336 | IF(lwp) WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ' |
---|
337 | ! |
---|
338 | ALLOCATE( solub(jpi,jpj) ) ! allocation |
---|
339 | ! |
---|
340 | ALLOCATE( sf_solub(1), STAT=ierr ) !* allocate and fill sf_sst (forcing structure) with sn_sst |
---|
341 | IF( ierr > 0 ) CALL ctl_stop( 'STOP', 'p4z_sed_init: unable to allocate sf_solub structure' ) |
---|
342 | ! |
---|
343 | CALL fld_fill( sf_solub, (/ sn_solub /), cn_dir, 'p4z_sed_init', 'Solubility of atm. iron ', 'nampissed' ) |
---|
344 | ALLOCATE( sf_solub(1)%fnow(jpi,jpj,1) ) |
---|
345 | IF( sn_solub%ln_tint ) ALLOCATE( sf_solub(1)%fdta(jpi,jpj,1,2) ) |
---|
346 | ! get number of record in file |
---|
347 | CALL iom_open ( TRIM( sn_solub%clname ) , numsolub ) |
---|
348 | CALL iom_gettime( numsolub, zsteps, kntime=ntimes_solub) ! get number of record in file |
---|
349 | CALL iom_close( numsolub ) |
---|
350 | ENDIF |
---|
351 | |
---|
352 | ! nutrient input from rivers |
---|
353 | ! -------------------------- |
---|
354 | IF( ln_river ) THEN |
---|
355 | ! |
---|
356 | slf_river(jr_dic) = sn_riverdic ; slf_river(jr_doc) = sn_riverdoc ; slf_river(jr_din) = sn_riverdin |
---|
357 | slf_river(jr_don) = sn_riverdon ; slf_river(jr_dip) = sn_riverdip ; slf_river(jr_dop) = sn_riverdop |
---|
358 | slf_river(jr_dsi) = sn_riverdsi |
---|
359 | ! |
---|
360 | ALLOCATE( rivdic(jpi,jpj), rivalk(jpi,jpj), rivdin(jpi,jpj), rivdip(jpi,jpj), rivdsi(jpi,jpj) ) |
---|
361 | #if defined key_pisces_quota |
---|
362 | ALLOCATE( rivdon(jpi,jpj), rivdop(jpi,jpj), rivdoc(jpi,jpj) ) |
---|
363 | #endif |
---|
364 | ! |
---|
365 | ALLOCATE( sf_river(jpriv), rivinput(jpriv), STAT=ierr1 ) !* allocate and fill sf_river (forcing structure) with sn_river_ |
---|
366 | rivinput(:) = 0.0 |
---|
367 | |
---|
368 | IF( ierr1 > 0 ) CALL ctl_stop( 'STOP', 'p4z_sed_init: unable to allocate sf_irver structure' ) |
---|
369 | ! |
---|
370 | CALL fld_fill( sf_river, slf_river, cn_dir, 'p4z_sed_init', 'Input from river ', 'nampissed' ) |
---|
371 | DO ifpr = 1, jpriv |
---|
372 | ALLOCATE( sf_river(ifpr)%fnow(jpi,jpj,1 ) ) |
---|
373 | IF( slf_river(ifpr)%ln_tint ) ALLOCATE( sf_river(ifpr)%fdta(jpi,jpj,1,2) ) |
---|
374 | END DO |
---|
375 | IF( Agrif_Root() ) THEN ! Only on the master grid |
---|
376 | ! Get total input rivers ; need to compute total river supply in a year |
---|
377 | DO ifpr = 1, jpriv |
---|
378 | CALL iom_open ( TRIM( slf_river(ifpr)%clname ), numriv ) |
---|
379 | CALL iom_gettime( numriv, zsteps, kntime=ntimes_riv) |
---|
380 | ALLOCATE( zriver(jpi,jpj,ntimes_riv) ) |
---|
381 | DO jm = 1, ntimes_riv |
---|
382 | CALL iom_get( numriv, jpdom_data, TRIM( slf_river(ifpr)%clvar ), zriver(:,:,jm), jm ) |
---|
383 | END DO |
---|
384 | CALL iom_close( numriv ) |
---|
385 | ztimes_riv = 1._wp / FLOAT(ntimes_riv) |
---|
386 | DO jm = 1, ntimes_riv |
---|
387 | rivinput(ifpr) = rivinput(ifpr) + glob_sum( zriver(:,:,jm) * tmask(:,:,1) * ztimes_riv ) |
---|
388 | END DO |
---|
389 | DEALLOCATE( zriver) |
---|
390 | END DO |
---|
391 | ! N/P and Si releases due to coastal rivers |
---|
392 | ! ----------------------------------------- |
---|
393 | rivdicinput = (rivinput(jr_dic) + rivinput(jr_doc) ) * 1E3 / 12._wp |
---|
394 | rivdininput = (rivinput(jr_din) + rivinput(jr_don) ) * 1E3 / rno3 / 14._wp |
---|
395 | rivdipinput = (rivinput(jr_dip) + rivinput(jr_dop) ) * 1E3 / po4r / 31._wp |
---|
396 | rivdsiinput = rivinput(jr_dsi) * 1E3 / 28.1_wp |
---|
397 | rivalkinput = rivinput(jr_dic) * 1E3 / 12._wp |
---|
398 | ! |
---|
399 | ENDIF |
---|
400 | ELSE |
---|
401 | rivdicinput = 0._wp |
---|
402 | rivdininput = 0._wp |
---|
403 | rivdipinput = 0._wp |
---|
404 | rivdsiinput = 0._wp |
---|
405 | rivalkinput = 0._wp |
---|
406 | END IF |
---|
407 | |
---|
408 | ! nutrient input from dust |
---|
409 | ! ------------------------ |
---|
410 | IF( ln_ndepo ) THEN |
---|
411 | ! |
---|
412 | IF(lwp) WRITE(numout,*) ' initialize the nutrient input by dust from ndeposition.orca.nc' |
---|
413 | IF(lwp) WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
414 | ! |
---|
415 | ALLOCATE( nitdep(jpi,jpj) ) ! allocation |
---|
416 | ! |
---|
417 | ALLOCATE( sf_ndepo(1), STAT=ierr3 ) !* allocate and fill sf_sst (forcing structure) with sn_sst |
---|
418 | IF( ierr3 > 0 ) CALL ctl_stop( 'STOP', 'p4z_sed_init: unable to allocate sf_ndepo structure' ) |
---|
419 | ! |
---|
420 | CALL fld_fill( sf_ndepo, (/ sn_ndepo /), cn_dir, 'p4z_sed_init', 'Nutrient atmospheric depositon ', 'nampissed' ) |
---|
421 | ALLOCATE( sf_ndepo(1)%fnow(jpi,jpj,1) ) |
---|
422 | IF( sn_ndepo%ln_tint ) ALLOCATE( sf_ndepo(1)%fdta(jpi,jpj,1,2) ) |
---|
423 | ! |
---|
424 | IF( Agrif_Root() ) THEN ! Only on the master grid |
---|
425 | ! Get total input dust ; need to compute total atmospheric supply of N in a year |
---|
426 | CALL iom_open ( TRIM( sn_ndepo%clname ), numdepo ) |
---|
427 | CALL iom_gettime( numdepo, zsteps, kntime=ntimes_ndep) |
---|
428 | ALLOCATE( zndepo(jpi,jpj,ntimes_ndep) ) |
---|
429 | DO jm = 1, ntimes_ndep |
---|
430 | CALL iom_get( numdepo, jpdom_data, TRIM( sn_ndepo%clvar ), zndepo(:,:,jm), jm ) |
---|
431 | END DO |
---|
432 | CALL iom_close( numdepo ) |
---|
433 | ztimes_ndep = 1._wp / FLOAT( ntimes_ndep ) |
---|
434 | nitdepinput = 0._wp |
---|
435 | DO jm = 1, ntimes_ndep |
---|
436 | nitdepinput = nitdepinput + glob_sum( zndepo(:,:,jm) * e1e2t(:,:) * tmask(:,:,1) * ztimes_ndep ) |
---|
437 | ENDDO |
---|
438 | nitdepinput = nitdepinput / rno3 / 14E6 |
---|
439 | DEALLOCATE( zndepo) |
---|
440 | ENDIF |
---|
441 | ELSE |
---|
442 | nitdepinput = 0._wp |
---|
443 | ENDIF |
---|
444 | |
---|
445 | ! coastal and island masks |
---|
446 | ! ------------------------ |
---|
447 | IF( ln_ironsed ) THEN |
---|
448 | ! |
---|
449 | IF(lwp) WRITE(numout,*) ' computation of an island mask to enhance coastal supply of iron' |
---|
450 | IF(lwp) WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
451 | ! |
---|
452 | ALLOCATE( ironsed(jpi,jpj,jpk) ) ! allocation |
---|
453 | ! |
---|
454 | CALL iom_open ( TRIM( sn_ironsed%clname ), numiron ) |
---|
455 | ALLOCATE( zcmask(jpi,jpj,jpk) ) |
---|
456 | CALL iom_get ( numiron, jpdom_data, TRIM( sn_ironsed%clvar ), zcmask(:,:,:), 1 ) |
---|
457 | CALL iom_close( numiron ) |
---|
458 | ! |
---|
459 | ik50 = 5 ! last level where depth less than 50 m |
---|
460 | DO jk = jpkm1, 1, -1 |
---|
461 | IF( gdept_1d(jk) > 50. ) ik50 = jk - 1 |
---|
462 | END DO |
---|
463 | IF (lwp) WRITE(numout,*) |
---|
464 | IF (lwp) WRITE(numout,*) ' Level corresponding to 50m depth ', ik50,' ', gdept_1d(ik50+1) |
---|
465 | IF (lwp) WRITE(numout,*) |
---|
466 | DO jk = 1, ik50 |
---|
467 | DO jj = 2, jpjm1 |
---|
468 | DO ji = fs_2, fs_jpim1 |
---|
469 | IF( tmask(ji,jj,jk) /= 0. ) THEN |
---|
470 | zmaskt = tmask(ji+1,jj,jk) * tmask(ji-1,jj,jk) * tmask(ji,jj+1,jk) & |
---|
471 | & * tmask(ji,jj-1,jk) * tmask(ji,jj,jk+1) |
---|
472 | IF( zmaskt == 0. ) zcmask(ji,jj,jk ) = MAX( 0.1, zcmask(ji,jj,jk) ) |
---|
473 | END IF |
---|
474 | END DO |
---|
475 | END DO |
---|
476 | END DO |
---|
477 | IF( cp_cfg == 'orca' .AND. jp_cfg == 2 ) THEN |
---|
478 | ii0 = 176 ; ii1 = 176 ! Southern Island : Kerguelen |
---|
479 | ij0 = 37 ; ij1 = 37 ; zcmask( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1), 1:jpk ) = 0.3_wp |
---|
480 | ! |
---|
481 | ii0 = 119 ; ii1 = 119 ! South Georgia |
---|
482 | ij0 = 29 ; ij1 = 29 ; zcmask( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1), 1:jpk ) = 0.3_wp |
---|
483 | ! |
---|
484 | ii0 = 111 ; ii1 = 111 ! Falklands |
---|
485 | ij0 = 35 ; ij1 = 35 ; zcmask( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1), 1:jpk ) = 0.3_wp |
---|
486 | ! |
---|
487 | ii0 = 168 ; ii1 = 168 ! Crozet |
---|
488 | ij0 = 40 ; ij1 = 40 ; zcmask( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1), 1:jpk ) = 0.3_wp |
---|
489 | ! |
---|
490 | ii0 = 119 ; ii1 = 119 ! South Orkney |
---|
491 | ij0 = 28 ; ij1 = 28 ; zcmask( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1), 1:jpk ) = 0.3_wp |
---|
492 | ! |
---|
493 | ii0 = 140 ; ii1 = 140 ! Bouvet Island |
---|
494 | ij0 = 33 ; ij1 = 33 ; zcmask( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1), 1:jpk ) = 0.3_wp |
---|
495 | ! |
---|
496 | ii0 = 178 ; ii1 = 178 ! Prince edwards |
---|
497 | ij0 = 34 ; ij1 = 34 ; zcmask( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1), 1:jpk ) = 0.3_wp |
---|
498 | ! |
---|
499 | ii0 = 43 ; ii1 = 43 ! Balleny islands |
---|
500 | ij0 = 21 ; ij1 = 21 ; zcmask( mi0(ii0):mi1(ii1) , mj0(ij0):mj1(ij1), 1:jpk ) = 0.3_wp |
---|
501 | ENDIF |
---|
502 | CALL lbc_lnk( zcmask , 'T', 1. ) ! lateral boundary conditions on cmask (sign unchanged) |
---|
503 | DO jk = 1, jpk |
---|
504 | DO jj = 1, jpj |
---|
505 | DO ji = 1, jpi |
---|
506 | zexpide = MIN( 8.,( fsdept(ji,jj,jk) / 500. )**(-1.5) ) |
---|
507 | zdenitide = -0.9543 + 0.7662 * LOG( zexpide ) - 0.235 * LOG( zexpide )**2 |
---|
508 | zcmask(ji,jj,jk) = zcmask(ji,jj,jk) * MIN( 1., EXP( zdenitide ) / 0.5 ) * tmask(ji,jj,jk) |
---|
509 | END DO |
---|
510 | END DO |
---|
511 | END DO |
---|
512 | ! Coastal supply of iron |
---|
513 | ! ------------------------- |
---|
514 | ironsed(:,:,jpk) = 0._wp |
---|
515 | DO jk = 1, jpkm1 |
---|
516 | ironsed(:,:,jk) = sedfeinput * zcmask(:,:,jk) / ( fse3t(:,:,jk) * rday ) |
---|
517 | END DO |
---|
518 | DEALLOCATE( zcmask) |
---|
519 | ENDIF |
---|
520 | ! |
---|
521 | ! Iron from Hydrothermal vents |
---|
522 | ! ------------------------ |
---|
523 | IF( ln_hydrofe ) THEN |
---|
524 | ! |
---|
525 | IF(lwp) WRITE(numout,*) ' Input of iron from hydrothermal vents ' |
---|
526 | IF(lwp) WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
527 | ! |
---|
528 | ALLOCATE( hydrofe(jpi,jpj,jpk) ) ! allocation |
---|
529 | ! |
---|
530 | CALL iom_open ( TRIM( sn_hydrofe%clname ), numhydro ) |
---|
531 | CALL iom_get ( numhydro, jpdom_data, TRIM( sn_hydrofe%clvar ), hydrofe(:,:,:), 1 ) |
---|
532 | CALL iom_close( numhydro ) |
---|
533 | ! |
---|
534 | hydrofe(:,:,:) = ( hydrofe(:,:,:) * hratio ) / ( cvol(:,:,:) * ryyss + rtrn ) / 1000._wp * tmask(:,:,:) |
---|
535 | ! |
---|
536 | ENDIF |
---|
537 | ! |
---|
538 | IF( ll_sbc ) CALL p4z_sbc( nit000 ) |
---|
539 | ! |
---|
540 | IF(lwp) THEN |
---|
541 | WRITE(numout,*) |
---|
542 | WRITE(numout,*) ' Total input of elements from river supply' |
---|
543 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
544 | WRITE(numout,*) ' N Supply : ', rivdininput*rno3*1E3/1E12*14.,' TgN/yr' |
---|
545 | WRITE(numout,*) ' Si Supply : ', rivdsiinput*1E3/1E12*28.1,' TgSi/yr' |
---|
546 | WRITE(numout,*) ' P Supply : ', rivdipinput*1E3*po4r/1E12*31.,' TgP/yr' |
---|
547 | WRITE(numout,*) ' Alk Supply : ', rivalkinput*1E3/1E12,' Teq/yr' |
---|
548 | WRITE(numout,*) ' DIC Supply : ', rivdicinput*1E3*12./1E12,'TgC/yr' |
---|
549 | WRITE(numout,*) |
---|
550 | WRITE(numout,*) ' Total input of elements from atmospheric supply' |
---|
551 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
552 | WRITE(numout,*) ' N Supply : ', nitdepinput*rno3*1E3/1E12*14.,' TgN/yr' |
---|
553 | WRITE(numout,*) |
---|
554 | ENDIF |
---|
555 | ! |
---|
556 | IF( nn_timing == 1 ) CALL timing_stop('p4z_sbc_init') |
---|
557 | ! |
---|
558 | END SUBROUTINE p4z_sbc_init |
---|
559 | |
---|
560 | #else |
---|
561 | !!====================================================================== |
---|
562 | !! Dummy module : No PISCES bio-model |
---|
563 | !!====================================================================== |
---|
564 | CONTAINS |
---|
565 | SUBROUTINE p4z_sbc ! Empty routine |
---|
566 | END SUBROUTINE p4z_sbc |
---|
567 | #endif |
---|
568 | |
---|
569 | !!====================================================================== |
---|
570 | END MODULE p4zsbc |
---|